AN EMULATION OF THE I34 SYSTEM/3
ON THE MICRODATA 1600 MINICOMPUTER

Donald M. Wyckoff
S.P. Teale Data Center, Sacramento, Calif.
I. Introduction.

This wpaver 1is the outirowth of a oroj-~ct
conducted by several students at the California
State University, Sacramento, commencing during
the Fall semester of 1972 and lastina into the
summer of 1974. The end oroduct of the student
oroject was an emulation of the IBM Systemn/3 Model
10 computer on the MICRODATA 1600 minicomnuter.
Phase I of the project culminated in November of
1973 with the comonletion of a micronroarammed Read

Only Memory (ROiM). Subsequently, in Phase II, a
second, more compact ROM, was microoroqramnmed anid
tested. Phase III will consist of an analysis of

the oerformance of the minicomnuter in emulatinna
the System/3.
The interest in

increasing costs of

emulation stems from the

sof tware, counled with th=
decreasing costs of hardware (1). Emulation
aopears to offer some ©oossibility of orovidina
transferability of software from one svstem to
another, therebv reducing the costs of conversion
from one hardware system to anothar.

Many authors have defined and AiscusseAd
simulation, emulation ani nicronroaramminAg
(2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13). The
microprogrammingy performed in creatina this
emulation was oerformed in accordance with the
MICRODATA ‘'Microoroaramming Hanihonk (14) .

The rationale for the choice of thes TBM
System/3 for emulation was based on the larne
number of System/3 units in =2xistence, the larqest
single mod=2l ovopulation in the world (15), and on
the consegusnt 1large quantity of software that
would wultimately need conversion when System/3
units are to be reolaced. After consideration of
the many me thods of computer verformance
evaluation oresented in the literature,
(16) (17) (18) (19), a simnle software monitor was
selected, as descrined below. Only the initial
steps of th2 oerformance evaluation were comoleted
to Jate; an attemnt will he made to complete the
analysis in the near future.

II. Analysis An3 Comoarison J2f The System/3 Ani

The MICRODATA 1600

A. The IBM System/3.

The organization of the IBM System/3 (20) is
shown in Fiaure 1. The Storaqe Data Peaister (SDR)
serves as a huffer between main storade anAd the
Arithmetic and Logical Unit (ALD) (via the 3
register). Data from the ALU can “e sent to any of
the following:

Oncode rejister

. Q register

Condition renister

One of the local storaae reqisters (LSRs).
Out to an I/O unit.

Return to storaje throuah SDR.

AV e W

Each byte includes 8 hits of information nlus
3 ninth, or oarity, bit. The Storase Data Reaister
is used for temporary storad=z of data as it is
passed between th2 onroc2s3ini oortions of the
orocessiny wunit and main storaie. Data enters the
SDR from ALU or from main storaase. The one hvte A
ani B registers are wused to 3unolv temnorary
storaje locations for Aata entering the ALU The
ALU accomplishes 2all orocessingj of data, acceots
two bytes of inout and oroduces one byte of

423

ontnut. The wtorage A4dress Reqgister (SAR) holds
the 2 hvte address that is to Ye accessed in mnain
storan~. The Condition reaister indicates the
r2sults of the onerations completed in the ALT.

The On Code Peaister holds the on code bHyte of
each instruction while the 0 Peqister holds th=
second, ar 0 hvte of the instruction. Tha2 Tacal
Storan= Reqisters (LSR) are two-byte reaisters

that hold further data or addresses needed for the
execution of instructions. These include:

IAR Instruction Ad9ress Reqister
PSe Proaram Status PReaister
¥R1,2 Index Reaisters

DAR DPata Address Reqgister

ARP Address Recall Reqister

AAR Onerand 2 A44ress Reaister
BAR Noerani 1 Adiress Peqister

Plus several nerinheral Aavice reqisters.

9

The MICPODATA 1600 Minicomnuter.

Fiqure 2 deovicts the block Aiaaram of the
MICRODATA 1600, which is also an eiaht-Hit
comnuter, but it Aiffers from the Svstem/3 in that
it emnlovs micronroaram control. The comnutar uses
eiqht-hit reqisters and Jata saths, executina with
everv clock nulse 3 16 Hit microcommand stored in
a hiah sneed semiconiuctor control memory.

The T re3jister acts as 3 huffer for data
being traniferred hetween memory, ALU, ani outnnt
reaister, similar in function to the A and R
reaisters of the Svstem/3. The T reaister is
manipulated? bhv the nroarammer, however, wh2reas
the A ani B reaisters are not.

The ™ and N reaisters serve as 16 bit memnry
3jdress reqisters similar to ths SAP of the
Svstem/3.

The file re1isters orovide two hanks of 16
R-hit reqisters to »e wused 2as reouired Hy the
micronrogrammer. Only reaisters 1-15 are available
to the user, as reaister 16 is common to both sets
and contains condition code flaas. These2 rejisters
serve the same function as the LULoncal Storaae
Reaisters of the Svstem/3 hbut since they are onlv
one MHvte renisters, two of them must he assianeAd
the function of each LSR to be emulated.

The LINX reaister acts as two one-bit
reaisters, but actuallv consists of ons two-Hit
reaister. One bit is wused to indicate the

carrv-out of the hiah order hit nosition of the

aider or the shifted off end Hit for the shift
commanis when the information 1is wused as an
aiiress in the "1/N resisters, and the other Hit is
used for the same ournmose for all similar
onerations on information that is used for anv
other opurnose (normal arithmetic and loaical

omerations). The functions of the LINK reqistar in
the 1600 are haniled nHv the Condition Reaister in
the System/3.

The I/0 control register soecifies the I/0
control siqnal to be enabled, similar to the
channel contrnl of the Svstem/3.

Th2 4N reaister is an 3idditional hHuffer for
Aata Heina written into memorv, and thus nerforms
oart of the functions of the SNR of the System/3.

Information mav »e entered into the MO reaister
from the AL, as it is in the Svstem/3, hut
additionally it mav he entered into th2 T reaister
by the nroarammer.
The outnut reaister is a huffer for data
sent to outnut devices, and thus is similar
nortion of th2 TI/2 chann21 of the
the 160N data mav he sent

heina
to th2 outnut
Systemn/3. However, in

from memory wvia the T reaister to the Jutnut
reaister without massini throuih thz 3LU 335 in th=
Svstem/3,

The Arithmetic Lodic nit handles 3ll

transfers and maninulatinn »f Adata as it does in
the Svstem/3.

