THE GATED QUEUE NODE: PROPERTIES OF A NEW ELEMENT
FOR STOCHASTIC QUEUEING NETWORKS

Nancy Blom
University of California, Davis, CA

Yoichi Akiba
Business Division, Cosumnes River College, Sacramanto, CA

and

W. W. Happ
University of Guanajuato, Salamanka, Mexico

ABSTRACT

Deficiencies of queueing networks to model multiserver
single queue systems are examined and altecrnatives to remedy
them are explored. The Gated Queue is defined as a new
primitive which overcomes these deficiencies. It is a
storage node whose release is controlled by an outside mech-
anism. Implementation was demonstrated by programming and
testing it as part of the GERTS III Q program resulting in

properties which cannot be synthesized from existing elements.

A compatible set of modular logic modules are defined using

the gated queue node and are examined analytically and test-
ed. An example showing the ease of modelling and simulating
using the new GERTS GQ is included.

GERTS GQ: A USER-ORIENTED NETWORK PROGRAM

Modelling complex systems from the standpoint of net-
work techniques has been studied in various contexts. Flow-
graph theory, PERT (Project Evaluation Review Technique)

CPM (Critical Path Method), network flows, decision trees,
all have in common graphical analysis.

GERT (Graphical Evaluation and Review Technique)! is
also an analytical method for the formulation and analysis
of queueing networks. The system, once represented in the
form of a "Q" network, can then be simulated by the GERTS GQ
(the S here stands for simulation) computer package. This
FORTRAN based computer program is a modification of GERTS
IIT Q which is presently available at more than twenty
universities as well as at numerous private facilities.2’3’%

GERTS GQ networks permit a wide class of queueing sys-
tems to be simulated, providing a useful tool for modelling
large complex queueing networks. Programmers, engineers,
and nonprogrammers —in short, all who need to conduct simula-
tion studies from a graphical or network point of view, and
who are not concerned with detailed programming can benefit
from this technique.5’®

The ease and accessibility of solutions possible with
digital simulation of queueing networks provides a new and
improved approach response to operational engineering
requirements.

THE TERMINOLOGY USED IN GERTS

The network is a ''next event simulation" network, that
is, time is advanced from event to event. All events and
event transitions are recorded in a continually updated
event file. Some concepts commonly understood in GERTS are:

Stochastic —Describes random phenomena which display
predictable long-run regularities.

GERTS network —A graphical represcntation of the
project as a network. Each activity in the project
is shown as a branch, each event as a node.

Nodes —Decision-making elements functionally related
by branches.

Realization—Designates the actual occurrence of the
event or activity represented by a designated node or
branch during performance of the project.

Release —The realization, exactly once, of an activity
along a branch emanating from a node upon realization
of that node.

Network modification—Structural altcrations made by
automatically scheduled switching actions while simu-
lation is actually in progress.

Activity numbers — Identify those activities whose
completion will trigger network modifications.

399

Removal —Cancellation of all in-progress activities
already scheduled into a node (i.e., still progres-
sing along an entering branch) immediately upon
rcalization of the node.

A node in GERTS is a decision point in a network re-
presentation. Items travel along a "branch' with a parti-
cular time distribution until they reach a node. Many
items may travel along the same branch at the same time.
That is, units of information or items are processed through
nodes and distributed as entities without label, the label
results only from the network topology.

Function and Structure

Nodes

Of key importance is the graphical representation of a
system. Figure 1 shows a graphical symbolism used to de-
pict the functional characteristics of nodes in the GERTS
system.

Figure 1

A: Denotes the number of releases needed to realize
the node the first time.

B: Denotes the number of releases needed to realize
the node on succeeding occurrences.

#: Denotes the unique number associated with each
node.
When the node is a special node called a Q-node, A and
B have a slightly different meaning. In that case we have:
A: The number originally in the queue.

B: The maximum number allowed in the quque.

Branches

A directed branch, representing an activity and/or an
information transfer, has associated with it one node from
which it emanates and one node at which it terminates.

