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The ability to adapt to changes in the cnvironment is
one of the most interesting aspects of animal behavior.
Neuronal plasticities of various sorts allow organisms to
reshape and reorder their behavioral repertoires in order
to survive in a changing world. Learning is a form of
plasticity that allows an animal to appreciate new relations
between its behavior and things and events in its world.
The phenomenon of learning has been widely studied at both
the behavioral and the neurophysiological levels. Many mathc-
matical and computer models have been constructed in order
to help understand the neurophysiological basis of lcarning
(1, 2, 3, 4, 5). These models show how simple training
rules enable circuits composed of neuron-like elements to
learn and remember. While many of these learning models
are based on generalized circuilt anatomies, others are
founded upon known structures of particular brain regionms.
One such model, designed by Kilmer (1), is based on the
anatomy and physiology of a part of the mammalian hippo-
campus.

The hippocampus is a region of cerebral cortex that
has been implicated in a variety of functions, many of
which require that the hippocampus learn to respond in
particular ways to its inputs (6, 7). The inputs to the
hippocampus consist of pre-processed sensory information
and motivational information, and its outputs go to motor
and motivational regions of the brain. The hippocampus
is made up of a number of subregions. One of the main out-
puts of the hippocampus stems from region CA3, which was
modeled by Kilmer (1). In Kilmer's model, circuit elements
representing cells that give rise to this output path are
trained to respond to particular input patterns. This model
shows how positive and negative feedback can be used to
shape circuit response. In order to extend this work, we
have considered a circuit model of another region of the
hippocampal complex called the dentate gyrus. The den-
tate gyrus also receives sensory and motivational informat-
ion, and its outputs go to the CA3 region. While the
dentate gyrus may serve a variety of functions in the over-
all hippocampal system, we have modeled the dentate gyrus
as an habituation circuit, following a suggestion of
McLardy (8).

Habituation is a form of plasticity that allows an
animal to ignore those things in its world that are of no
immediate consequence. Habituation is defined as a rever-
sible decrement of response to repeated stimulation, and
is displayed by organisms from mollusc to man. The revers-
ibility of habituation sets it apart from fatigue and accom-
modation. An habituated stimulus may once again evoke a res-
ponse following presentation of a novel stimulus. This
phenvmenon is known as dishabituation, and rules out sensory
and motor fatigue as the bases of the response decrement.

Habituation, like learning, has been studied at both
the behavioral and physiological levels. Several circuit
models have been designed that realize many of the detailed
properties of habituation (9, 10, 11). In these models,
each measurable attribute of a stimulus is coded in terms
of the firing of'a cell or a group of cells. Upon repeated
presentation of the stimulus, the outputs of these cells
are depressed by a buildup of inhibition or by a decrease
in synaptic efficacy or cell sensitivity. The known ana-
tomy and physiology of the dentate gyrus may be related to
these circuit models in a straightforward way to investigate
ways the dentate gyrus might display many of the properties
of habituation.

One property of habituation has not been satisfactorily
dealt with in terms of the detailed workings of a neuronal
system, however. It is known that, following habituation to
a regularly repeated stimulus, changes in stimulus duration
or interstimulus interval can bring about dishabituation
(12). There must be some mechanism, then, that codes the
temporal qualities of the stimulus, just as the other
qualities are coded. A number of temporal memory models
exist that could be applied to the problem of temporal

coding (9, 13, 14, 15), but none can be readily related to
the structurc of the dentate gyrus. Accordingly, we have
desipned a temporal sequence memory based on the anatomy of
the dentate pyrus. The hippocampal system could use such

a memory to anticipate the arrival of a regularly repeated,
short duration input, as described below.

TEMPORAL MEMORY OPERATION AND THE HIPPOCAMPUS

The temporal sequence memory presented here is so
designed that once it has been sufficiently exposed to a
sequence of inputs seperated by particular time intervals,
it can reproduce the sequence with proper timing if cued
by an initial portion of the sequence. The system thus
learns by rote the interstimulus intervals involved in a
given repetitive sequence. Predictions generated by the
memory may be used with match-mismatch circuits of the sort
considered by Horn (9) as a part of a habituation system.

The outputs of the temporal match-mismatch circuits,
together with the outputs of filters sensitive to other
stimulus qualities, may be used as the inputs to circuits of
the sort referred to above that embody the processes of
habituation and dishabituation and that realize the detailed
properties of habituation (see Fig. 13). If the memory is
able to anticipate an input, then, the temporal qualities
of that input can be habituated to, along with its other
qualities. Any subsequent variation in the temporal
characteristics of the habituated input will give rise to
a mismatch signal, causing dishabituation of the overall
system response. Inputs that do not repeat in a regular
pattern, or that repeat against changing background condit-
ions, give rise to continual mismatches, and eventually
cause the habituation circuitry to come to ignore the vari-
able properties of the stimulus in a process of general-
ization.

