BUILDING A BETTER GPSS:

A 3:1 PERFORMANCE ENHANCEMENT

James O. Henriksen

CACI, Inc.

INTRODUCTION

This paper describes the development of GPSS/H, a new
GPSS for the IBM 360/370 and Amdahl 470 computer systems.
Preliminary results indicate that the new system runs well
over three times as fast as its IBM counterpart, GPSS/360.

The first section of this paper describes a detailed
analysis made of the run-time performance of GPSS/360.
The techniques used and the shortcomings identified are
described in detail. Next, the design goals of GPSS/H are
presented, followed by a brief overview of the new imple-
mentation. The new implementation departs radically from
the traditional interpretive approach found in many simu-
lators and constitutes a frontal attack on the short-
comings identified by performance measurement of GPSS/360.
Finally, performance comparisons are made between GPSS/H
and GPSS/360.

The efforts described herein were made during the
period 1968-1974, with a good share of the effort predat-
ing the existence of GPSS/V. In addition, the author never
had at his disposal a copy of GPSS/V for analysis and modi-
fication. Since the emphasis in the development of GPSS/V
was language extension, rather than performance enhance-
ment, many of the deficiencies identified in GPSS/360
still exist in GPSS/V. The analysis presented herein is,
therefore, largely applicable to GPSS/V.

The version of GPSS/360 analyzed was Version I, Modi-
fication Level 4, as modified to run under the control of
The University of Michigan Terminal System, MTS (1). All
the computer runs described herein were made at the
University of Michigan Computing Center, where the hard-
ware configuration at the time was a dual processor IBM
360/67. Accordingly, all CPU times cited are for the
360/67.

PERFORMANCE ANALYSIS OF GPSS/360

Performance Measurement Techniques Used

Three basic techniques of performance measurement were
used in analyzing GPSS/360. In order of increasing complex-
ity, they were (1) simple instrumentation achieved by making
minor insertions in the code, (2) the use of a software
probe, and (3) instruction counts and timings made by manu-
ally counting the instructions required to perform certain
functions and looking up the corresponding instruction
execution times.

Instrumentation

Instrumentation was inserted into GPSS/360 to provide
CPU times for the assembly, input, execution, and output
phases of a model, to count the total number of blocks
executed, and to calculate the average number of micro-
seconds of CPU time per block executed. These measure-
ments were rather easy to provide and, while technically un-
sophisticated, provided some very useful insight. 'Typical"
models were found to require around 450 microseconds per
block. This figure may be used as a guideline for asses-
sing the efficiency of the implementation of a model. A
model which requires more than 500 microseconds per block,
for example, might be suspected as inefficient. In the
absence of heavy computational requirements, e.g., function
and variable evaluations, the model should be highly sus-
pected of inefficient implementation. Such a model might be
a candidate for the introduction of User Chains to imcrease
efficiency, as discussed by Schriber (2).

465

Further use was made of the instrumentation facilities
to measure the average execution times of a number of dif-
ferent GPSS block types. The results of these measurement
runs are shown in figure 1. In each case, a model consist-
ing of 1000 replications of the given block(s) contained in
a loop was executed. The resultant timings for block pairs
shown are artificially lower than they would be in a "real"
model, because of the fact that no simulated time elapses,
thereby rendering the updating of utilization integrals
trivial.

The information provided by instrumentation was impor-
tant in two respects. First, it provided some initial in-
sight into the overall performance of GPSS/360. Second, it
provided the impetus for more detailed analysis: because
the execution times recorded seemed inordinately large, a
compelling urge arose to determine in greater detail exact-
ly where the CPU time was consumed.

Avg. CPU Time

Block(s) Timed (Microsec.)