The graphical representation, without showing the

nodes involved, is a directed line together with five
associated parameters, as shown in Figure 2.

p, TP, TD, ¢, m

v

Figure 2

"P" is the probability that the particular branch
eminating from Q-node will be taken. This probabil-
ity is specified when the branch is defined.

"TP" and "TD'" define the time to traverse the branch,
i.e., to complete the activity represented by the
branch.

"TP," an integer value, points to a particular line
in a table which specifies minimum time, maximum

time standard deviation, and mean. "TD," the stat-
istical distribution, an integer from 1 (one) to 9
(nine), specifies one of nine distributions available
(see Figure 3).

The counter type ‘¢ and network modification ''m'"
may or may not be specified for a particular branch.



D Distribution
1. Constant
2. Mormal
3. 'Iniform
4, Erlang
5. Lognormal
6. Poisson
7. Beta
Gamma
9. Beta (fitted to chree para-

meters as in PERT)

Figure 3

Single Server Queue

The major restriction associated with an ordinary Q-
node is that only one service activity can emanate from a
Q-node, i.e., there can be only one output branch when the
output is deterministic. Two or more probabilistic outputs
are considered to represent the samc server.

Thus, the Queue node in GERTS III Q models is a singlc-
server processor. When an entity leaves the Queue, another
entity can not leave until the first entity arrives at the
next node. This implies the 'processing” time, the time to
traverse the branch, must be greater than zero, otherwise
the Queue will not hold any entities. A special array with-
in the FORTRAN simulation program designates whether the
"'processor" is busy or not. No other entity may traverse
the branch while the processor is busy. In practice this
Queueing node provides incorrect results when incorporating
this type of Queue into a network with more than one server.
The gated Q, which overcomes this deficiency will be defined
and examined separately.

SB

"PROCESSOR"

Figure 4

THE MODULAR NETWORK APPROACH TO SIMULATION

In order to give an engineer or nonprogrammer greater
flexibility in modelling a system, Happ, Akiba and Dabaghian’
developed a modular approach to GERTS III Q. That is, they
devised from GERTS primitives a standard set of modules
which could be used as an intermediary step from state dia-
gram to nodal diagram, thus giving a more reliable model of
the real world system. The "HAD'" modular approach entails
combining network primitives into a standard set of modules
for greater flexibility in modelling and simulation.®

As an example of the modular concept Figure 5 shows
the block symbolism used by Happ, Akiba and Dabaghian for
the Initial Finite Pulse Cenerator. This module's function
is to emit a pre-selected finite number of pulses or items.
The nodal diagram which this symbol represents is shown in
Figure 6. Network modification triggered by realization of
the "Counter'" (node #3) truncates the otherwise perpetually
repeated sequence of pulses discharged by node #2.

Table 1 denotes the tested modules which presently
make up the libray of "HAD" modules.

400

Deficiencies Found in GERTS III Q

With the conception, implementation and testing of the
HAD modules came the knowledge of the deficiencies of the
queueing system under GERTS III Q.2 The program worked well
for networks with single-server, single-queue constructs,
but distributing an element to one of several queues was not
possible without a complicated and essentially inaccurate
representation, using holding patterns and/or network
modification.

The Distributor Module. A distributor module which was
proposed makes use of the Q-node's capability to balk an

entity to another node when its processor is busy. Figure 7
shows the nodal diagram.

Pr—P——E)—f
.
a

T—@

_-_— e e . L4

r-—--

Figure 7

+ Zero storage is specified in the Q nodes #5, #7, and
#9.

+ When processors are busy, entities are diverted
through balk nodes.

+ When all the processors are busy entities are cir-
culated back to Q node #3 through node #10.

However, the branch emanating from a Q node (the
processor) must be traversed with a time greater than zero,
otherwise no queue will result. Thus there is a holding
time from node #3 to node #4 which introduces inaccuracies.
Also, entities are circulated continuously through the loop
while all the processors are busy.