The Control ‘Memory is a3 16 bit hiav-sneed

memory imdlemented with semiconductor Real Only
demory (ROM) or real-write memory nrovidini an
alterable control memory (ACYM - also referred to

as AROM. Alterable Real Onlv *emory). The control
nmemory can e ranionly accessel1 with an access
time, including loaic Adelays, of less than 200
nanoseconis.

Th2 12 bit L reivister hnlAs the adiress of
th= next control word in sejuence. The L-Save
rejister saves the incremented value of the L
rejister when a Jumno-Extenied command is exacuted,
thus »roviding a return jumn capahility when the
Return command is us23. The R reqister holds the
ricroconmand currently beina exscuted.

The U reaister 1is usei to ="odifv the ®
hiah-order ©oits of the control memorv outnut. The
contents of the U reaister are ORed with the
control memory outnut on th=2 R hus as it is 7ated
into the F reqister for soecific »it combinations.

III. Design Considerations.

A. Genzral.

The emulation is 3 comnlete, 100% instruction
enulation, for the nerimherals includiasi, with nn
Jedicated main core memory excent a hexaiecimal to
ASCII code conversion table and twd hvtes to store
the 9 byte and control code hyte for Start I/0
(SIO) noprocedure for the line nrinter, a total of
66 bytes. Q byte oontions in the System/3 Aesiined
for diaanostic oroarammning have not heen
inolemented. The System/3 front nanel is not
enmulated, which will necessitate sliaat chanaes in
Taintenance orocedures.

BE. Perinneral Devices Incluiei In The Emulation.

At the inceotion of this o92rojsct it was
Jecided to include only the bare Tinimun of
oerioheral Jevices, in order to keeo the code as

simole as nossible, but to maintain the cavahility
for adidini other nerioh2ral devices later, after
the conpletion of the basic »roarammina ani
testina. The initial imwolenentation was limited to
the use of th= Microdata “odel 2720, 30 column
carl read=2r ani the licrodata 2732, 132 column
line orinter without th= VFU ontion. Conseauently,
th2 onlv System/3 I/9 devices n2in1 emulated are
tne IBY 1442 card reader/nunch and the IR 1403
linz »~srinter. o 1442 ounchina onoerations are
b21n1 2nulated. Ynwever, the ne2d for
incornoratiniy additional 1I/0 devices was kent in
Tind while desianiny and colina th2 emulatnr. The
rezultant modular or7anization 3hould facilitate
future exoansion. For examnnle; adiition of an 80
colunn card onunch should b2 relativelv easy tn
accomnlish 5y addiny 2 few instructions to the
Start I/O (SIO) routine for th2 card reader ani to
th2 Conzurrent I/0 (CIO) routin2 which handles the
actual data transfer. Also five file reiisters in
tne seconiary filz are 3till avsila“le for
no3sihle use2 in an 2xoani2i systemn. Use of those
r29isters alonq with 3 DIV Channel would orovide
for relatively fast. efficient A2ta transfer tn or
fron a Jisc assenbly.

C. RDY Size Versus 57e23.

wnan tne aroject was initiate? it was
helieve? that th=2 =03t i-nortant consideration was
th2 s39222d with whica instructinns were executed.
Yence, it was assum21 that we wonld have 3zcess to
unlimnited Fead OCnly ‘ievorv. Th2 resultant m0OY,

complated in »ohase I of the »nroiject, incluied
sliantly 1less than 1500 micronroiram stens. thus
reauirini 6 - 256 word males of PO It is

astimated that th=2 adlition 2f% colint to hanile 3
card ouach ani the Svsten/3 cartridie tvne disc

424

will increase the ROM size reauirement to 8 nages,
i.e. 24 words.

In »hase TI of the oroj2ct an attemnt wag
made to reduce the size of the ROM as much ag
no3sihle, with the ao0al of incormoratina the
cpdint in 2 1K ROM. This was accomnlisheq Hy
cnmhininit several nf the instruction routines, anAd
coniensina the Fetch Adiress routine drastically
by utilizina oortions of the code in common in all
nf the addressina mndes. This compaction of the
micro-code resulted in a suhstantial increase in
execution time of several of the individual
Svstem/3 instructions. It shnould »we noted,
however , that in any commercial oroaram
environment, in which the »nroaram is I/0 bound,
tha difference netween the two ROM's will
renres2nt a relatively small fraction of the total
execution time.

IV. DesiAqn Anproach.

A. Ton Lev=l Flow Charts.

Finaures 3 ani? 4 s3show the too level flow
charts of the 1.5 X and 1 K POM resnectivelv. The
hbasic differences are as follows:

1. The Fetch Address routines in the 1.5 ¥
ROM are senarate and indenendent for each
aiiressina mode, whareas they are combined into a

sinqle routine in the 1 K ROM. This is AescribeAd
in more detail in paraaranh R. below.

2. The Advance Proiram Level (APL) and Test
I/0 (TIO) instructions are comhin=21.

3. The Juwn On Condition (JC) and Pranch on
Condition (RC) instructinns are comhined.

4. The A44 Loaical Characters (ALC), Suhtract

Logical Characters (SLCY , Comnare Loaical
Characters (CLC), and Comoare Lngical Immediate
(CLI) routines are comhined.

5. The Loadi Renister (L)
(A) routines are comhined.

and A44 to Reaister

6. Tha2 Test Bits On (TRN) ani Test Bits OFff
(T2F) routines are combhineAd.
7. The 7oned Decimal instructions, 23%, A7Z,

S7 are considerablyv shortened 3and combhined.

3. Svstem/3 Tnstruction Handling In The 1.5 K ROM.

The Svstem/3 instruction formats are
described in Fiaure 5; it is to he noted that they
may varv from 3 to 5 hvtes in lenath. The first
four hits of each instruction is 3 hexaiecimal
diait indicatina the addressing mode, while the
last four hits are another hexaiecimal Ainit
indicatinng th= snecific on code of the
instruction. The second hyte, or O hyte, qives
aiiitional information about the ootions of the
instructinn, and the remaining byvtes furnish
immediate omerands or address information.

