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1. INTRODUCTION

By far the most prevalent use of digital computers
in hybrid (combined analog-digital) computation is for func-
tion generation. This is particularly true for problems in-
volving simulation of aerospace vehicles, where the aero-
dynamic forces and moments may be complex functions of
three or more variables. Typically the required function
generation will be done on the digital computer using table
lookup and linear interpolation, and the rest of the compu-
tation, including integration, will be done on the analog
computer.

Since the sample rate at which the digital computer
can generate the nonlinear functions will be limited by the

speed of the computer as well as the number and complexity

of the required functions, it becomes important to under-
stand the effect of this limitation on the overall dynamic
accuracy of the hybrid solution. The purpose of this paper
is to present quantitative estimates of these dynamic effects
and the corresponding tradeoffs between computing speed
and accuracy. Such considerations become important in
estimating the capability of existing or proposed hybrid
computer systems to solve large nonlinear simulation prob-
lems, and to estimate the performance improvement which
can be obtained using specially-configured digital hardware
dedicated to function generation.

2. FORMULATION OF THE PROBLEM TO BE ANALYZED

The type of nonlinear problem normally implemented

on a hybrid computer is so large and complex that analytic
techniques for dynamic error analysis cannot be applied
directly.
can often be quasi-linearized without destroying the basic
nature of the dynamic behavior of the system. The quasi-
linear subsystem can then be analyzed using Z-transform
theory to determine the effect of digital frame-rate on
dynamic accuracy.“)ln particular, for aerospace vehicles
it turns out that the most critical dynamic computing loops
usually turn out to be second-order when linearized.

For example, the equation for angle of attack, x,
turns out to be well-approximated by the following second-
order differential equation:

X=-F (X, X, y, W, ..... ) + f(t) (2.1)
where f(t) is the input or forcing function and F is a non-
linear function not only of x and x, but also other variables
Y, W, .... (e.g., Mach number, altitude, etc.). If we
assume that y, w, .... vary slowly enough compared with
angle of attack, x, then we can consider them constant for
purposes of dynamic error analysis. We will further as-
sume a small enough range in x so that the function F can
be replaced approximately by a linear function in x and x.
Then we can write:

% = -(2Lak + a? x) + f(t) (2.2)
which represents a simple linear second-order system with
undamped natural frequency a and damping ratio {. Figure
2.1 shows a block diagram of the system, mechanized in
hybrid form with analog (i.e., continuous) input {(t), analog
integrators, and digital generation of the function
2 ¢ ax + a? x. In the figure the Laplace transform of the

Fortunately, however, subsections of the problem

continuous analog signals is also shown. The two switches
in the figure represent, respectively, the conversion of
the analog signals y(t) and x(t) to digital data sequences
{yn} and {xn}A This corresponds to A to D (analog to digi-
tal) conversion. In practice this is usually accomplished
with a single A to D converter multiplexed between the
channels, with sample-hold amplifiers on each channel to
avoid time skew. The transforms of the time-domain data
sequences {y,} and {x,}, respectively, are the Z-trans-
forms Y*(z) and X*(z). (1) In the digital computer these are
combined with proper weighting factors to form the data
sequence {cn} with a delay (frame time) T. This output
data sequence {cp} is then converted to a continuous signal
ce(t), using a DAC (digital-to-analog converter). This is
shown as the mixed-data system in Figure 2.1. The DAC
output ce(t) is updated every T seconds to the value repre-
sented by the next digital word in the data sequence {c}.
This represents zero-order extrapolation.

3. DYNAMIC ERROR FOR SECOND-ORDER SYSTEM,
NO UPDATING

The Z-transform of the output of the hybrid comput-
ing loop in Figure 2.1 can be obtained analytically.
The expression is given in Appendix A. The poles of this
Z-transform can be related to the characteristic roots of
the equivalent linear system, from which the following
expressions are obtained for the natural frequency, 4, and
the damping ratio, 2, of the hybrid loop.

3

nat.freq.=£=a[l+%aT+“.] (3.3)
" 3

damping ratio=§=l_,-(4—- 32)a T+ ... (3.4)

Thus the errors in frequency and damping due to the hybrid
function generation vary as the first power of the dimension-
less frame period, aT. Figure 3.1 shows the percentage
error in actual frequency (not undamped natural frequency)
and damping ratio error plotted against damping ratio § of
the second order systemn. For example, assume aT = 0.1
(i.e., 10 samples per radian or 20w samples per cycle).
For { = 0.2 the frequency error is 2% (hybrid-loop frequen-
cy is 2% high) and the damping ratio error is -0.07 (damp-
ing ratio of the hybrid loop is 0.13 instead of 0.2). These
are very sizeable dynamic errors, especially in the case of
the damping ratio, and yet the digital computer is generat-
ing over 62 function samples per cycle of the second-order
system transient! Even for aT = 0.01 (628 frames per
cycle) the hybrid computing loop exhibits a damping ratio
error of -0.0064 or 3.2%. For a one hertz oscillatory
system this means a digital frame time of 1/628 seconds or
about 1.6 milliseconds.