In order to eliminate the holding loop, it is desirable
to have a gate in the Q node which is capable of stopping
all incoming entities, storing them and then releasing them
on command from another part of the system.



Table

The

PROLIFERATIVE
SIMPLE REPETITIVE
PULSE GENERATOR

Simple Repetitive Pulse Generator: generates transactions at
constant or random time intervals throughout the simulation run.

INITIAL FINITE
PULSE GENERATOR

Initaal mece Pulse Train Generator:
Sisting of a
entering :nto

creates a sequence, con-
pre-assigned finite number of transactions, for
the system at random or constant time intervals.

divides tne units of an entity flow inte a laracr nunber
sucuniti. A single flow uwit arriving at tlus rodule gener-
es a pre-assigned rurber of flow units at its output,

aty

D,
D

Tre ature . of the VNIV and LI-
mod il A single ent module and searches for a
server wi.ch 15 avi.lalle i,

Lion:

Ukla

at a particular poim

Lraran

delays or nolds up
“he nerwori.

SIERFLW

lerFLow:
actisns to alternate locations whenever the queue 1o full.

STORAGE

a qucueing redule providing for diversion of trans-

SToRaGe: incoming transactions are accumulated ("stockpiled™)
and are withdrawn, individually or in groups, only as service

facilities outgside the module become available.

401

1
library of "HAD" modules

fONSOLIDATIVE
PACK

I ; %b
PACK: consolidates transactions; entering transactions can ac-
Cumulate in the module until a specified capacity N is attained.

ASSEMBLEK

ASSemblef: combines a pre-defined set of entities for future
processing. The output activity cannot be schcduled until at
least one unit has entered along each input branch.

SHANNELED

DISTRIBUTUR

outes an incoming entity to the first idle server
it1al sesrch of tie [rocessors being sup-

. a
plied by the module.

[P

rentiall
ldina i

= hagher-ranking cntities teoa
fankinn oo in a que

iy

[SRFTENNRT

Figit © preferentially controls entity flow through a traf-
Fic intersection with a high (H) and a low {L) pricrity entry

path and with two probabilistically selected exit rath-.
APPORTION

APpUrTion: probabilistically directs each entering entity to
one of its output branches.



The Assembler Module. A holding mechanism which en-
tails network modification was used to construct a module
which assembles various elements and holds them until the
proper "mix" is achicved. The holding mechanism, Figure ¥,
entails network modification. This powerful feature in
GERTS II1 Q for restructuring the network configuration was
needed by the assembler module in order to function proper-
1y. The queue holds entities while a single entity tra-
verses the branch from the queue to the next node. When an
entity travels from node fo to node K16, the "A" switch is
activated, node #7 replaces node #5, and entitics are
trapped between node #4 and node #7. The holding continues
until node #16 is realized. Then switch '"D" is activated
and the network returns to its original configuration.
Erroneous results are obtained not only for the queue
length in holding patterns but also make simple processcs
become relatively complex, thus making an improved mech-
anism mandatory. Neceded was a simple mcdel without holding
patterns as well as network modification adequate to hold
an entity in the queue until the signal for its release was
given.

Figure &

THE GATED - Q: A NEW ELEMENT

The gated queue node constitutes a new primitive, and
is designed to hold entities until a signal from another
part of the network arrives. Its function differs from
the conventional queue node with respect to the ability of
the queue node to hold entities until a signal arrives.
Two essential characteristics of the gated queue result:

+ The event immediately subsequent to the queue node
is not the signalling event and,

+ The queue and the signalling event are not neces-
sarily connected except in the user's conception of
the data input.

The gated Q node is characterized by:
The number of items initially in the queue,
- The maximum number of items allowed in the queue,

+ The node to which an item would 'balk" or be
diverted if it arrived when the queue was already
full,

+ The event node which opens the gate (the signal node)

The number of items to let out of queue before
closing the gate initially.