SAVEVALUE 1,0 186
ASSIGN 1,0 215
SEIZE 1)

RELEASE 1) 258
QUEUE 1)

DEPART 1) 230
ENTER 1)

LEAVE 1) 259
ADVANCE 10 534
ADVANCE 10,5 733
ADVANCE 100,FNSEXPO 954

Figure 1 - GPSS/360 Average Block Execution Times

Use of a Software Probe

In order to make a more refined timing analysis, numer-
ous runs were made of GPSS/360 under the control of the
*TIMETALLY software probe of MTS. By scheduling periodic
timer interrupts and noting their subsequent points of oc-
currence, *TIMETALLY produces histograms which show where
CPU time is consumed in the address space of a program.
Using this technique, a number of bottlenecks were discover-
ed, including the DCOD, PREV, and UPBLK subroutines. The
DCOD subroutine decodes the operands of a block and calls
a subroutine to execute the block itself. Its execution is
highly interpretive, and significant overhead is involved,
even in the case of blocks which have no operands. The PREV
subroutine is called every time a non-GENERATE block is
entered, in order to perform two tests. First, if tracing
is enabled, the output phase is invoked to produce the trace
information. Second, a test is made to see whether the
entering transaction is leaving a GENERATE block. If so,
the successor arrival into the GENERATE block is scheduled
if the limit count has not been reached. If tracing is dis-
abled, for all blocks which do not immediately follow
GENERATE blocks, the call to PREV accomplishes absolutely
nothing. The UPBLK subroutine updates the overhead infor-
mation, e.g., block counts, associated with the successful
completion of a block. The DCOD, PREV, and UPBLK subrou-
tines were found to account for CPU times ranging from 120
microseconds in trivial models to nearly 200 microseconds in
one very complex model. In view of the 450 microsecond
figure identified above, these routines consume a signifi-
cant portion of the CPU time in a GPSS/360 run.

Instruction Counts and Timings

Further analysis was carried out by examining the
assembly code listings of GPSS/360, beginning with bottle-
necks identified in *TIMETALLY runs, The instruction counts
and timings determined for representative functions are pre-
sented below, where direct comparisons are made with the
corresponding finures for GPSS/H. The further discussion of
quantitative results is deferred to that more meaningful
context. We now proceed with a discussion of the quantita-
tive conclusions that were reached,

Shortcomings in the Implementation of GPSS/360

Poor Run-time Representation - The largest shortcoming of
GPSS/360 is the poorly designed run-time representation of
models. As a consequence of the poor representation, the
addressing of GPSS entities, the maintenance of overhead
information, and the computation of utilization integrals
are particularly costly.

In GPSS/360, nearly all entities are referenced inter-
nally by integer indices. Thus, to access the data associ-
ated with a particular entity, its index must be multiplied
by the number of bytes per entity (A shift is used if this
number is a power or Z.) and the resultant product must be
added to the starting address for entities of the type in
question. "Load-multiply-add' instruction sequences are
therefore prevalent where single "load" instructions could
be used if entity references were maintained internally as
actual machine addresses.

Because block information is accessed in the same way as
other entities, the maintenance of overhead information (cur-
rent and total block counts, current block number, and previ-
ous block number) is quite costly. Instruction count and
timing information presented below demonstrates that typical-
ly at least 11% of the CPU time in a GPSS run is consumed in
this activity.

The utilization integrals for queues, user chains, and
storages are maintained as double precision floating point
values. The values upon which these integrals are based,
elapsed time and current contents, are integer variables,
implying the need for integer-to-floating-point conversion.
The use of (software-implemented) double precision integer
integrals enables accumulation of the same statistics in one
sixth the time, as evidenced below.

Inconsistent Register Usage - The GPSS/360 simulator is com-
prised of a large number of relatively small subroutines.

The execution of a block might typically involve execution
of a half-dozen or more subroutines. The fact that machine
register usage in these routines is somewhat inconsistent is
indicated by the prevalent practice of saving and restoring
register contents at subroutine entry and exit, respectively.
The PREV subroutine provides a classic illustration of the
cost of this approach. The nine instructions executed in a
typical call of PREV consume 23 microseconds of CPU time on
the 360/67. Of these nine instructions, the "store multiple"
and "load multiple' instructions, which are used to save and
restore registers, consume approximately 13 microseconds,
more than half the execution time of the whole subroutine.
Although this in part reflects the peculiar architecture of
the 360/67, in which "multiple' instructions are costly, the
overstatement is only slight, The frequent shuffling of
register contents is expensive,

Redundant Error Checking - One of the fundamental rules of
simulation modelling is that complete error checking must be
done at execution time. Because of the non-deterministic
nature of most simulations, logical errors might go unde-
tected in the absence of complete error checking. In
GPSS/360, an overly comservative error checking philosophy
was adopted. Nearly every subroutine, including those at
the lowest levels, checks the validity of its arguments.

