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ABSTRACT

A large number of engineering and business systems
can be represented by Markov-Kolmogrov equations
representing their probability transition behavior.
These systems are characterized by two stochastic
processes: arrival and service processes. The steady
state behavior of these systems leads to Kolmogrov
balance equations that lead to lucid simulation
techniques.

I. INTRODUCTION

The first step in constructing a mathematical model
to represent the behavior of a stochastic system is
idealization. Idealization involves assumings, approx-
imating and throwing away necessary information to make
the model mathematically tractable and a good approx-
imation to the actual system. In many stochastic
system modelling, especially when the events of the
system occur discreetly at random times, the Markov
exponential model can be considered as the best one to
represent this system. The system events occur through
arrival and leave through service. (13). The arrivals
are assumed Poisson distributed with interoccurrent or
interarrival times having exponential distribution. The
service times are assumed to have, also, a negative
exponential distribution with different rates. Examples
of this model are congestion systems, reliability systems,
telephone exchange systems, birth and death process of
a population, traffic systems, machine service, etc.

The model is defined at any time by the probability
of the state and occurrence and service rates at that
time. The time during the change from state to another
is random with negative exponential distribution. The
probability density functions of continuous exponentially
distributed random variable X, with parameter A, is
given by:

£0 = re ™ for x 40 1.1
0 for =x <0

The corresponding distribution function of this random
variable is given by:

-Ix

F(x) = 1 for x 20

-e
0 for x <0 1.2

The mean and the variance of the exponential dis-
tribution are 1 and 1 respectively. An important
Tz

property of exponentially distributed random variable is

that of being memoryless. That is,

P{x>t; + t2 |x>t1} = P{x>t,} 1.3

for all t andt . As it was mentioned earlier, the
1 2

events occur or arrive with Poisson distribution with
rate A. Therefore the arrival process {x(t),t30} is
Poisson process with mean At and,

Plx(t_ + £) - x(t) = k)= " F0)" 1.4
[} [e] —:n—-

for x = 0,1,2, and all toand t. The exponential Markov

stochastic model can be described mathematically by a
Markov Process{x(t), t30} as follows. It will be

assumed, for the sake of applications, that the process
{x(t) A t%O} is homogeneous or stationary. That is the
probability P{x(to+ t) = V|x(to) = j} is independent of

t to< t. The random variable x(t;) at any time t; will

[=]
be called the state of the process.

The state x(t) of the process is discrete. This means
that the change from state to state occurs in jumps. Also,
it will be assumed, but not exclusively, that the state
ranges over the positive integer numbers which makes the
process {x (t) , t20} a Markov counting process. The
time duration spent by the process in any state before
moving into another state is, by the Markov property,
random variable with negative exponential distribution.
The change in the process from any state i at time s
to state j at time t, t>s, is described by the transition
probability

Pijlsie) = P{x(t) = j| x(s) = i} 1.5

which will equate Pij(s-t) due to the stationarity of the

process assumed earlier.
written as

Thus, the above equation may be

Pij(s +t) = P{x(s + t) = j|x(0) = i} 1.6

The Markov transition probability Pij(t) satisfies all t,

the following obvious conditions

P.. ()20 , Lim P _(t) =1 i=3 1.6
- ero M 0 iFj
L P..(t) =1 1.7
j B

where j ir the summation ranges over all the states of
the process which could be finite or infinite. The
condition , Lim Pij(t) = 1, implies instantaneous change

t+0

or jump is not permissible. This means that there is no
possibility of leaving the state of the process at the
moment of arrival there. The number of events occurring
in the interval [s,s + t] has Poisson's distribution with
mean At. That is, for any s and t

nedt 1

P (6) = Plx(s+t) = 3 |x(s) = i)= &'F
+J G-i) ¢

The transition probability POn(t)=P{x(t)=n|x (0) = o}

is the unconditional probability of being at state n at
time t and will be denoted by Pn(t). Pn(t) satisfies the

following condition Pn(O) =1 ifn=0 1.9
0 ifn>0
The static behavior of the transition for any state i at

time O to state j at time t + s, t O, is described by
the time-continuous Chapman-Kolmogrov equations

P.. (t + s) =E P,
ij i

where k is any intermediate state in the path of
transition from state i to state j.

k(s) ij(t), all i and j. 1.10

The process x(t) , in our model, will represent the number
of occurrences of an event in time interval (O,t). It
may, for example, be the number of people in the line in
queueing system, the number of machine failures, the
number of immigrants into a territory, and many other
examples of similar nature. If we let Zn+1 and Yn denote

the number of arrivals and services, respectively, in the
interval (t_, tn+l) then the sequence of random variables
n

{x n=0,1,2, or 0} satisfies the following relation
n

Kn+l= (Xn - Yn) * Zn+l 1.11

where (a)f = max (a,0) and Xn denotes the state of the

+
independent random variables, then, the sequence

process at time t . If {Xn 1) and {Yn} are sequences of
{Xn, n=20,1,2,...} will represent a discrete Markov

In a queueing mode X _defines the number of
If the system has

process.
customers in the system at time tn+ 0.

finite capacity k, the above relation becomes



. +
An+l=m1n‘}\, (xn+zn- yn+l) . n=0,1,2 1.12

The dynamic behavior of infinitismal transition from
time t from state i into stage j leads to the Kolmogorov
differential equations in the transition probability
P..(t).