Th= 1.5 X RO inzludes a senarate routine for
2ach aidressina mode, 0 throuah F, which are
lab2led FAN throuah FAF. Th2 iniividual routines
are =2ntered from the Peadj Vext Instruction (RNI)

routine. Tha RNI routine, after initializina some
reaisters and checkina for interruots, reais the
oo cole bvte and saves it in the OPR reqgister,

reais thez 0 hbyte and saves it in the N reaister,
then 1oais the unmoer four hits of the on code hvte
(i.2. the hex 1iait Adeziqnatina the 3ddressina
mod2) into th2 L reasister. The RMI instruction is
located at such 31 address in the ROM that the
9372 numher in the L reqister is set to the vaze
numser of the Fetch Address routines. The hex
Ainit, X, that has heen olaced in the L reaister,
then directs th= execution to nosition 02X0 in the
nDalte (256 words) nf Fetch Adiress routines, which
is orecis=lv whare thas ¥ Fetch 33iress routine has
heen olaced. Thus Fatch Address FAQ is located at
n2ny, FAL at n21n, FA2 at 0220, etc.
Fortuituouslv. all of the Fetch Ad3ress routines

vere col2d within 16 instructions or less.

The RJNI routine ani the firast two Trten
Address routines are shown in Fiiure 5. ¢Uithin th»
FA routine the anoroodriate 3diresses are ohtain-1
oy readini the ne2xt hvte or hvtes from core,
3i1ing the index reaister values when annronriate,
ani outtina th2 aidress in th2 aidress revistars.
Each of the FA routines ~nds with an instruction
that olaces the2 3econd hex 1ivit (the on col=) in
the K redister (th= L revister with th= ninth hit
set) for an automatic jumn to 039V ar 031, which
are juro tables to direct exacution of the
soecific instruction desianated bv the on code. In
Fijure 6 the RNI routine Yas heen novad out of ita
normal seguenc2 in the ROM and »laced 1h~ad of the
Fetch Adiress routines for ease in readinn.

C. vVariations Introjuced In The 1 K RO.

The oritinal 1.5 K POt utilized a full mane

(256 words) for the Fetch Ad4ress routines, since
2ach of the hex 4iqits 0 throuih F are located in
it at 16 steo intervals. Since 3even of the

routines are shorter than 16 steos, this Adesinan
left a few 7ans of 4 or 6 steos, which were not
used, but the whole »"3je w3as Aedicated to th= FA
routines. It was found to Ye »os53inhle to rejuc>
this (at a cost in exacution time) to considerahly
less than half the size by simnlv introducinn
tests 2and jumos to use identical oortions of th»
code only once rather than reneating them for each
Fetch Ajdress mode. However , a Tuch Tmore
economical method (in terms of snace) was derivei
by careful review of the Hits in the first hex
digit of the instruction (that is, the address
mode digit). We note that the first two "Hits
(leftmost) datermine the tvre of addressing for
the first ooeraniy in the followini manner:

00 First Address direct

01 First Address injexed by XR1.

10 First Address inidexed bv ¥R2.

11 No first adiress, eithzr no
adiress (F ~ode) or 2nd aidress only
(C, D or E mnies).

It was founi that bhy shifting these bits
three oositions to the riaqht and then loading then
into the L register in 3 manner similar to that
jescribed in the 1.5 X RO“% we could create 2
nultiole entry noint Fetch Address routine with 4
eantry ooints at intervals of 2 stens, nanely 200,
208, 210, 218 (nex) <covarini the four cases
described above. This onermitted 2ntry to the
codina at tha correct 2oint for each of th2 four
first adiress cases. To take care of the
variations of the address rejister used for the
first and second addresses, the FExecute Command
(EOT) was used to orovide a variable commani,
depenient uoon which address was heint savai. When
this command is executed, the» UJ reagister is ORe?
with the oo code to create the A2sired command,
the U register having S2en loaded nreviously with
the desired bits. The RII ani Fetch 3address (FAD)
routines are shown in Fiqure 7.

The 1 K ROM uses the
several oplaces to 3llow one
multiole duty.

EOT instruction in
instruction to do

V. Implementation "=thods.

At the time of the initiation of the nroject
the only I/0 devicz available on th2 Minicomnuter
at C3US. Sacramento w3as an ASR 33 Teletyne. In
addition, only 1 # of ARD w3s available on the
machine. So a comolete RO could not b2 loaied
into the machin2, since the earlv versions wore‘of
the 1.5 K type. ani any work don2 on tae machine
itself was quite time consuming, heqce another
means of assemhling and testini the firtware was

Tau b,

N Altarnatives Availahle,

1. Masenhly NF "ipmuoaras,

Maanal asse~hlv was considared not
ton tedinns 373 alsn srenar nrons

M5iny th2 3572nhlar 99 tha 1590 was Falt to
"e ton time

con=umina with the ~nerinherals that were
availahle. The u3e 95¢ 3 crnss-assemhler (written
in Fortran.and furnished sy MICPINATA) run oa the
seh9n1 eamnuter, a CNC 3159, was considared to be
th> *"est alternativa ani was used throuiidnt tha
nroi2ct. Partinns of tyoical assemhlies were shoun
in Fiaures 6 an3 7.

Tronnel asg

2. Testina 2f Z“vsten/3 Instructinns.

Consnle testing 3lirectlv on the 1609 was
considered to he too time consurina 31d too
teiious for the nersnn 3nina the testina.

Th2 us2 of tha simulator on the “TCPODATA
1500 was alsn ~onsidered ton time-consumina, It
would not, hnowever, %ween Juite a3 tedious as as
consnle testina, since the Simulator would have
arinted out the results of each micrninstruction
without intervention.

The use 2f the Simulator availahle on the CNN
3150 (3lso written in FORTRAN and suonlied hv
“MICRNDATA) was chnsen 315 th=2 best method 3nd used
for all nf the Phas> I ani II testina.

P, Nescrintinon Nf Selected Testingy Mathod.

Th2 Simulator wus=2d on tha CDC 3159 reauired
as inout tha wversion »f tha POM underqoina
testina; th2 System/3 instructinns to hHe tested as
they would annear in the cnre of the Svstem/3; a
series »f event car?s estahblishina th2 events of
the simulatinn includini core Juwras, listina or
non=1istina »f each microinstruction, and "Maltina
of thz simulation 3t a jiven nuwher nf cycles; ani
various other narameters nf the simulation.

The outnut o0of the Simnlator incluied a
listina of each microinstructinn (ootionally
omitted under coatrol nf a NOALIST 2vent card)
connlete with th2 chanaes oFf wvalua2s of 23l1
readisters, a nartial or comnlete core dumn of
System/3 simulated core whon called for hy a3 DIMP

mezsates from the
valu=s »f simulateAd
(200 nanosecnni)

evant card, anA?
indicatinn anv
outout. The time in

Simulator
innut or
cyclas is

also indicated nn 2sach listed ~icroinstruction,
thus aivinit a3 th2 information necessarv for
comnaring timint of the emulation with actual
System/3 timina, an?® for nerformance analvsis.

