EMULATION OF A TAG-DRIVEN GENERALIZED (G) STACK MACHINE

Jerry Dillion
California State University, Sacramento

Emulation By Micro-Programming or Instruction Decomposi-
tion

A common means of providing an emulated computer (EC)
on a micro-programmable host computer (HC) is in Fig. 1.
The overhead functions of instruction fetch, interrupt
checking, and decoding, which are performed on every
instruction, are implemented in the same manner as the
lesser utilized execute routines for specific EC op codes.
In addition, the op codes of any instruction set differ
in utilization (usually the most popular instructions are
simple); whereas they all are implemented with the same
method-firmware. The reason for this is that the HC
command set is incompatible with EC both in format and
usually in register sets, address modes, word size, etc.
A much more efficiént emulation would result if the
overhead processing and the more popular instructions
were executed directly by hardware, leaving only the less-
er utilized or more complex instructions to be micro-
programmed. This is micro-programming by exception.(1)

The EC control unit operates interpretively to pro-
vide the sequential tasks required by most EC instruc-
tions, and the micro-programmed EC emulation does the
same but slower. It is not necessary to emulate the EC
control unit's control structure; all that is required
is to perform the same functions. Instruction processing
does not have to be done interpretively--it may also be
done via compilation (decomposition) where the "object
code" is the HC commands executing sequentially the
steps implicit in an EC instruction. For example, the
four steps of an "add to accumulator" instruction are:
fetch operand to adder, fetch accumulator contents to
adder, add, store in accumulator the result. A decomposed
"add to accumulator" instruction would consist of these
four commands. The success of this emulation by decom-
position depends on:

1. The adequacy of the host computer command set;
2. The memory efficiency of the decomposed code;

3. Resolving differences in address references due to
different length codes.

In addition it has the same problem as conventional

micro-programmed emulations in dealing with different
hardware features of the two machines.

G-Machine Architectural Features

The G-machine is a general machine designed for use
in architectural studies in the following modes:

a. Emulation of an existing or new machine via inter-
pretation using micro-programming by exception; with
untagged instructions, data.

b. Emulation of an existing machine by instruction de-
composition; with untagged data, tagged command.

c. As a tagged architecture stack machine; with tagged
data, commands.

See Fig. 2

439

ﬁ_;;, COLD START ﬂ

!

I INSTRUCTION FETCH ||

INSTRUCTION
EXECUTION

RESPOND TO
INTERRUPT
ADDRESS
MODIFICATION
N
OPERAND Y
FETCH ?
NON-OPERAND
INSTRUCTIONS N

FIND EFFECTIVE

ADDRESS

FETCH OPERANDS

Figure 1 - Typical emulated computer control unit

structure

Typical
Micro-
programmable G
Characteristics Processor Processor
Architecture of HC
Min. command size 16 8 bits
Compatibility of command, No Yes
instruction sets?
Stacks 1 2
Tagged Commands No Yes
Command Fetch, Decode, H H
Execute
Command, Instruction Separate Combined
Memories
Micro-programming of ANl Possibly only
complex
instructions
Instruction Processing
Instruction Fetch By F H
Check of interrupt F H
Transfer of control F H
if interrupts
Instruction decoding F H
Indexing F F
Relative addressing F H,F
Indirect addressing F H,F
Base Register Address- F H
ing Offset
Operand Fetch F F
Operation Execution F F
Result Store F F

F = Firmware

Fig. 2.

H = Hardware

Comparison of Characteristics of the Typical

Micro-Programmable Computer and the Generalized

Processor

G-Machine Features:

The address space map is 000016 MFast TocaT
- Separate data and program address stacks. The top shown to the right. Local Scratch
of the program address stack is the CPU program machines have exclusive access to Memor.
counter. . their own local memory, plus 0680 Y
- Both general register and stack-oriented commands. shared access to global memory. 16 [Dedicated
- Tagged or untagged data. Local dedicated memory includes Local
- Tagged data and commands wyth Huffman-type codes. accumulator, PSW, Stack Pointer, Addresses
- Binary or decimal arithmet1c.') Real Time Clock, Trap Pointers, 0800
- Single address space for working and dgd]cated Base Register, Counter, Mask, 16 [GTobal
registers, 1/0 devices, control and main memory . and implied call routines. Common
- A hierarchial structure designed for ease in Global dedicated memory in- Memory
modeling, with global and local level machines. cludes pointers for internal, 0E00
external and concurrent 16 | Global
1/0 interrupt routines, plus Dedicated
system status. Memory
10006 15TobaT
Memory
L 4 v
Size Size, on
1
Function) Tree Format Comments Tagged
— (Bytes) —— — — Field
Untagged Contents Unrestricted A status bit defines the untagged 16
mode. Untagged data fetched by FHDA.
Execute I Y Eight most important executes 3
Push Literal-Short 1 +15. Sign extended to a 16 bit S
value before push on top
Fetch Relative-Short 1 d is the displacement in bytes to the S
program counter-2's complement sign extend.
Execute IT,III 1 32 next most important executes S
Push Literal-Long 2 1 Literal sign extended to 16 bits on 12
0 the stack
Fetch Absolute-Long 2 l—LOOOOI, Abs. Addr. l Word (16 bits) address-zero extend 11
0
Fetch Relative-Short 2 1 000001 - 10
0 d is the displacement in bytes to the