An alternative approach might be to have the calling routine
validate only those arguments which could possibly be in-

466

valid. If this is too dangerous, another strategy, widely
used in GPSS/H, is to provide primary and secondary subrou-
tine entry points, which perform and omit, respectively,
error checking. If a user codes a "SEIZE JOE" block in
(PSS/360, the number assigned to the symbol JOE by the
assembly phase is repeatedly checked for validity each time
the SEIZE block subroutine is called. It is particularly
vexing to see any program repeatedly revalidate a constant
value which it, in fact, generated.

Interpretive Operation - Interpretive operation implies gen-
erality: an interpretor must be able to interpretively per-
form all operations allowable at a given point. A second
hallmark of interpretive operation is that decision logic

in the program being interpreted is represented in the form
of data, rather than in the form of executable machine in-
structions. An interpretor, therefore, requires generalized
code for converting decision logic into actual branches
within the interpretor. It cannot be nearly as efficient as
machine instructions generated to carry out the same logic
directly. In GPSS/360, the decoding of block operands is
highly interpretive. In "typical" models, this activity
consumes 20-25% of the CPU time and, in complex models, may
exceed 30%. In GPSS/H, block operands are evaluated by com-
piler-generated object code. The superiority of this ap-
proach is evident in the results presented below.

DESIGN GOALS OF GPSS/H

The analysis of GPSS/360 gave rise to the desire to de-
sign a new implementation of GPSS which would eliminate the
inefficiencies identified. The goals of this redesign ef-
fort will now be briefly presented.

Upward compatibility and Language Enhancements

In order to be genuinely useful to 360/370/470 users,
any new version of GPSS, it was felt, had to be upward com-
patible with GPSS/V. This meant that models acceptable to
GPSS/V could be processed without changes to the GPSS source
code. The results would not be identical, because (1) dif-
ferent random number generators would be used, and (2) bugs
identified in GPSS/360 would not, of course, be duplicated.
Since the new system would have a totally different internal
structure, models employing the HELP block would probably re-
quire modification.

While the principal goal of the redesign was perform-
ance enhancement, provision was also made for inclusion of a
number of language extensions. Most significant among these
was the capability for use of arbitrarily complex expres-
sions as block operands. Since an expression compiler had
to be built anyway, it was actually easier to include this
capability than to force exact compatibility with GPSS/V.
Another language extension provided for was the inclusion
of standard parenthesis notation for specification of entity
indices.

Implementation as a compiler

GPSS/H was designed to be a true compiler, capable of
generating machine instructions for evaluation of arbitrar-
ily complex expressions. The design goal was to generate
object code in all cases where it was practical and to gen-
erate calls to run-time support routines in cases where gen-
eration of object code was impractical.

3:1 Performance Enhancement

The performance analysis of GPSS/360 indicated that a
3:1 enhancement could surely be achieved, and this figure
was adopted as a design goal. More emphasis was to be
placed on speed than on size. If significant speed in-
creases could be obtained at the cost of modest increases in
size, then the decision was to be made in favor of speed.

Debugging Aids and Instrumentation

To facilitate debugging and analysis of the new system,

an internal trace feature and extensive instrumentation were
provided for in the design. These features were to be im-
plemented in such a way that the "production' system could

easily be assembled with

these features omitted, eliminating

their relatively high execution cost.

Coding Standards

GPSS/H was designed
guage. Coding standards
ment density of at least
tion, (2) liberal use of

to be implemented in assembly lan-
to be employed included (1) a com-
one comment per machine instruc-

macros, (3) use of symbols for all

register and flag bit references, (4) modularized code, with
typical routines being one or two listing pages in length,
and (5) uniform register usage conventions. Wherever pos-
sible, instruction sequences were to be ordered to take ad-
vantage of parallelism available in high-performance CPUs,
such as the IBM 360/195.