The above results are admittedly based on a quasi-
linear analysis of a nonlinear problem, although experience
has shown that it gives a good indication of the dynamic
errors to be expected. The error in hybrid system transfer
function for a sinusoidal inlput f(t) can also be computed
using Z-transform theoty( ) and will vary as the first
power of aT.

It should be noted that the nonlinear function F in
Equation (2.1) can sometimes be computed as F = x G
(x, X, y, W, ...). Here G represents the slope of the F
versus x function. If the digital compter is used to



calculate G and G is not strongly a function of x, then the
dynamic picture can be much better than the above analysis
has indicated. One cannot, however, count on being able
to use this mechanization as a general approach.

4. DYNAMIC ERROR FOR SECOND-ORDER SYSTEM
WITH UPDATING

It is interesting to note that the hybrid feedback
loop in Figure 2.1 can be viewed as approximately equiv-
alent to an analog transport delay of 1.5T. This is evident
in Figure 4.1. This delay is the primary causc for the
dynamic errors observed in the previous section. The
delay can be eliminated to first order by driving cach A to
D converter with the continuous variable plus 1.5T times
the time derivative of the variable. This has been done in
the mechanization shown in Figure 4.2. The Z-transform
of the output x(t) of this hybrid loop with updating can be
obtained analytically and is given in Appendix B. From
the poles of this Z-transform the following expressions are
obtained for the equivalent natural frequency and damping
ratio of the hybrid loop:

l+q-6—§ + =
nat. freq. =4 =a = (a'l')2 +...](4.1)
1-¢2
4 o .23, s
damping ratio = { = { [1 + G-5 L2y(aT)y+....] (4.2)

where a and { represent the ideal undamped natural fre-
quency and damping ratio, respectively. Note in Equations
(4.1) and (4. 2) that the errors vary as (aT)? as opposed to
(aT) in Equations (3. 3) and (3. 4) when no updating is used.
This means that for a given dynamic accuracy requirement
a much smaller number of samples per cycle is required
when updating is used on the input variables to the digital
function generator.

For example, we found in section 3 when no updating
is used that for £ = 0.2 and aT = 0.1 (10 samples per
radian) the hybrid-loop frequency is 2% high and the damp-
ing ratio is 0.13 instead of 0.2. When the updating shown
in Figure 4.2 is used, the frequency is 0. 27% low and the
damping ratio is 0. 205 instead of 0.2. Thus the improve-
ment in hybrid-loop accuracy with updating is spectacular
and a digital frame rate of 10 samples per radian (62.8
samples per cycle) gives quite good dynamic accuracy.
Incidentally, for (aT) = 0.1, as in this example, the for-
mulas in Equations (3. 3) and (3. 4) give quite accurate
results when terms of order higher than (aT)? are neglected
(for,\& = 0.2 within 0.013% in the 4 formula and 0.042% in
the { formula).

Another way to highlight the improvement which up-
dating provides is to note that for the { = 0.2 case it
requires 117 samples per radian for the non-updating
mechanization of Figure 2.1 (i.e., aT = .0085) to yield
the same dynamic accuracy obtained with updating for 10
samples per radian (aT = 0.1).

The updating shown in Figure 4.2 assumes, of
course, that the derivative of each of the function-generator
input variables is available in analog form as well as the
variables themselves. When this is not the case, two
alternatives are possible. The first is to differentiate a
variable using a bandwidth-limited differentiator circuit
(i.e., a differentiator followed by a low-pass filter). The
filter time-lag Ty is then added to the hybrid-loop lag of
1.5T in providing the updating. Thus, if % is the analog
approximation to the time derivative of x as obtained by
such a circuit, then x + (1.5T + Ty) % becomes the input

to the A to D converter in the hybrid loop. The second
alternative is to update the variable in the digital computer
by performing a numerical approximation to the derivative,
This has the disadvantage of tending to amplify the effects
of A to D converter noise and can lead to instabilities for
large frame times, aT.'"