Optional 2 0000001 | 2

9
—

program counter-2's complement sign

i

Single-precision Real 4 OOOOOOOIIS|15 bit mag

o

Execute VI

00000000

Execute V 2 00000000|101| X] f—l
Execute IV 2 0 00000000 ﬂ

Code Extensions

extended 9
T |)
Trapped instructions (64) 6
Eight File Executes 2,3
32 Counter-Controlled Commands 5

Figure 3 - G-MACHINE DECODE TREE

440

Tag-Driven Architecture

Unless specifically excepted, all memory contents are
tagged as data, addresses, or commands; in variable-
length fields. The three types of tags represent the
highest Tevel instructions by the programmer to the
G-machine; the subsequent field(s) of the command con-
tains lower-level details. If the tag says "I am an
address," the highest level instructions is for the G-
machine to use the address field following to define an
effective address E whose contents are fetched and its tag
decoded. If the tag says "I am data," the G-machine is
instructed to push the data field of the word on the data
stack and fetches next the word defined by the program
counter and decodes its tag. If the tag says "I am a
command," the subsequent field(s) of the word defines the
command. Then the computer executes the command, updates
the program counter, fetches the next word defined by the
program counter, and decodes its tag. Any ordering of the
three tag types is permitted, and examples of typical
orderings have been published. (1)

More than one format exists for each of the three
types; the shorter formats are designed for the more
popular categories. See the decode tree of Fig. 3.

Cormand Set Summary

(Stack and stack operations refer to the data stack
unless otherwise indicated, and top means the
top of stack.)

Execute I:

ADDS Stack add,pop

SFET Fetch from address in top,pop, dec ode tag

DUPT Duplicate top

MEXT Causes fetch of next EC instruction, decode,
and jump to the appropriate routine

REST Store from top into address from whence
the last literal was fetched

STOS Store at an a ddress defined by top the con-
tents just below top

FHDh Replace the address in top by the addresses'
contents, ignoring tag

NOOP

Execute II,III :

Stack Operations: Increment top;swap highest two;
subtract ;AND;0R;Exclusive OR ;5 Negate;Pops
pack;unpack;fetch prog. counter

Unconditional transfer of control: CelljFeturn;
Fetch Top Relative;Implied Calls;Trap

Skip On Stack Condition:Zeroj;Not zero;Negative;
Not Neg.jinded Is zero j;inded is Not Zero;
IE;GT;3-Way Compare

Decrement Memory,Skip If Zero

Initialize Counter

Execute IV: (Counter controlled-can repetitively exe-
cute until the counter decrements to zero)

Shift: & Combinatio ns of Right,left;Long/Short;
Link/Zero fill unconditional shifts.

Arithmetic: Multiply or Divide Step-long or Short;
Indirect add or subtract, Bi nary or Decimalj;
Scale; Adjust Decimal Sign

Scan for match or no match. If so skip usi ng:
Two strings; one strins and a key-gzoing up
or down

Communications: Update cyclic reaundancy code;
Check for even/odd parity. If so ,skip

Move: Move as defined by stack; shift until en-

counter a one/zero, then skip

(One operand is on the stack, the other

is in a local dedicated scratch memory)

Arithmetic with result back to memory: +;-;AND

Skip If Condition: Top Equals Memory;Top Not Equal
to memory;anded Is Zero; Anded Is Not Zero

Execute ¥:

Analysis of G-Processor Functions

Both the simple instruction-decomposition commands
are present as well as powerful stack or general regis-
ter or1§nteq functions, as the name generalized pro-
cessor implies. The execute IV's represent a single
command loop. If the command is not a skip, the loop
executes as the counter decrements, executing once when
thg count is zero. If the command is a skip, when the
skip condition is met exit from the loop occurs to a
command that reads and clears the counter.