Samnles of the outnut of the simalator are shown
in Fiaures 8 an? 9 for the RNI and FA routines
shown in Fiaures 6 and 7. A feature of the 1.5 ¥
RO is illustrated in Fiaures 6 and 8. In this
lon1er version of the ROYM, a countina routine was
incluied for the nuronse of obtainina a dvnanic
instruction count Adurina the execution of a
nroqram run on the e2milation. Tha countina rnutine
and all calls to it are not inclui2d in the 1.5 K
instructions, and the time to nerform the countinn
has heen 1=2ducte? from all timina rennrted in this

rennct.
Calls tn the <countint routine ann2ar at
1ocations A3F3, 0207, and 021N in Fisure 6. The

avecution of the counting routina aonears in
Fiqure 9 at time cvecles 16 throuzh 27 ani 70
thcauah R1. T™e countint routine w3as onitted

aincae

entirelv from the 1 ¥ ROM
compactness.

the 9031 was

¥ Useful uICrRNNATA “jcro-Prodramnina Features.

A, Features That Were wseful wn The FEmulation.

1. Bvte Orientation.

orientation »f the 1600 machin~
simnlified the t4hanlling of all of th2 System/3
instruction hytes, all of th~ I/0 bvte handlinna,
and minirized the use of 1600 core for storaie of
S5ysten/3 data. Th2 1lack of 3 »marity »it, on the
otner anani, caused us to 12cide to ianore oarity
in the emnulation.

Th2 DbHyvte

2. Junp ExtenieAd.

Th2 Jumd Exteniel (JE) instruction, or return
juno., was usel :2xtensively to mermit the use of
sub-routines within sevaral of th2 instruction
routinas, ani is consid2red to he a necessary
instruction to have availa»le in microoroqramminag.
Pegister Ani

3. Interleaving of Memory

Instructions.

Since most of the microinstructions are
connleted in 200 nanosecoads, anAd memory
instructions consume 1 microsecond, the memwnry

instructions would aonear to be a considierahle
slowingy factor. It 1is nossible, however, to
acconnlish nost redister instructions

simultaneously with memory instructions by nlacina
the rejister instructions ajjacent to thz mnemorv
instructions, thus reducina, or 1in some cases
2liminating the 3disoarity in timing.

4. Rejister Setting With Memory Instructions.

The read and write instructions in the
1ICRODATA 1600 micro-code have the ootional
capability of performing a reaister transfer

omeration as well as th2 memory read or write.
This ability was used widely in th2 emulation to
minimize th2 number of instructions as well as to
rejuce execution time.

5. Concurrent I/0 (CIO).

The Concurrent 1I/0 nrovision of the 1600
>rovided a ready means of settina uo the cycle
stealiny used by the System/3 to oerform I1/9

concurrently with other instructions.

6. Scoarate Links.

The orovision of separate overflow links for
address ani arithmetic instructions aAareatlv
simnolified the incrementation of addresses without
affecting th= arithmetic 1link in multi-hyvte
arithmetic oderations.

7. Ability To Chanage L Reqgister.

The ability of the proirammer to set the L
rejister with a sinale micro-instruction was useAqd
in many instances to set ud® jump tavles or jumns
Airectly to instruction codina without th2 use of
the Jumo instruction (JP) (which uses 400
nanoseconds) ; this is Aescribed earlier in
paraqranh IV. P.

3. The Execute Commanis.

The snecial Execute commanis. in which the R
hiqh-ord12r bits of the U rejister 2re DOPed with
th2 8 nigh-order bits of the control m2morv
outnut, were used in s=2veral instances to create A
variable co~wmand, whose od’eration was determined
by the value of th2 U reagister.

B. Desirable Additional Features.

426

1. Tasier Access To Saconiary Tiles.

The anilitv to directly 3iiress the secondary
File rev1isters without havina to set the secon?ary
files (SSF) wnuld have been very useful in
r21u~ina Soth axacution time and numbher of
instructions.

2. More File Peaisters.

A larner numher of file reaisters would he
varyv us~ful. nmarticulacrlyv if more I/0 Aevices were
tn be alied to the emulation. The alternative that
will he utilized is the storina of some of the I/0
renisters in core, which will, of course, increase
the execution time.

2. Inter-Reqister Transfers.

The direct transfer of the contents of file
revisters to other file reqisters would be a
distin~t ®honn in reducina “oth execution time and
number of instructions.

4. A5ilitv To Increment A Working Reqgister
(Other than file reqisters) .

In many instances this ability would have
heen very useful.

5. Shift-Left-Four.

The machine has 2 Shift-Riaht-Four
instruction which oroved suite useful, but when a
left shift of four hits was reauired, it was
necessarvy to use the Shift Left (on2 bit)

instruction four times.

5. Nirect Access To Arithmetic Link.

A method of
arithmetic 1link

accessing th2 value of the
would he desirahle in several of
the arithmetic onerations 1in the emulation. The
me thoA utilized, in the ahsence of this
canavility, involved nerformina an 2344 to renister
oneration (with =zero ooerand) to aet the link
value into the reaister and then wusina the’
reaister in the arithmetic ovoeration.

7. A Ninth (Parity) BRit.

The nrovision of a ninth bit in esach hyte for
use 3s a daritv it would enhance the emulation of
a system such as the System/3, which uses a narity
hit.

VII. Conclusinns And Recommendations.

Emulation of the IRYM Svystem/3 has nroven to
he relatively 2asilv accomnlished he
micro-orojramming on the ™YICRODATA 1600. The
results of the oreliminary tests of individual
instruction execution times on the Svstem/3, the
1.5 X ROM emulation, and the 1 K ROM emulation are
summarized in Table TI. The averane instruction
execution time for the individual instructinns was
aonroximately twice that of the Svstem/3 for the
1.5 R0OM, ani three times thz Svstem/3 time for
the 1X ROM. A hetter figur= of merit should he
develone hy ohtainina some instruction Tmix
information ani weiahtina each instruction bv its
relative usaj2 rate. Even mnore imnortant than the
relative freauencv of instructions is the dearee
of I/2 houndedness, and a weiahtina factor that
raflects thz wuse of time by the I/0 periph=rals
will obprovide a much mare realistic comparison,
and, it is felt, will show the emulation to he
much closer in execution time to the System/3.