The gate may be specified as open or closed initially.
Open is specified by a number "N'" larger than zero. The
gate closes after N items leave the queue; from then on
each time an item arrives at the signal node one item may
leave the queue and the gate closes again. When an item
arrives at the signal node, the gate will open for one
item, then close. Each arrival at the signal node permits
one more item to leave the queue. If a new item arrives
at the Q node when the gate is open it will proceed. If
the gate is closed it is placed into the queue. Just as
for the conventional queue when the maximum number is

402

reached, newly arriving items must either balk to another
node or from the system entirely if no balk node has been
specified.

The New Distributor Module Using G-Q

The new distributor module is designed to route an
incoming entity to the first idle server encountered in a
fixed sequential search of the processor being supplied by
the module. To illustrate the function of the module we
shall follow the flow of a scries of entities (Figure 9)

- The entity enters through the gated queue, node #4.
The pulse passes through node #6, another gated
queue, and the gate closes after the pulse has
entered the processor. The queue is gated until
the switch is later activated.

A second pulse arrives, is balked to node #8, passes
through Node #9, where the gate closes.

When a singla node for a gated queue is realized
the gate opens and lets out one pulse.
A common node which has no affect on the program is

set up, node #14. This node is used as the signal
node for the gated queue, node #4.

Sy

Figure 9

The New Assembler Module with G-Q

In Figure 10 the new assembler module is shown. It
does not rely on holding patterns with their inherent net-
work modification. One entity from each section is sent
to node #22, closing the gate for that section until node
#22 is realized.

The new assembler is simple in design and provides a
true queue length. Waiting items stay in the queues in-
stead of circulating continually.

rigure 1o



APPLICATION: A TYPICAL QUARRYING OPERATION

To illustrate planning considerations for the
excavation and transport of raw materials a typical aggre-
gate quarrying system utilizing one backhoc-cxcavator,
several trucks, and one loader has been modclled. The
system comprises four basic operations:!0

- the backhow excavates aggregates which are stockpiled
prior to the initiation of any loading operation,

in addition to stockpiled aggregated, a loader and an
empty truck must be available. Simultaneous avail-
ability of all three of these elements permits the
loading operation to begin,

once loaded, a truck transports aggregates from the
excavation site to the plant site where they are un-
loaded into the main feeder of the rock plant, and

the empty truck returns to the excavation site before
it will again be available for further loading.

This system was simulated for an eight-hour shift; all
operations still in progress at the end of an eight-hour
shift were terminated. A state diagram summarizing this
system is shown in Figure 12. The modular network is shown
in Figure 13.

The nodal representation of this system is shown in
Figure 14.

£ LOADER RETURI |
|
BACHI. . —] TRU UNLOAD
EACK AT _—
TATERIaL R iE MATERIAL
TRUCH RETURY
T
I'ipure 12
l N I IR
SRPG rasse prics
] u 1|2 3 4
IR

Figure 13

Figure 14

403

Simulation Significance

Several simulation runs were executed by the computer;
results showing how the efficiency of the system varies with
the number of trucks used.

Simulation permits the details of this dependence to
be explored. Figure 15, a summary of results from several
computer runs, shows how the number of trucks available
affects the tonnage hauled from pit to plant. When too few
trucks are available they become a bottleneck for the system.
Conversely, as the number of trucks increases to five or
more, the total tonnage hauled reaches an asymptotic value
of 3200 tons per shift indicating that a new bottleneck has
occurred elsewhere in the sysem.

Z

=

2 4000 7
-

5

r

— 3000
g

2 2000
=

=

1900

:

- 0 I 2 3 4 5 6

NUMBER OF “nr0CrS AVATLABLE IN SYSTEM

Figure 15

Simulation permitted the main interarrival time for
trucks reaching the aggregate plant and the mean waiting
time for truck loading and get-ready at the loading station
to be examined. Table 2 shows that with four trucks in the
system, the mean truck interarrival time is reduced to 5
minutes and the mean waiting time for truck loading and get-
ready to about 2 minutes. With five trucks in the system,
these times are improved. This improvement, however, is not
as significant as that observed when three trucks were in-
creased to four trucks.