1]

II. DYNAMIC STATE TRANSITION

The infinitismal transition scheme which represents
the dynamic discrete-state Markov process can be best
understood in the light of the change in transition
probability in very small time(%;. We will assume that
Pij(*)' to have derivative Pij for all t-0.

Also, we will assume the following two propositions.

(o) _ ()

9 = K% - Py Py v a0 2.1
XS
g =um b PP e o), ip 2.2

The above two propositions are actually characteristics of
the exponential Markov process and their proof is quite
simple. Also, as it is seen,these two propositions have
the following physical and intuitive interpretation. The
first proposition means that there will be transition out
of state i in infinitismal time. The second says that if
this transition is into state j, it will occur with

rate qij' The relation between qi and qij is given by

Z .. q4..=4. , g..

J#L ij i ii - Y 2.3

i
The above relation can be easily proved using (1.1).

Using (2.1) and (2.2) and differentiating Chapman-
Kolmogorov (5) equation with respect to each variable will
yield the following two difference differential equations,

(+)

P'.. (%) (1)
i3 =-q. 2. 4 osq P i5=0,1,2,8 2.4
j a Py = 4585k i3
e s g Wy s p M 52012 0 2.5
ij i"ij kit ik kj

The first equation for a fixed i and the second equation
for fixed j, are called forward and backward Kolmogorov
equations, respectively. The initial conditions for both
equations are given by,

Pi'(O) =1 i-=3
J 0 i#3 2.6
The forward and backward Kolmogorovequations can be
expressed, using (2.3), in the following matrix forms,
respectively,

P'(+) = P(¥) Q 2.4"

and P'(+) = Q P(t) 2-5"
The initial conditions for both equations are

P(O) =1 2.6

where P (%) is the (N+1l) x (N+1) probability transition
matrix whose ij entry is the ij-th transition probability
Pij(t), Q is the transition rate matrix whose ij entry is

the ij-th rate qij given by (2.3); i.e.,

(-qo o1 902 on
9™ - 92 AN
930 9217 % N
0= 2.7
q,. 9, 9 -q
LHO N1 N2 N J

and I is the identity matrix.

Kolmogorov equations (2.4)' and (2.5)', under initial
conditions (2.6)' , have the same solution given by,
P(t) = gt 2.8

The matrix function gt can be evaluated using method

of constituent matrices or Caley-Hamilton theorem, or may
be evaluated by the convergent exponential series,

ot = *® Qk Ei , QO =1 2.9
e k!

k=o

Kolmogorov equations, described in the above dis-
cussion, are the heart of the exponential stochastic
model. It can be clearly seen that the model is completely
defined by the transition rate matrix Q. The matrix Q,
of course, depends on the physical stochastic system
under consideration. As it has been described by (2.1)
and (2.2), this matrix represents the infinitismal
transition conditions of the system. Different stochastic
systems that are represented by the above model are given
in the next section. The emphasis will be placed there
on the birth and death model due to its wide importance
and relevance in many system simulation models.

I1I. APPLICATIONS

It has been seen in the last section that the
exponential Markov model of any physical stochastic system
is completely described by the transition rate matrix Q.
In wost applications, this matrix has simple structure
and it turns out to be a band matrix. Different appli-
cations to such a model are given in references (1,3).
One of the widest applications is the birth and death
process.

The birth and death process itself is representative
to many models such as queuing,immigration, failure of
machines, and many different applications in engineering
and applied science. The transition rate matrix entries
for the general birth and death process are given by,

A{ 4 3= i+ 1 (birth)
ui , j= i - 1 (death) 3.1
= A+ p i= 1 # 0 (no change)
i Mo g
1l , i=j=0 (O-state is absorbing)

where xiand uiare the i-th birth and death rates,

respectively.