It would be very desira“le to run some
System/3 proarams on th2 1600 with the aonropriate
I/0 veripherals installed. To 40 this it will
probably Dbe necessary to aid to the emulation the
necessary coding for the cartriiqe tyme disk. It
would also be desirable to add codinq for tha
Multi-Function Card Unit (MFCU), both for carAd
reading and ounching. It is hooed that th2se tasks
can be undertaken in the near future.

BIBLIOGRAPHY

1. Snaroe, William F. The Economics of Comnuters,
First Ed. Columbia University Press, N.Y., 1959

2. Schmidt & Taylor, Simulation and Analysis of

Industrial Systems, 1st E4., Richard D. Irwin
Inc., Homewool, Illinois, 1970, Pa:1-9, 479 g 50¢

3. Jordiain, Phillio B. Condensed Comnuter

Encyclooedia, 1lst Ed.,
McGraw-dill Book Co., 19569.

4. Husson, Samir S, Microproarammina: Principles

and Practices, lst E1., Prentice-Hall Inc.,
Englewood Cliffs, N.J., Pg: 1-185

5. Gear, William C. Computer Organization ani
Programminy, 1lst Ed., ™McGraw-Hill Book CO.. New
York, 19569, Pg: 171-203

6. Lichstein, Henry A, "When ShouldA You Emulate’
DATAMATION, Vol 15, e. 11, Pq: 205-2lo, Nov.,
1969

7. Bell, Gordan 2ani Vewell, 3llen, Comnuter
Structures: Readinqgs ani FExamples, 1st EJ.,
McGraw-4ill Book Co., New York, 1971, Pg:

335-337,339,552-563.

8. Wilkes, M.V, “The Best Wav To DNesian an
Automatic Calculatinn Machine",
University Comnuter Conference Proceadina, Pq: 15,
July, 1951.

9. Weqner, Pater, Proaranming Lanauaae=s,

Manchester

Information Structures and Vachine Ordanization,
st Ed., McGraw-Hill Book Co.. Mew York. 1958, Pa:
8,28,81,124.

427

Cavton 7, Cnmouter Architecture, 1st

10. Foster,
FA

v Van Mastrandi-Reinhnld Co.. ‘lew York, 1970.
Pa: 163,
1. Posin, Robert F., Frieder, Cid2nn, 2ani
Fckhous~, Rebert Jr, “An anvironment for Pasearch

in Micronroaramming and Fmulation", Communications
of The A.C.M. Vol. 15 MNo. 8 , P1: 748-760, Auq.,
1972,

12. ™artin, James, Desiqn of Real-Time Comnuter

Systems. 1st F4., Prentice Hall, Rnalewond Cliffs,
N.J., 1947, Pa: 248, 346-370

13. Casvman, “Micha=1 =,
Many ', NATAMATION,
1, 1971

"Micronrnaramminy For Th=2
Ynl. 17, No. 21, Pa: 32, MNovy.

14. Microdata Micronroqranmina iandhonk, secnnd
edition, “icrodata Corm., Santa Ana, CA, 1071.

15. Serquson, Navid, “System/3 Noesn't Relona to
I.r.a., DATAMATION, Vol. 19, No. A, Pa: §2-54,
June, 1973

146, Jnhnson, P, P, "Need2d4: A Measure For
Measure”, DATAMATION, Vol. 16, Na. 17, Pa: 272-20,

Pec. 15, 1970

17. ¥nlence, K. ", 'Software Phvsics ani Cnmnuter
Performance ‘teasurenents”, a,C. M, Proceedinis, Pa:
1018-1023, 1972

12. Prummond, Mansfield F., Jr, Fvaluation and
‘ieasurement Technisuss for Ninital Comnuter
Svystems, 1=t Fd., Prentica Yall Inc., Fnalewood

Cliffs, N.J., 1973,

19. Lucas, fdenry ., Tr," "Performance Evaluation
an? ‘ionitorina’, Comnutina Surveys - A.C.M., Vol.
3, Na. 3, Pq: 79-92, Sent.. 1971

20, I.”.M., I.7.". System/3 “odel 10 Comnonents
Reference Manual,, I.B.M. GA21-01Nn3],

MAIN n A 1/0
SDR corn
STORAGE REG REG REG i IN
SAR ALU IN
CHAN
CONTR
ouT
* 1/0
LSR op o}
ouT
IAP CODE REG
pcPR
XR1 REG
XR2 ‘
DAR I oP & Q
ARR DECODE [
AAR
BAR
etc CONTROLS
Y
Figure 1. IRM SYSTEM/3 RLOCK DIAGRAM.
M RFGISTFP N RIGISTER
(8) (8)
MEMORY ADDRESS BUS
—~~——1 DIRECT
MEMORY
———>=1 ADDRESS CORF. MEMORY
0-65 K BYTES
MEMORY DATA BUS
T
1/0 CONTROL 1/0 CONTROL MD RFGISTER
REGISTER (3) (8)
OUTPUT BUS [OUTPUT T RFGISTFR FILE REGS.
REG (8) (8) il (30x3)
INPUT PUS FLAG e FLAGS
} prm
B BUS + (8)
APITHMFTIC / LOGIC UNIT
A BUS
L
CONSOLE INTERNAL L REGISTFR | L. SAVE REGISTFR
STATUS (12 (12)
CONTPOL + U REGISTER
MEMORY (8)
(16) v
R RFG COMMAND &
(15) CONTPOL

Figure

2. MICRODATA 160" BLOCK DIAGRAM,

428

CcNLD
3TAPT

IIT. PPCS,

INIT. 334
PRINT LINE [~ -~ ’:
COUNTER on
GrT No Yes
CODE &
N RYTE
LON
7 0
UPPER 4
PITS NF
OP IMN L
REG.
FETCH ADDRF3S:
0 1 2 3 q 7 R c n

=
NEY

515 5 H@

X-2 Y Jn4e
JUMP TABLE:

TABLE: TIO

Fiqure 3. TOP LEVEL FLOW CHYART - 1.5

K ROM.

