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Witn the recent publication of several
computer algorithms for generating random
numbers some researchers might wonder 1f the
ubiquitous congruential generator is defective.
In a search for an answer this paper examines
the concept of randomness and probability, and
the relationship of random numbers to the prob-
lems they are belng used to solve.

wnen working on a simulation problem I like
to start with a ranking of solutions to a par-
ticular question in order of desirability.
Starting from the top I go down the 1list until
I find a solution I can feasibly employ. To
answer the question of how would I prefer to
simulate a distribution I would suggest the
following ordering:

1. sample from a theoretical distribution
2. sample from an empirical distribution
created from sample data

Hav%ng made this cholce the next question might
be "now should the data be sampled?"

1. directly

2. 1inverse CDF

3. discrete simulation
a. rejection sampling
b. composition method
c. other methods

The cnolce of any of these methods involves
the generation of random numbers. We then need
to choose a method of generating those numbers.
If a manual procedure is suitable I would
suggest a set of icosahedral, 20 face, dice
sold by the Japanese Standards Association.
Taey offer two sets, Tne A set, intended for
research applications is precisely constructed
of durable material, and sells for $10.00.

Ine B set 1s intended for general and education-
al use, Tne Bset sells for $4.00. The address
is 1-24 akasaka 4, Minato-ku, Tokyo, 107 Japan.
For most needs we invoke a computer random
number algorithm., What if we were to try to
define the "random" sequence produced by the
computer?

In probability theory random variables are
real functions on a sample space., However we
may even question the definition of probability.
In that probability seems to attempt to unite
unknowns of the universe into theory we might
attempt of develop experiments to explain
theory rather than the reverse. If regular
theory could explain the observed phenomena we
should not require probability. In practice
probability is sometimes defined to exist (1),
?g} there may be alternative interpretations

In tryilng to find a way to generate numbers
to solve problems we can't define we happen upon
the theory of randomness. It is hard to think
of a mathematical sequence that is random in
an intuitive sense because random implies
a process that is not reproducable. Physical
processes seem to be the only thing that are
not reproducable. The people who produced
the one million random diglts for RAND (3),
even after carefull tuning up of thelr gener-
ating machine, felt compelled to "rerandomize"
the numbers.
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Compromising our intultion, we agree that
a random sequence can be deterministic, and we
look at mathematical sequences of numbers.
The i1dea 1s to define an infinlte sequence
that satlsflies the established criteria for
randomness. Then, one attempts to find a
finite serles with the same attributes. A
sequence, S,, ln this context refers to a
serles of numbers, r;, Osisn with Osp<l.
Examine an n element 'sequence, S,, element by
element, and count the r; that satisfy asr<b.
Let this number be I(n). If

1lim I(n)/n = b - a
n-»o0

the sequence 1s defined to be equidistributed.
Let

Pr(s ) = %iﬂnl(n)/n

Glven k - r dimensional subsequences with
bounds Osa<bsl, 1 = 0, r, the whole sequence
1s k~distributed if 1t 1s independently equi-
distributed in each dimension for k. The
equivalent one dimensional model states that
if

Pr(a.srmjlbl, a,sr<h, ..., srmiq)

= (b "= a‘)ﬁbl %7a,) ...a?bk Tay )

the sequence 1s k-distributed. If a sequence
i1s k-distributed for all positive integers k
then, 1t isw-distributed, or completely
equidistributed. While Franklin(4) does not
say that anee-distributed sequence 1is random
he notes that equidistribution is a property
of a truly random sequence. Knuth (5) asks
the question "does*e-distributed = random?"
He then states a definition that answers the
question affirmatively. He also states that
he has created an algorithm to compute a sequ-
ence of real numbers which is®o-distributed.
He carries out an interesting dialog about rand-
omness, and refines the initlal conjecture.

What does all of this mean to us who are
interested in using computer generated random
variables to solve problems? In one sense
very little, for in an infinite random sequence
1t 1s entirely possible to have some very
unacceptable finlte strings, ten thousand
consecutive sevens for instance. But it glves
a hint where to look for random finite sequences.
An excellent paper by Franklin (4) discusses
theorems concerning the degree of equidistribu-
tion of some numeric sequences. Among the toplcs
discussed are the followlng:

1. the serles Xx ={pa}15 equidistributed for
irrational o®

2. multlply sequences, X, . =§Nx +9],
for N integer >1, are e&ui 1sQr1buted
for almost all x., but not guaranteed
even 1f Xq 1rrat90nal.

3. for almost all ©>1 the sequence x,={6"}
1s equidistributed. The der%ved r-dim-
ensional sequence from x,:16"}is
completely equidistributed.