IMPLEMENTATION OF GPSS/H

Overall System Architecture

The overall architecture of GPSS/H is shown in figure
2. The functions of each of the major modules will now be
briefly discussed. The CONTROL module oversees the entire
compilation and execution of a run and keeps track of the
CPU time used by other modules. PASS I is the first pass of
compilation. It reads and lists the source program and
translates it into an internal representation, which is a
combination infix and Polish-postfix notation. The compiler
employs an extremely fast recursive descent parser, which
was hand-coded from a formal grammar developed for GPSS ex-
pressions. Excellent compile-time diagnostics are given.
Interested readers should refer to Gries (3) for a com-
plete presentation of these topics. The PASS I INTERLUDE
assigns values to symbols and prints out a complete cross-
reference listing. For explicit references to entities,
e.g., "SEIZE FRED' or "ENTER 17", the maximum number of the
appropriate entity class is automatically adjusted upward,
if required, relieving the user of the burden of having to
REALLOCATE the entity class. PASS II reads the internal rep-
resentation of the program, produced by PASS I, and generates
object code to perform the required functions. The PASS II
INTERLUDE loads the object code and relocates relocatable
addresses 1in preparation for execution. As of this writing,
the compiler does not produce object module output, but this
capability could easily be added to the PASS II INTERLUDE.
The SIMULATOR is a collection of subroutines which controls
the execution of a model and provides those services for
which compilation of in-line object code is impractical. The
OUTPUT module produces all run-time output. The SYSTEM
INTERFACE module contains all operating system-dependent
functions, in order to facilitate transportability to dif-
ferent systems.

PASS 1
INTERLUDE

PASS 11

PASS II
INTERLUDE

CONTROL

SYSTEM OUTPUT
INTERFACE

Figure 2 - Overall System Architecture

Architecture of the SIMULATOR

Interaction with Compiled Code - The interaction between
compiled code and SIMULATOR is depicted in figure 3. For
non-trivial blocks, e.g., SEIZE, in-line code is generated
by the compiler for evaluation of the block's operands, and
a call is constructed to carry out the actual block opera-
tion. The block subroutine may, in turn, call on simulator
subroutines to perform its tasks. For trivial blocks, e.g.,
SAVEVALUE, in-line code is generated to perform the entire
block operation. Similarly, trivial SNAs are evaluated in-
line, and complex ones are evaluata2d by subroutine call.

CBASE SUBR RBASE —~
—_—
COMPILED BLOCK SUBROU~-
CODE ROUTINE TINES
LINK1 LINK2 LINK3
—f—————

Figure 3 - Interaction of Compiled Code with the Simulator

General Register Usage - A great deal of the high perform-
ance of GPSS/H is due to carefully designed conventions for
general register usage. These conventions, summarized in
figure 4, are based on two important underlying principles:
(1) frequently referenced items must be kept in registers at
all times; and (2) subroutine calls, as depicted in figure
3, must, because of their high frequency of occurrence, be
made with a minimum of overhead. Note that twelve of the
registers have dedicated functions, leaving only four reg-
isters available for evaluation of block operands. (In the
absence of SNA subroutine calls, registers SUBR and PARM may
be used, making a total of six.) Since block operands tend
(Remember, GPSS/H allows expressions as block operands.) to
be relatively simple, this is sufficient. When a transac-
tion is dispatched during a scan of the current events chain,
registers OLDBLK, CURBLK, LINKl, and CBASE are loaded, in a
single instruction, and this is all that is necessary to es-
tablish the transaction's current environment. The LINK1
register is dedicated to (1) scheduling successor arrivals
into GENERATE blocks, (2) the TRANSFER-ALL and TRANSFER-BOTH
blocks, and (3) the EXECUTE block. In all three cases, the
register holds a special, non-sequential return address that
overrides the flow of control that would otherwise normally
take place.