429

COMMAND
JUMP TARLF:

OO

{ RNT) coun
S— START

INIT.
PRINT CLINF INIT. REGS.
COUNTER
GRET OP
CONF &
0O BYTE
COMMAND
I JUMP TABLE:
UPPER 2
BITS OF OP
BITS
35 40FL
FAD e
SIO
X-2 JUMP TABLE: ¥ JuMp TABLE:

!

lé lé
£l

[l

P4

e

¢ L”ié

Fiqure 4. TOP LEVEL FLOW CHART - 1 K ROM.

43Q

~Nwom

» oo un

Command Instruction
Oo Code Q Byte Command
1111xxxx
0 3
Bits
One Address Instruction - Indexed
1110 Disolac.
1101
1011 Operand
0111
One Address Instruction - Direct
0011 Oon X oo X
Hi or1d. Lo ord.
1100 Ad4r . Addr.
Byte Bvte
Two Address Instruction - Both Iniexed
0101
0110 Onerani 1] Operand 2
1001 Disolac. | Disolac.
1010
Two Address Instruction - Oo 1 Direct
0001 On 1 oo 1 On 2
Hi ord Low OrA Disol.
0010 334r. AAAr .
Bvte Byte
Two Address Instruction - Oo 2 Direct
0100 Jo 1 Op2 Oo 2
Disol. Hi orAd Low ori
1000 AdAr . Addr.
Byte Byte
Two Address Instruction - Both Addresses Direct
On 1 On 1 oo 2 on 2
0000 H4i or1d. Low orA. Hi orAd. Low »ord.
Adiress Address address Adiress
Byte Byte Byte fyte
Fiqure 5. SYSTCM/3 INSTRUCTION FORYMATS.

431

None

LOCN CODE FLAGS LABELS OP = OPERANDS COMMENTS
03F1 1600 RNI Ly Xt00°* CLEAR U FOR EXT JUMP
03F2 20FE LF WlsX'FE?® COUNTER I0
03F3 000A JE CNT GO TO COUNTER ROUTINE
-3
° INTERRUPT TEST

03F4 4018 Tz FOsX'18¢ IS THERE AN INTERRUPT?
03FS 0307 JE INT YES, TEND TO IT
o
03F6 8343 RNS INC TAL»(N) SET UP TO
03F7 A282 RMF TAUsLo+ (M) GET OP CODE
03F8 BF2] RN6 CPY OPR.T,(T) SAVE OP CODE
03FS 20F0 LF WLaX'FQ MASK FOR 1ST HEX CHARACTER
03FA 8343 INC TAL»(N) BUMP UP POINTER TO CORE
03FR A282 RMF TAUsL.s (M) GET BYTE
03FC BC20 CPY QT SAVE Q BYTE
03FD CFO1 MOV OPR, (T) GET OP CODE
03FE ED24 AND WlsTs (L) JUMP INTO TABLE
o
° FETCH ADDRESS
o
0200 ORG X200
0200 8343 FAOQ INC IALs(N) SET UP N
0201 A282 RMF TAUsLs (M) FETCH 1ST BYTE OF ADDRESS
0202 8620 CPY BAU,T PUT IT IN BAR
0203 8343 INC IAL.(N) SET UP N
0204 A282 RMF TAUsLy (M) READ 2ND BYTE OF ADDRESS
0205 B720 CPY BAL,T PUT IN BAR, LOWER
0206 8343 INC IAL+(N) SET N
0207 4282 RMF TAUsLy (M) GET 1ST BYTE OF 2ND ADDRESS
0208 B420 CPY AAUST PUT IT IN AAR, UPPER
0209 8343 INC IALs(N) SET UP N AGAIN
020A A282 RMF TAUsLy (M) READ 2ND BYTE OF 2ND ADDRESS
0208 8520 CPY AALST PUT IT IN AAR LOWER
020C 2DA0 LF WLaX'AQ® COUNTER 1D
0200 000A JE CNT GO TO COUNTER ROUTINE
020E 110F LT X1OF MASK FOR OP CODE
020F EF20 AND® OPR, T, (K) JUMP TO OP CODE IN X-Z JUMP TABLE
-3
0210 ORG X12101
0210 8343 FAl INC IALs(N) SET UP N REG
0211 A282 RMF TAUsLs (M) READ 1ST BYTE OF 1ST ADDRESS
0212 B620 CPY BAUST PUT IT IN BAR UPPER
0213 8343 INC IAL,(N) SET UP N REG
0214 A282 RMF TAUsLs (M) READ 2ND BYTE OF 1ST ADDRESS
0215 8720 CPY BALST PUT IT IN BAR LOWER
0216 8343 INC IAL,(N) SET UP N REG
0217 A282 RMF TAUsLs (M) READ 1ST BYTE OF 2ND ADDRESS
0218 8929 ADUe X1LsT4(T) ADD INDEX REG 1
0219 8520 CPY AALST PUT IT IN AAR UPPER
021A 888Y ADDe X1UsL,y(T) ADD LINK TO UPPER INDEX REG
0218 8420 CPY AAUST PUT IT IN AAR UPPER
021C 2042 LF WleXtA20 COUNTER 1D
0210 0004 JE CNT GO TO COUNT ROUTINE
021€ 110F LT X1 OF MASK FOR OP CODE
021F EF2D ANDs OPR+Ts (K) JUMP TO OP CODE IN x-Z TABLE
FIGURE 6. ASSEMBLED RNI, FAQs AMD FAl ROUTINES - 1.5K ROM.

LOCN

0307
o308
0309
030A
0308
030C
030D
030E
030F
03E0
03E1
03€E2
03E3
03€E¢
03ES
03E6
03E7

0200
0200
0201

0202
0203
0204
0205
0206
0207
0208
0209
020A
0208
020C
0200
020E
020F
0210
0211
0212
0213
0214
0215
0216
0217
0218
0219
021A
0218
021C
0210
021€E
021F
0220
0221
0222
0223
0224
0225
0226
0228
0229
022A
0228
022C
0220
022€E
022F
0230
0231
0232
0233
0234
0235

CODE FLAGS LABELS OP o

1600
4018
0004
8363
A282
B8F21
8E21
2018
8343
A282
8C20
1682
8343
FE21
FE21
FE21
ED2C

A282
0420

8343
A282
0520
6EFA
1C1F
1C27
A282
8929
0520
8889
0420
6EF2
1C1F
1ca7
A282
8829
0520
8AB9
0420
6EEA
1C1F
1C27
6F 10
1C23
1103
1600
EF29
2E32
BE24
4080
1C27
2098
8343
1680
FF29
BE?21
ED2C
110F
1600
4D80
EF2D
4E60
1C28
EF29
BE20
1110
8E2S
158E
1C84
14AA
1COE