The four implied calls (one byte long) work the
same as the restart instruction of the INTEL 8008, 8080,
excipt there is four times the memory allocated for each
routine.

The Execgte VI commands, each of 16 bits are sixty-
four Tower priority implied calls with only 16 bits
allocated as a pointer for each in a jump table.

The G-Processor hardware design evolved for two
years and the G-Processor emulation is the test phase
for the architectural features it embodies, with con-
struction to follow.

Assumptions Made for the Emulation

1. Only a Tocal system is implemented, with 32k bytes
of memory

2. A1l the address space has the same access time--
1 psecond

3. The Micro-Data peripheral protocols are maintained
including both external and concurrent 1/0.

4. 1/0 addresses in the address are intercepted by
firmware, with fetch and store directed to the
1/0 deyices.

5. The strategy of decode reflects the hardware design
and results in a memory optimal rather than speed
optimal firmware.

6. Stack handling routines carry the burden of stack
management.

Working Register Assignments

Primary Bank - Each register holds 8 bits

File # Assignment

0 System Flags

1 Decode, Instruction (E1)

2,3 Top of Data Stack (S1)

4,5 Second of Data Stack (S2)

6 Scratch Register (R1)

7 Scratch Register (R2)

8,9 Program Counter (P1)

10,11 Memory Read Register (M1)
12,13 Memory Write Register (M2)

14 Decode Register (E2)

15 Condition Register, Stacks States
Secondary Bank

6,7 Third Data Stack Register (S3)

G-Processor Command Decoding

FETCH

A single brute-force jump table for all variable-
length commands is impractical, of course, but a tree-type
decode firmware is slow. Fig. 4 depicts the comoromise,

a decode tree with levels of jump tables. The worst

case for decoding is three tree forks and two jump tables.
In the final G-Processor realization, this decoding will
be done by hardware.

Increment PC
Clear address flag

The FETCH DCO routines to the right work on a half-byte basis
since all Ex. I's are that size. If the next command is

not an Ex. I, the command is at least a byte long. GET

is a system utility that gets the next half byte and DCO
places it in E1. It handles the problem of byte memory
boundaries; if the next half-byte is already available,
no memory access is required. If it is not, a whole byte
is fetched; half is placed in E1, and the other half is
saved. ‘

Fig. 4 does not show also that any common processing
required for a certain command category is handled orior
to the decode jump, rather than duplicated after the jump.
This makes the decode routine longer, but the routines
for specific commands shorter. Also the unpacking of the
commands during decode is done so that there are two
words per jump table entry. This permits one function
unique to the G-processor command to be performed, fol-
Towed by a jump to a shared routine; saving one jump and
0.4 psec over the conventional single entry table. For
example, Fig. 6 shows how that some Execute III commands
in the jump table merely define the Micro-Data U regis-

ter and jump to the ADDS routine. The primary jump Left Shift R2,
table, calls, shifts, skips and execute I's are handled 16-way primary
similarly. Consequently it becomes difficult to give decode
realistic measures of firmware size for individual

commands .

FETCH DCO ROUTINES

| COLD START I

N
| 16-Way Primary Decode]

[1,6,7 Push Literal
8-F 1,5 23 N Short,Long
8 Execute Fetch Execute II,III
I Ré)ef:ines Rel. Secondary FETCH
Y short Decode ABSOLUTE
je——————————{52 Executc 1,111 Routines| pre——
LONG

-‘——ICall To A Defined Address

N [Other Categories J———-—
8 Execute V l'etch Operand Y

N
routines , Decode Type 57 32-Way Decode }—-—1}2 Ex. IV Routine%——

Figure 4 - TOP-LEVEL FLOWCHART

442

ADDS SUBS

Entry Lx L Jump Tuble

il

Function Gs 2

U~ '90"

Jump To

U180

Ex [IL Jump Table

U—='EO"'

ANDS

D @ G &

LORS EORS

U—e"'CO" Use='DO"

)

AD 2

S1L

S2L Op T
S1u

S2U Op T+L
POP 2

+ 4+ 4t

-

FETCH

Figure 6 - Some Double Operand Executes

Besides popularity, the op codes were assigned to
permit minimal hardware decoders and so as to use the
jump tables efficiently.