No Name Usage

0 ONE Always contains a 1
1 LINK2 Primary link register

2 XBASE Points to current xact
3 OLDBLK Points to previous block
4 CURBLK Points to current block
5 LINKI1 Special link register

6 CBASE Compiled code base reg
7 LINK3 Secondary link register
8 WORK1

9 WORK2

10 WORK3

11 WORK4 Work registers
12 RBASE Simulator base reg
13 RDATA Data base reg
14 SUBR Subroutine base reg
15 PARM Parameter register

Figure 4 - Register Usage Conventions

COMPARATIVE PERFORMANCE OF GPSS/360 AND GPSS/H

In the paragraphs which follow, results are presented
for four cases in which performance comparisons were made.
The first three comparisons are made on the basis of in-
struction counts and timings, while the fourth is made on
the basis of actual run times. The first case, an "ENTER 1"
block, was chosen as a representative non-trivial block
basic to the language. The second case, a '"SAVEVALUE 1,0"
block, was chosen as a representative trivial block in the
language and dramatically illustrates the high cost of over-
head in GPSS/360. The third case compares miscellaneous
primitive operations vital to carrying out a simulation.

The final case presents the results of benchmark runs of a
one-line, single-server queuing model. A prototype version
of GPSS/H was used which had the necessary subset of the
language implemented in both compilation and execution
phases of the system.

Results for the ENTER Block

The instruction counts and timings for an "ENTER 1"
block are shown in figure 5. The functional division of the
activities performed to execute the block is made on the
basis of GPSS/360 subroutines executed. Although these sub-
routines do not explicitly exist in GPSS/H, the same func-
tional divisions of machine instructions were used, in order
to facilitate comparison. The first line of figure 5 shows
the effort required to carry out the logic of the ENTER
block proper. Since the skeletal logic of the block is the
same in both cases, the instruction counts are fairly close.
The difference in times is attributable to a superior repre-
sentation in GPSS/H, in which important values are kept in
registers, reducing the number of (slower) storage refer-
ences. The effort required to decode the ENTER block argu-
ments is much greater for GPSS/360 because of the ineffici-
ency of the highly interpretive DCOD subroutine, described
above. The four instructions employed in GPSS/H, to satisfy
the curious reader, are a load of the address of storage 1,
a load of a (default B-operand) value of 1, a load of the
address of the ENTER subroutine, and a branch-and-link in-
struction to call it. Because the validation of "1" as a
storage number is done in the PASS I INTERLUDE of GPSS/H,
and calculation of its address is done in the PASS II
INTERLUDE, both of which precede execution, GPSS/H requires
no run-time effort for these operations, while GPSS/360 con-
sumes 18 microseconds. The inefficiencies of the PREV and
UPBLK subroutines and the inefficient manner of updating
storage utilization integrals were described in detail
above. When a storage becomes non-empty, any transactions
waiting on a "SNE" delay chain must be reactivated. In
GPSS/360, this is accomplished by a generalized subroutine,
ECHNGE, while in GPSS/H in-line code within the ENTER block
subroutine is employed. The results presented assume no
transactions were reactivated.

The most important comparison between the two systems
is, of course, the "bottom line," for which the ratio is
approximately 5.5 : 1.

COUNTS MICROSECONDS
FUNCTION 360 H 360 H
ENTER Block Proper 26 20 35 22
Decode Args, Call Subr 24 4 44 6
Calculate Storage Address 12 0 18 0
PREV 9 0 23 0
Update Integral 56 11 115 18
"SNE" Reactivation 8 3 20 3
UPBLK 23 6 s16

158 44 306 55

Figure 5 - Comparative Performance of the ENTER Block

We rest our case for the ENTER block.

468

Results for the SAVEVALUE Block

The instruction counts and timings for a '"'SAVEVALUE 1,0"
block are shown in figure 6. In GPSS/H, this block is exe-
cuted completely in-line. The basic sequence of instructions
is a load of the address of savevalue l, a load of the con-
stant zero, and a store into memory. The basic sequence is
followed by six instructions required to perform the over-
head accounting associated with block completion. The
GPSS/360 implementation of this block requires no explana-
tion at this point: the criticisms offered in the foregoing
discourse are, almost painfully, applicable.