OPERANDS COMMENTS
RNI Ly X'00°" CLEA® U FOR JUMP EXT
T2 FOWX'IRY IS THERE AN INTERRUFT?
JE INT YESy TEND TO IT
RNS INC TALs (N) NOs SET UP N REG
RMF TAUGL s (M) READ OP CODE RYTE
RN6 cPY OPRy T4 (T) SAVE IN OPR REG
cey WesaTy(T) ALSO IN W2 REG
LF Wlexe18e MASK FOR SIGNIF HITS
INC [ALy (N) SET UP N REG
RMF TAUsL s (M) READ O BYTE
cPY QT SAVE IN Q REG
Ly Xtg2e SET UP UP CODE FOR COPY AND REG 2
INC IALs (N) SET UP N REG
SFR W2y (T) SHIFT RIGHT ONE B(T
SFR W2y (T) SHIFT RIGHT ONE KIT
SFR W2 (T) SHIFT RIGHT ONE BIT
ANDe WlsTs (L) MASK WITH SHIFTED OP CODE
° AND PUT IN L REG TO SET
° UP JUMP TO PROPER FA ROUTINE
ORG X200 SET UP INITIAL ENTRY POINT AT 200 FOR DIR ADOD
FAD RMF TAUsL o (M) READ BYTE OF ADDRESS
EoT AAUST THIS INSTRUCTION IS ORED WITH U REGe PICKING
° UP THE COPY OP CODE AND BITS FOR THE PROPER
° REG FOR STORING THE UPPER BYTF OF THE ADDRESS
INC TALs (N) SET UP TO
RMF TAUsL s (M) READ NEXT BYTE
EoT AALST OR WITH U FOR LOWER BYTE IN SAME FASHION
cpP W24 X'FA? IS THIS THE LAST BYTE?
JP FAl NOy GO ON
JP FAF YESy GO TO INSTRUCTION ROUTINE
RMF TAUsL s (M) ENTRY FOR IRl ADDRESS = READ RYTE
ADDe XIL+Ts(T) ADD INDEX REG 1
EOT AALWT OR U - COPY TO ADDRESS REG
ADDe X1UsLs(T) ADD LINK TO INDEX REG 1
EOT AAUST OR U - COPY TO ADDRESS REG
cpP W2eX'F2r! IS THIS THE LAST BYTE?
JP Fal NO, GO ON
JP FAF YESs GO TO INSTRUCTION
RMF TAUsL s (M) ENTRY FOR INDEX REG 2 ADURESS = READ BYTE
ADDe Xx2LsTs(T) ADD INDEX REG 2
EoT AALS T OR U - COPY TO ADDRESS REG
ADDe X2UsLo+(T) ADD LINK TO INDEX REG 2
EOT AAUT OR U - COPY TO ADDRESS REG
cpP W2eXEA" IS THIS LAST RYTE?
JP Fal NO, GO ON
JP FAF YES GO TO INSTRUCTION
cpP OPRyX*10" ENTRY FOR NO]1ST ADDRESS = IS IT F TYPE?
JP FA2 NOs GO TO ROUTINE FOR 2ND ADDRESS
LT X*103" MASK FOR TWO LOw BITS
LY X100 PREP U REG FOR INSTRUCTION
ANDe OPRsTH(T) SET UP FOR
LF W2sCOM COMMAND JUMP TABLE ENTRY
ADD W2sTe (L) JUMP TO COMMAND JUMP TABLE
Fal TZ WlsX'RO? WAS THIS THE FIRST BYTE?
JP FAF NO, GO TO INSTRUCTION ROUTINE
LF WlsX'98?* YESs SET FLAGS FOR 2ND BYTE
INC IALs (N) PREPARE N FOR NEXT BYTE
Fa2 LU X180 LOAD FOR COPY AND AAU REG
SFRe OPRs(T) SHIFT OP CODE ONE BIT RIGHT
cPyY W2sTy(T) COPY 1T TO W2 AND T
ANDe WlsTs (L) JUMP TO ROUTINE FOR 2ND BYTE
FAF LT X10F* MASK FOR LOWER 4 BITS
Ly X*'00° CLEARP U FOR INSTRUCTION
T2 WEs X180 WAS THIS 2ND BYTE?
FAE ANDe OPRy»Ts (K) YESy GO TO INSTRUCTION - X=Z TYPE
TZ W2eX160° NO, IS IT A Y TYPE ADDRESS?
JP FAE NO, GO BACK TO X-Z TYPE
ANDe OPRsTs (T) YES, STRIP OUT UPPER 4 BITS
CPY W2,T AND PUT 1T IN W2
LT X110 SET UP TO
ADD W2, Ty (K) ADD 16 AND JUMP TO Y JUMP TABLE
coM JP HPL COMMAND
JP APL INSTRUCTION
JPJC JuMp
JP SI0 TABLE
FIGURE 7. ASSEMBLED RNIs AND FAD ROUTINES - 1K ROM,_

MICRODATA
TIM LOCN
CyC (L)
12 3F}
13 3fF2
1S 3F3
16 00A
17 o008
18 o00C
19 000D
22 VO0E
23 00F
24 010
27 011
29 J3F¢4
30 3F6
31 3F7
34 3F8
35 3F9
36 3FA
37 3F8
40 3FC
4l 3FD
43 3FE
44 200
45 201
48 202
50 203
51 204
S4 205
S6 206
57 207
60 208
62 209
63 20A
66 208
67 z2o0C
69 20D
70 00a
71 008
72 00C
73 000
76 00E
77 00F
78 010
81 011
82 20E
B4 20F
86 304

1600 SIMULATOR

ROM
(R)
1600
20FE
000A+U
8043
1203
3E01
A020
8E61
A030
4EFF
1020
4018
8343
A282
3F21
20F0
8343
A282
BC20
CFol
ED24
8343
A282
8620
8343
A282
8720
8343
A282
Bs20
8343
A2R2
B520
2DA0
000A+U
8043
1203
BEO1L
A020
8E61
A030
4EFF
1020
110F
EF2D
0140+U

oP
CODE
Ly
LF
JE
INC
LM
Z0F
RMH
ADD
WMH
TZ
RTN
T2
INC
RMF
CPY
LF
INC
RMF
CPY
MOV
AND
INC
RMF
CPY
INC
RMF
CPY
INC
RMF
CPY
INC
RMF
cpPy
LF
JE
INC
LM
ZOF
RMH
ADD
WMH
T2
RTN
LT
ANDe
JE

oo

OPND SAVE
00
D+FE
00A
D(N)
03
E(T)

0
EsIoTHT)
0

EWFF

3F4

012
0+18
3(N)
2+L (M)
FoT(T)
D+FO
3(N)
2sL (M)
CoT
FeT)
DsT (L)
3(N)
2oL (M)
60T
3(N)
2sL (M)
TseT
3(N)
2+L (M)
4o T
3(N)
2L (M)
ST
D+AQ
00A
D(N)

03
E(T)
0
EsIsT(T)
0
EsFF

20E

0le
0F
FeT(K)

140 305

U

00

FIGURE

M

03

00

03

N

FF

00

01

02

03

04

0S

Al

8.