4, Borel's proof that for almost all
positive numbers x,< 1 the digits
0 - (N-1) appear w?th equal frequency
(6,7). A book, (8), has been recently
published on the subject.

A new approach toward the definltion of
theoretical randomness recently appeared 1in
"Scientific American" (9).



Two ploneers in theoretical randomness,
Weyl and Borel expounded their theorems prior
to 1930. In 1934 Kendall and Babington
Smith (10), in discussing the subject of
randomness in samplint, note, "It appears,
therefore that we cannot hope to define a
random sample in terms of the properties of the
sample 1tself, but only as a member of a
class of samples." They also define a
locally random set as a member of the poss-
ible sets of size N which approximately
conform to expectations. They propose four
tests, which, i1f passed, would qualify a
sequence as locally random. The tests were
the frequency test, serial test, poker test,
and the gap test. In the 40 years since this
article was published we have mushed together
the concepts of pure randomness and local
randomness. A better name for our computer
random number algorithms would be locally
randomized number selection techniques.

Purely random sequences may not demon-
strate local randomness. Are locally random
sequences purely random? Do we care? In
the same paper that von Neumann made his much
quoted statement concerning users of arith-
metical methods to produce random digits
being 1n a state of sin he also related,

"We are dealing with mere "cooking recipes”
for making digits; probably they cannot be
Justified, but should merely be judged by
thelr results. Some statistical study of the
diglts generated by a given recipe should be
made, but exhaustive tests are impractical.
If diglts work well with one problem, they
seem usually to be successful with others

of the same type.'"(19)

What constlitutes a reasonable set of
tests for locally random numbers? The
frequency test, serlal test, poker test,
gap test, test of runs, coupon collector's
test, and serlal correlation are the common
tests., Gruenmberger (11) suggested the d
test for testlng polnts generated in the unit
square for monte carlo applications.

Knuth (5) describes a permutation test. For
all the literature devoted to the serial
correlation test Knuth tells us that it and
the frequency test are the weakest because
they are so easily passed. He recommends
the run test and the spectral test. The
spectral test is based on the finlite Fourlier
transform, and Knuth clelms it is far sup-
erlor to other tests used. All good random
number generators pass 1t, but all linear
congruential sequences which have been found
to be bad fall 1t. The need for some testing
is evident., Statistical justification for
different tests would vary with the applica-
tion. (5,12) discuss the subject.

We must be very carefull not to lump the
sins of our simulation model onto the random
number generator. Statlistics are based on
repeated measures of all levels under study.
In simulation we sometimes load all of our
sampling at the first level and forget
higher levels. If we are simulating a gueue
Wwe conslder a range of subjects in that
queue., We are less likely to consider that
queue as one point in the range of queues.
For an excellent example of the subject
consult Kerrich (2) and Feller (13) under
random walks, last visit and long leads.
(14) is also a good reference for modeling
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Suggestion for future work: think about
randomness. Does it embody the concepts we
need, or 1s there something better? Can we
quantify randomness. Now it is dichotomous,
elther a serles is random or 1t is not. Might
1t be possible to set confldence limits on a
random sequence? On a more pragmatic level,
we need to trace down and document all of
the rumors about random number generators.

The congruential method 1s simple to apply,

but 1t has specific requirements which must

be met. Knuth (5) points out an improvement
that can be made by changing the modulus from
20 to 28 plus or minus 1. We should document
generators for various seed values, multipliers,
arithmetic processors and word lengths.

I would like to see some reports on sampling
methods. I am partial to what is called
perturbation theory, sensitivity analysis, or
in statistics, robustness. I am looking for
various algorithms allowing one to generate
pairs of random variates with specifled corr-
elation, or moments. The compound or multiple
sequence congruential generators need study.
They seem to produce numbers which pass tests,
but they throw unknowns into the method.

To conclude, I would like to give my answer
to the title question, then explain it. Yes,
the congruential method 1s best. It generates
numbers which pase the requiared tests (16).
The generator is well defined in the sense
that we know the conditlons for it to produce
1ts maximum period, and we can even specify
different full sequences based on the initlal
conditions (16, p 77). Barnett (17) relates
the results of relaxing constreints on the
generator,

Greenberger (18) documented second order
correlation deficiencies in the congruential
method. Whittlesey (2p) notes poor results
for the congruential method when tested for
autocorrelation. He suggests the Tauseworth
generator to solve that problem. There 1is
very little evidence against the congruential
method. This i1s probably indicative of the lack
of quantitative methods in simulation. On the
positive side there have been some useful
studies published in Simuletter, the newsletter
of the SIGSIM group of ACM (21, 22). They
have been valuable in collecting available
information about random number generators.
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