COUNTS. MICROSECONDS
FUNCTION 360 H 360 H
SAVEVALUE Block Proper 12 0 18 0
Decode Args, Call Subr 44 2 68 3
In-line Store 0 1 0o 1
Calculate Savex Address 6 0 7 0
PREV 9 1 23 1
UPBLK 23 5 51 5

9 9 167 10

Figure 6 - Comparative Performance of the SAVEVALUE Block

Results for Miscellaneous Primitive Functions

Figure 7 displays instruction counts and timings for
additions/deletions to/from the current events chain,
for additions/deletions to/from the future events chain,
for dispatching a scan-active transaction encountered on the
current events chain, and for scanning the current events
chain. For the most part, the results show a decided super-
iority of GPSS/H over GPSS/360; however, there are two
cases, ADDFUT and SCAN CEC, which merit further discussion.
Both of these cases involve loops in which a chain of trans-
actions is examined; hence, results are depicted in the form
of fixed cost plus a coefficient times the number of trans-
actions examined. In both cases, the ratios between
GPSS/360 and GPSS/H coefficients are less than 3:1. This
implies that simulations intensive in either of these two
activities could fail to meet the 3:1 design goal. In the
case of future events chain additions, the algorithm em-
ployed in both systems is a linear search, in descending
time order, of a linked list. There exist alternative al-
gorithms (See (4) for a discussion.) which could be pro-
vided, perhaps upon request of a control card, to achieve
improved performance. This will be done when time permits.
In the second case, nothing can be done to improve the
implementation, given the architecture of the GPSS current
events chain. The "load-test-conditional-branch" sequence
employed in GPSS/H is optimal. The important point here is
that models shouldn't be intensive in the scan of the cur-
rent events chain. The coefficient for the loop is small
enough that many iterations would be required to reach
dominance by this loop in total run time. If the current
events chain contains such large numbers of scan-inactive
transactions, the modeller should, for his own sake, do
something about it, such as incorporating user chains into
the model.

Results for the One-Line Single-Server Queuing Model

Benchmark runs of the one-line, single-server queuing
model shown in figure 8 demonstrated a 4.4 : 1 superiority
of GPSS/H over GPSS/360. The times for several runs were
averaged to derive the overall ratio. Because of slight
difference in the way timing is done in the two systems, the
4.4 figure is conservative. Certain functions performed in
the INPUT phase of GPSS/360 are performed at run time in
GPSS/H, for example.

COUNTS MICROSECONDS

FUNCTION 360 H 360 H
ADDCUR* 30 7 54 9
SUBCUR* 35 5 5 7
ADDFUT 18+7n 743n 36+9n 9+4n
SUBFUT 19 5 53 7
Dispatch Active Xact 19 5 37 11
SCAN CEC 349n 2+3n 4+12n 3+5n

* Non-empty priority class

Figure 7 - Comparative Performance for Selected Primitives

SIMULATE

*

BARBER SHOP SEGMENT

GENERATE 18,6 ARRIVALS 18 +- 6 MINUTES
QUEUE JOEQ ENQUEUE FOR BARBER

SEIZE JOE ENGAGE BARBER

DEPART JOEQ EXIT THE QUEUE

ADVANCE 15,3 HAIRCUT 15 +- 3 MINUTES
RELEASE JOE FREE UP THE BARBER
TERMINATE DEPART THE SHOP

*

TIMER SEGMENT

GENERATE 48000 800 HOURS IN MINUTES
TERMINATE 1 SHUT DOWN THE SHOP
START 1

END

Figure 8 - One-Line Single server Queuing Model

CONCLUSIONS

Four-fold enhancements have been achieved in somewhat
limited testing of a prototype version of GPSS/H. This
demonstration, along with the foregoing analysis, indicates
that the design goal of 3:1 is attainable. The ultimate per-
formance in '"real" modelling situations is a matter for spec-
ulation until the system is completed. Inclusion of such
features as secondary storage of entities, a la GPSS/V, will
undoubtedly slow down GPSS/H. Remember, however, the com-
parisons presented herein have all been with GPSS/360, which
is presumably somewhat faster than GPSS/V.

As of this writing, availability of the new system is,
optimistically, scheduled for September, 1976.

REFERENCES

1. MIS Manual, Volumes 1-5 and 9-13, University of
Michigan Computing Center, Ann Arbor, Michigan

2. Thomas J. Schriber, Simulation Using GPSS, John
Wiley & Sons, New York, 1974, pp. 393-426

3. David Gries, Compiler Construction for Digital Com-
puters, John Wiley & Sons, New York, 1971

4. Jean G. Vaucher and Pierre Duval, "A Comparison of
Simulation Event List Algorithms,' Communications
of the ACM, April, 1975

469