Mean waiting time was also reduced although not signi-
ficantly. For five trucks or more in the system these times
became asymptotic to minimum values.

For this particular system four trucks are the optimal
economic choice. Although five trucks will give better
"performance” the increased output cannot offset the added
costs. Simulation greatly facilitates sensitive decisions
such as this.

Table 2

Simulation results:
number or trucks available in system

Number of
trucks

Tonnage hauled (tons) 2400 2910 3210 3120

per shift

Truck inter- p(minutes)= 5.996 4.929 4.460 4.6017
arrival time o= 3.367 1.953 2.012 2.1286
BALLINg TIMC | (minutes)= 3.034 1.834 1.471 1.5509
truck loading o = 3.190 1.547 1.515 1.6959
Material p(truck-_

stockpiled loads)~ 14 .55 0.229 0.055 0.0209
Trucks _

stand by uw= 0.045 0.206 0.763 1.7828



CONCLUSION

The library of modules (Table 1) has been developed
utilizing GERTS GQ. The development of the modular network
modelling approach is motivated by the necd for a clearly
defined interface between the practicing engineer and com-
puter readable simulation model.

The gated-queue node is a new element, developed from
GERTS III Q. It was needed in order to model complex
queueing situations, such as a single-queue multiserver
process. The result, GERTS GQ, is a significant improve-
ment in accuracy and responsiveness.

BIBLIOGRAPHY

1. Pritsker, A. A. B. and Happ, W. W., "GERT: Part I -
Fundamentals," J. Ind. Eng., Vol. XVII, No. 5, 1906,
pp. 267-274.

2. Pritsker, A. A. B. and Burgess, R. R., "The GERT
Simulation Programs: GERTS 111, GERTS III Q, GERTS
IIT C, and GERTS III R." NASA/ERC Contract NAS-12-2113,

Departmental Report, Virginia Polytechnic Institute,
Dept. of Industrial Engineering, 1970.

3. Whitehouse, G. E., Systems Analysis and Design Using
Network Techniques, Prentice-Hall, Inc., Englewood
Cliffs, NJ, 1973.

4. Pritsker, A. A. B., "The Status of GERT," in H.
Lombaers (ed.), Project Planning by Network Analysis,
North-Holland Publishing Co., Amsterdam-London,
pp. 147-153, 1970.

S. Akiba, Y., Blom, N., Duran, G., and Dabaghian, L.,
“"GERTS GQ Simulator for Systems Simulations," ReEort
to NSF Grant GY-11496, School of Engineering, Califor-
nia State University, Sacramento, CA, November 1974.

6. Akiba, Y., 'Decision and Commodity Flow for Cargo
Facilities,' Proceedings, 3rd Annual Greater Los
Angeles Area Transportation Symposium, Octiber 3, 1974.

7. Dabaghian, L., Akiba, Y., and Happ, W. W., "Network
Modules to Simulate Quantized Entity Flow," Proceedings,

Joint Automatic Control Conf., Austin, TX, June 19, 1974.

8. Akiba, Y., Dabaghian, L. and Happ, W. W., "Validation
of Component and System Performance in Modular Queue-
ing Networks," Proceedings, Seventh Asilomar Confer-
ence on Circuits, Systems, and Computers, Monterey, CA,
November 1973.

9. Akiba, Y., "A Modular Technique for Synthesis of
Activily Networks: Development and Applications,"
Master'.: Thesis, School of Engineering, CSUS,
Sacramc: .0, CA, May 1975.

10. Halpin, D. W. and Happ, W. W., "Network Simulation of
Constru...ion Operations,'" Proceedings, Third Inter-
nationa! Congress on Project Planning by Network Tech-
niques, »p. 222-232, Stockholm, March 1972.

4oL