If ui=0, then the process is pure birth process and if
besides,ui=0, Ai= i) where A is constant, then it is Yule
Process. But if Ai = X = constant and ui = 0, the process

will turn out to be the familiar Poisson process. In the
case where Ai = X and U; = U, where Aandy are appropriate

constant rates, then the birth and death process yields
the single-server exponential queuing system. The process
will yield s-server exponential queuing system if

A2
i
”i = iH 1%i<s 3.2
sH i>s



where s is the number of servers in the system. The
s-server queuing model becomes an infinite server model
when ui = iy for all i >1. 1In the case when Ai = i)

and Hi = iy , the general birth and death model will

clearly become the so-called linear birth and death
process. Besides, if Ai = id + o, where O is an
exponential rate of increase from external source such as
immigration, the process is called linear birth and death
process with immigration .

Another model which is represented by Kolmogorov
equations and which has important relevance to operational
efficiency of complex engineering systems is the system
reliability model. The forward equation for the re-
placement of failing components of unserviced system
is given by

P;((t) = -h(¢) Pk(t) + h(t) P l(t) , k>0

k-
Pé(t) = -h(+) Po(t)

where h(+t) is component hazard rate and Pk(t) is the
probability of replacement k components in the interval

(0,t ). If the system has N components and the failure
distribution of the k-th component is negative exponential
with hazard rate )i and service rate g , then the
reliability model is represented by birth and death process
where the state of the system is the number of failed
components. If we assume that at least % components

should be working for the system to be operative then the
forward Kolmogorov's equations are given by,

Palt) = —(A 4 Bp(+) = A, P {#) +u P ()

0<ka-l 3.4

frodt) -

T P(+) (+)
N-9 +1 3 2+1  + AN-E PN-Z
) ()
o B Aopo(t) P
P (0) =1
o

It may be appropriate to mention here some of the other
applications which fit the above exponential Markov model

which occur in some engineering and industrial applications.

Some examples are, electron emission from the cathod to
the anode in electron tubes, nuclear growth, telephone
traffic problems, traffic flow and pedestrian traffic
problems, airport simulations of plane arrivals and de-
partures and many, many others.

IV. STEADY STATE TRANSITION

The Markov exponential model was characterized by
Kolmogorov equations (2.4), (2.5) and (2.6) or (2.4)',
@2.5)', and (2.6)' in matrix form. It is necessary to
solve these equations to obtain the transition
probabilities Piét)' This, in most cases, is very

difficult and especially in the case when the number of

the system states is large. In many applications, we are
not interested in the dynamic transient behavior of the
system, but rather in its limiting steady state behaviors
as t + ®. In these applications, we assume under condition
of process irreducibility (1) that the limit

Li . = P, 4.1

im Plﬁt) PJ
t> o

exists and independent of the starting state i. If this

is the case, then Pij(t) converges to zero and the forward

Kolmogorov equations (2.4) become

o=-q.P, + Lq .P, j=1,2,....N 4.2
9573 kiZ‘quJ ' 3
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and in the matrix form

PQ = 0 4.3
where P is the row vector (Pl,Pz,....,PN ).
Equations (4.2) which may be written in the form,

P .
qj Pj = K7 qkj Pk 3 =1,2,... 4.4

are called the balance equations (18) since they equate
or balance the rate at which the process enters state j
with the rate at which it leaves this state. The balance
equations with

=0 Pj 1 4.5
will yield the steady state probability vector P. The
j-th entry P. of P, denotes the limiting probability that
the system iS in state j. The limiting probability vector
is all that we need to know about the system. Its
knowledge will provide us with the mean state of the
system, the mean time time that the system spends in
state j, stability of the model and all other statistics
that may describe the steady state behavior of the system.
For example, the balance equations for the general birth
and death process can be easily obtained as,
CAy+ ) By Pivl + 2,

=u. Cis
3+1 ]-le-l ij> 1.

P = WPy

Equations (4.5) and (4.6) will yield directly to the
probability Pj ;i i.e.

Pj = Ao Al...k.

j-1
..... Al
TRV g AN -1
o iy .
j=1 Biyeenes “j ), 3>1, 4.7
for N = ©. It can be easily seen, from (4.7) that the

limiting probabilities Pj exist if

o
D N SRR
5= -1 <
j=1 ”o 1 j-1 © 4.8
¥y |-|2--~|-|j
The stability condition (4.8), for single server
queue becomes
AF < 4.9
g )
j=o
or equivalently,
A<l 4.10
"]
For the s-server queuing system condition (4.8) reduces to
e 3 ? bl
AN UG S
=13t H =t si3 4.11
or equivalently,
A < 1 4.12

sy

Similar results may be obtained for examples and models
treated in section three.

V. CONCLUSION

It has been shown that many stochastic system models
may be completely represented, under some mild restrictions,
by discrete-state Markov model which was described by
Kolmogorov forward and backward equations. The model is
very flexible and in the steady state.

It is reduced to the balance equations which yield
an illustrative analytic solution for some of the special
cases treated. In the general case, analytic solutions

cannot be easily obtained and even the transition rates



may not be available and therefore simulation will be
necessary to obtain adequate results.
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