System Utilities

Name Function Firmware Size
RNO Cold Start 7
FETCH Fetch, Check Interrupt 5
DCO Decode A1l Commands-Excluding jump tables 51
LOAD Bootstrap Loader 15
INP Input a byte 12
ouT Output a byte 14
KNTD Counter test and decrement 15
GET Place next half byte in El 17
GTB As in GET, but for a full byte 22
INT Internal, External Interrupts 55
cI0 Concurrent 1/0 Interrupts 83
INTC Memory Intercept for 1/0 19
- Jump Table I 32
- Jump Table, Ex. II, III 64
- Jump Table, Ex. 4 64
- Jump Table, Ex. 5 15
pup Pops the data stack, losing former 28

contents of S1
Pup Pops the program stack, losing former 27
contents of Pl

DDN Pushes the data stack 27
PDN Pushes the program stack 25
MDN Push from M1 into M2 5
GS1 Insures that S1 hold valid data 30
GP1 Insures that P1 holds valid data 6*
GP2 Insures that P1, P2 hold valid data 6*
KORE Updates a stack pointer 50
GS2 Insures that S1, S2 hold valid data 5*
699

*Jumps into GST.

It is evident that system firmware is responsible for
much of the total control memory requirements, and for
most of the execution time.

The vectored interrupt, input, power fail-restart,
output, and concurrent I/0 routines are essentially the
same as those used in the Microdata 1600/21 firmware;
but with altered dedicated core addresses. The low
order byte of this address represents the 8 bits used
for device order and device address for Micro-Data peri-
pherals. For example, a fetch from address OF20 will push
Teletype Status on the stack; a store in address OF00 will
send the least order byte on top to the teletype; and a
fetch from address OFO0 will push the teletype byte on the
stack. Direct memory access is a hardware feature; the
only compatibility requirements exist for dedicated buffer
pointers and status, which are in page 0.

Analysis of Minimum Timing

The times in microseconds of all Ex. I's plus repre-
sentative other commands is given below. Note that the
general utilities such as GET (3 usec), GS1 (1 usec), and
DUP (pop - 1 usec) require a majority of the total time
even in the minimum case; and if the stack utilities
require core accesses the proportions are greater.

S 3
o) -
(5] — 3] -
@ e = o
° © — —
+ - —
— =3 +
— a) =

o E -~
g .
- — . c
= > — L
g u 5 8 <
L) © 1= (=] i=
w — — Ll —

Execute 1

ADDS 4.8 1.4 2.4 8.6 5
SFET 4.8 1.4 2.4 8.6 5
STOS 4.8 1.4 5.0 11.2 6
FHDA 4.8 1.4 3.0 9.2 4
DUPS 4.8 1.4 1.4 7.6 5
NEXT 4.8 1.4 15.2 21.4 6
REST 4.8 1.4 3.1 9.3 6
NOOP 4.8 0.4 0 5.2 4

Other Primary Commands

PL Short 4.8 1.4 3.1 9.3 5
PL Long 4.8 1.4 6.8 13.0 8

Fetch Rel 4.8 0.6 2.4 8.6 4
Short

Other Commands

ANDS 11.0 0.6 2.2 13.8 6
CALL 1.0 0.6 4.2 15.8 7
FHTR 11.0 0.6 2.0 13.6 6

Shift Rt Top13.6 0.6 6.0 20.2 9
Decimal Step13.6 0.6 16.0 30.2 1M

Fetch 10 - 2.1 120 8
Absolute
Ex. VI 1.2 0.4 - 11.6 8

Control Memory Space Requirements

The complete firmware requires 1.25k of control
memory. Deleting the Double Precision Multiply and
Divide Step, Indirect Decimal Add and Subtract, and Next
yields a 1k version.

Ly

Emulation Procedure

Emulation planning direction and overall testing
were done by the author, as was the micro-programming
of the stack utilities, fetch, decode and some indi-
vidual routines. Computer science students as part of
Advanced Computer Organization and Project class assign-
ments wrote and tested the rest of the routines.

Conclusion

The Micro-Data 1600 is not a stack machine, and
emulation of two hardware-plus-core stacks is cumbersome
and slow. A Huffman type code structure is also slow in
decoding using firmware. However, since speed was not
critical and the emulation was just for evaluation
purposes, the Micro-Data system is appropriate. The
hardware version will have high speed decoder and stack
controller. The emulation activity has proved valuable
for students, and continued use is expected.

References

1. Dillion, Jerry, "Instruction and
Microprogramming by Exception in a Generalized
Processor", Proceedings, MICRO-7, 1974.