IBM SYSTEM/3 MOD.

170

00
00
01l
01

00
04

00
22
04
0a

00
02

00
45

00
02

00
48

00
00
01
01

oF
oF

T LINK

oo oo oo o

o o

FILE REGISTERS
6 1 2 3

00
00

VOVODUOVODO

ol

°

Vo

02

T O

05

v O

4

02

S

48

PORTION OF 1.,5K ROM SIMULATION,

434

6

02

7

45

8

10 EMULATION ON MICRODATA 1600 = ROMB2 SIMULATION as

A-B C D E F
9 10 11 12 13 14 15

FE
FF
00

01

04
Fo
22

00

AD

Al
00
01

MICRODATA 1600 SIMULATOR

TIM LOCN
cyc (L)
12 307
14 308
15 30DA
16 308
19 30C
20 30D
21 30E
22 30F
23 3E0
26 3E1
27 3E2
28 3E3
29 3E4
30 3ES
31 3Ee
33 3&7
34 200
37 201
39 202
40 203
43 2064
44 205
46 206
48 21F
49 221
50 222
51 223
52 224
53 225
55 226
56 200
59 201
61 202
62 203
65 204
66 205
68 206
69 21F
71 220
72 227
73 228
74 229
75 22A
71 228
79 304

ROM
(R)
1600
4018
8343
A282
BF21
BE21
2018
8343
A282
BC20
1682
8343
FE21
FE21
FE21
ED2C
A282
0420+U
8343
A282
0520+U
6EFA
1CIF
4080
2098
8343
1680
FF29
BE21
Eb2cC
A282
0420+U
8343
A282
0520+U
6EFA
1CIF
4DBO
1ca7
8F49
110F
1600
4D80
EF2D
1023

oP
CODE
Ly
T2
INC
RMF
CPY
CPY
LF
INC
RMF
CPY
LY
INC
SFR
SFR
SFR
ANDe
RMF
CPY
INC
RMF
CPY
CcP
JP
T2z
LF
INC
LU
SFRe
CPY
ANDe
RMF
CPY
INC
RMF
CPY
cpP
JP
TZ
JP
INCe
LT
LU
Tz
AND®
JP

OPND

00
0s18
3+ (N)
2L (M)
FoT(T)
EsT(T)
D,18
3(N)
2L (M}
CoT

B2
3(N)
E(T)
E(T)
E(T)
DeT (L)
29L (M)
6’T
3(N)
2L (M)
Ts7T
E+FA
21F
0,80
Dy98
3(N)

B0
Fem)
EsTU(T)
DeT (L)
2eL (M)
4y T
3(N)
24L (M)
SHT
EsFA
21F
0+80
227
F(T)

0OF

00
D+80
FaT(K)
323

ee IBM SYSTEM/3 MOD.

10 EMULATION ON MICRODATA 1600 - ROMA4 SIMULATION =«

SAVE U M N I/0 T LINK FILE REGISTERS A B C D E F
01 2 3 4 5 6 7 8 91011 12 13 14 15
00
00 1 P 00
00 00 1 P 00
04 P 04
04 P 04
P 18
01 0 P 0l
00 0
22 P 22
B2 02 0 P 02
02 0 P 02
o1 0 P ol
00 1 P 00
00
00 0
02 P 02
03 0 P 03
00 0
45 P 45
0
P 98
06 0 P 04
BO 02 0
02 P 02
02
00 0
02 P 02
05 0o P 05
00 0
48 P 48
0
05 0
oF
B0
00
oF
FIGURE 9. PORTION OF 1K ROM SIMULATION,

435

TABLFE _T.

SUMMARY OF EM

ULATION ¢

SYSTEM/3

INSTRUCTION EXECUTION TIMFS

NO. OF TIME IN MICRNDSECONDS
MNEM. INSTRUCTION BYTES 5YS/3 1.5 K ROM 1 K ROM
LA Load Address - 5.07 7.90 13.04
L Load Register - .11 13.00 15.94
ST Store Register - 8.11 12.47 15.53
A Ad3 to Reqister - 8.11 15.67 19.27
ZAZ Zero & 344 Zoned 5 13.17 22.27 R5.13
AZ Add Zoned S 13.17 33.47 a0.13
S7 Subtract Zoned 5 13.17 33.87 89.13
CLC Comoare Logical Characters 3 13.17 18.67 23.66
CLI Comnare Loagical Immediate - 6.59 9.93 15.93
RAVAS Move Hex. Characters - 10.13 13.22 17.78
MvC Move Characters 3 10.64 16.07 20.73
MVI Move Immediate - 5.59 7.40 10.59
ALC Ad4 Loaical Characters 3 10.13 20.80 29.66
SLC Subtract Lonical Character 3 10.13 21.00 29.46
ED Edit 3 10.64 21.27 25.84
ITC Insert & Test Characters 3 11.65 20.13 25.33
SBN Set Bits On - 5.59 8.590 11.70
SBF Set Bits Off - 5.59 8.50 11.70
Tl Test Bits On - 6.59 8.50 11.70
ToF Test Bits Off - 5.59 8.50 12.10
eC Branch On Coniition - 5.07 11.00 16.40
Jc Jumnn On Condition - 5.07 11.00 16.40
dPL Halt Proara~ Lewvel - 4.56 .40 7.80
SIO Start I1/0 - 4.56 13.10 14.10
OGNS Sense 1/0 - 8.11 15.40 19.60
LIO Loadi 1/0 - 8.11 12.60 16.80
TIO Test I/0 - 5.07 13.60 19.89
APL Advance Proaram Level - 4.56 10.20 13.20
dote: All times are mean times for the 7roun of ontions

tested on each instruction.

436