5. CONCLUSIONS

It has been shown in this paper that Z-transform
theory can be used to predict the effect of digital function
generation on the dynamics of a second-order hybrid com-
puting loop. Such an analysis gives a good insight into the
dynamic effect of digital function generation at a fixed frame
rate on large nonlinear hybrid problems, such as aircraft
or missile simulations. For the standard mechanization
of hybrid computing loops it is concluded that approximately

.100 digital frames per radian, i.e., 628 samples per cycle

of the highest problem frequency involving digital function
ceneration, is needed to keep dynamic errors below one
percent.

If the analog variables to the digital computer are
updated with rate information to compensate for the com-
putational lags, only 5 to 10 samples per radian (31 to
f.2 samples per cycle) are needed for comparable (one
percent) dynamic-error performance.

APPENDIX A

Z-Transform for Second-Order Hybrid Loop, No Updating

For the hybrid computing loop shown in Figure 2.1
(no updating of A to D input variables) the following formula
is obtained for the Z transform of the output variable

X*(Z) =

1 - -
- )'g (G RO+ 2Late- 1] s B[ R - < HE@A L Fio)
a’ T? a’ T?
2

(A1)

23 - 222 + (1 + 25aT + )z - 20aT +

Here F(s) is the Laplace transform of the input function
f(t). The zeros of the denominator of this expression are
in general complex and can be related to equivalent char-
acteristic roots of a continuous linear system by the equa-
tions:

z
1 I Rt
T Tln]zll, w-Ttan 2 (A.2)
1r
where 2z is one of the denominator roots and, when complex,

is given'by z =z + jz i and where ¢ and w are the real
and imaginary par]!-:s of g'he equivalent characteristic roots
for the continuous-system counterpart.

Since the demoninator of Equation (A. 1) is third

order, it has three roots one of which must be real. It can
be written in series form as
- 2 1 2
Z3-2LaT+(4§“-E)(aT) oo (A. 3)

For aT <<1, which must always be the case for acceptable
dynamic accuracy, |z3[ << 1 and, according to Equation
(A.2), will lead to a rapidly decaying exponential transient.

The remaining two roots of the denominator approx-
imately correspond to the ideal roots of an underdamped
second order system and can be expressed asl
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(A. 4)
Applying Equation (A.2) to these roots and noting that
{ = -¢/a, and w = anN1l - ZZ, we obtain Equations (3. 3) and
(3. 4) as given earlier in the paper.

APPENDIX B

Z-Transform for Second-Order Hybrid Loop with Updating

For the hybrid computing loop with updating as
shown in Figure 4.2, it can be shown that the following
formula is obtained for the z-transform of the output var-
iable:

- e )
T o222+ +5C0aT+2a8 T)Z -(8LaT+a T )z+ 3L aT

X (z)

where we have not bothered to write out N*(z) because of
its complexity. Two of the four roots »of the denominator
of Equation (B.1) correspond approximately to the ideal
roots of the underdamped second order system and are
given by(

- 1 -0aT+ (£2-0.5)(aT)}* +(7 4% - 2.58)aT)?+ ...

.375-6L% +7 L®

+jaTNT-T2[1-LaT+ T (@T)® + ..]

(B.2)

The remaining two roots can be written as(3)

z, 4:§aT+(%-LZ)(aT)zijJ3§ aT (1 +% LaT + ..) (B.3)

Mixed-Data System

These are the two extraneous roots resulting from the
hybrid feedback loop with updating. In deriving Equation
(B.1) it was assumed that the signal y (t) in Figure 4.2 is
sampled just prior to the DAC update of c(t) to its next
value. Using Equations (A.2) we obtain the following
formulas for the decay constant, o, and frequency, w,
associated with the extraneous roots z3; and 24.

L ~ L
U-Tlnlzl'ZI=ZTln|3§aT|,aT<<l (B. 4)
_1 1 -1 N3CaT T
w_Téle T tan TaT = 2T,aT<<1 (B.5)

Since the angular frequency associated with the hybrid
sample period T is 27/T, reference to Equation (B.5)
shows that the extraneous pair of roots correspond to a
frequency of approximately one-fourth the sample fre-
quency. Equation (B.+) shows that the transient is rapidly
damped. Applying Equations (A. 2) to the principal roots
given by Equation (B.2) leads to Equations (4.1) and (4.2)
as given earlier in the paper.
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Figure 2.1 Representation of the hybrid computing loop for solving the equation

%+ 2 Lax + a® x = f(t).

459



t —

Figure 4.1 Transport delay of the hybrid feedback loop.
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Figure 4.2 Hybrid computing loop with updating.
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