The structure of our temporal memory network reflects
the structure of the dentate gyrus. We refer the reader to
Kilmer (7) for a discussion of the anatomy of the hippo-
campus. Here we stress the fact that functionally, the
hippocampus is organized into transverse slices called
lamellae (16). Most fibers that enter or originate within
the hippocampus remain largely within such slices, display-
ing little longitudinal spread. Sensory inputs excite
granule and pyramidal cells, the main circuit elements of
the dentate gyrus and CA3, respectively. Granule cells give
rise to fibers that excite pyramidal cells in CA3. The
portion of CA3 that lies closest to the dentate gyrus is
called the endfolial or hilar region, and pyramidal cells
there will be denoted endfolial cells. These cells give
rise to fibers that spread to contact granule cells in other
lamellae (17). This anatomy is represented in the struct-
ure of the model, as described below.

In simulating this system, we have expressed the opera-
tion of a region of the brain in terms of the functioning
of a large network of simple elements acting in parallel.
We have simulated the network itself on two levels. On the
level of dynamic circuit action, each cell is represented
by a set of nonlinear differential equations. Cells are
coupled so as to generate waves of activity. Simulation
shows how the nonlinearities may be used to tailor the
waves to allow the overall system to function properly. On
the second level, finite-state automata are used to repre-
sent groups of cells. These automata are coupled so as to
generate waves, as before. On this level, however, the
interactions between waves can be more easily studied.
Simulation of the system on this level shows how such a
dynamic memory can be controlled and what mechanisms are
necessary for its proper operation.

We assume here, then, that a granule cell in the den-
tate gyrus that is excited by a system input spreads excit-
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to neighbors in its lamella, causing a wave of activity to
travel down the lamella. Details of the cell coupling and
dynamic properties used to produce waves are discussed in
section three, following presentation of the model's overall
structure in section two. Results of simulation of the
wave-producing dynamic system are also presented in section
three. Waves generated by a given input are associated with
granule cells excited by the following input to effect the
memorization process, as described in section four. 1In
section five we describe mechanisms added to the basic

model to surmount problems of interference and instability.
Finally, in sections six and seven we present a simulation
of the full model, and discuss the results of simulation.

MODEL SYSTEM STRUCTURE

Like the hippocampus, the model is made up of a number
of arrays of cells called lamellae. Each model lamella
consists of four lines of neuromimes as indicated in
Fig. 1. G-neuromimes receive the system inputs and their
outputs constitute the outputs of the lamellae. The G-
neuromimes are coupled to one another and to B-neuromimes
and E-neuromimes in their lamellae. B-neuromimes are
excited by the G's and in turn inhibit them. Patterns of
connection and connection strengths between G-neuromimes
and B-neuromimes are fixed and identical for all G's and
B's. Details of these connections are discussed in the
section on wave generation. Coupling between E's and U's
is similar to that between G's and B's, with the exception
that E's are not coupled to one another. These connections
are also fixed and identical for all E- and U-neuromimes.
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Fig. 1. Patterns of interconnections between G and B

neuromimes and E and U interneuromimes within a lamella.
Arrows indicate excitatory influence, dots indicate inhi-
bitory influence.

Connections between G's and E's are assigned with
some randomness in the model. Each E is connected to a
fixed number of G's in its lamella. These neuromimes are
chosen at random from a range of G's centered around the E
as indicated in Fig. 2(a). The strengths of these connec-
tions are fixed and are identical for all connections.
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Fig. 2. Patterns of interconnection between G and E neuro-
mimes. (a) Connections from G to E within a lamella. Dashed
lines indicate range of possible contact. (b) Connections
from E to G in other lamellae.
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Each E in turn gives rise to two lines, called Z-lines,
that run perpendicular to the lamellae, making contact

with G's as indicated in Fig. 2(b). The length of each
Z-line 1is chosen according to a specified probability
distribution, F,. G's in each lamella the Z-line passes
through are chosen for contact with fixed probability to a
maximum range on either side of the Z-line. These longitud-
inal lines are the only connections between lamellae, and
have the only variable strengths used in the model, as
discussed in section four.

GLNERATION AND PROPAGATION OF WAVES IN THE MODEL

The wave-supporting substrate of the model has a con-
figuration suggested by hippocampal physiology. Pyramidal
cells in CA3 and granule cells in the dentate gyrus receive
excitatory influences from the hippocampal input pathways
(16). These cells in turn excite a variety of interneurons
whose axons play back onto other pyramidal and granule cells.
In both regions, a type of interneuron called a basket cell
is assumed to have a profound inhibitory effect on pyramidal
and granule cells (18). Basket cells have widely branching
axonal arborizations, so excitation of a basket cell by one
pyramid or granule cell will depress the activity of
others nearby. 1In CA3, it has been shown that pyramidal
cells also excite neighboring pyramids (19). We assume
here that granule-to-granule excitation also exists in the
dentate gyrus, leading us to the circuit configuration for
A's and B's shown in Fig. 1.

The generation of single impulses in nerve cells is a
highly nonlinear process involving a buildup of excitatory
potentials in dendritic membranes and the subsequent
triggering of a propagating action potential (20). How-
ever, the rate of firing of a single cell and the average
firing level of a homogeneous population of cells may
reasonably be modeled in terms of simple dynamic equationms
(3, 21, 22). Accordingly, each of our model cells obeys a
first-order differential equation, the value of which may
represent the firing rate of a single neuromn, or the number
of active cells in a population of neurons. We refer to
the model cel ; below in terms of output pulse rates of
single cells.

We assume that the output pulse rate of a cell is given
by the difference between the total excitatory influence on
the cell and some function of the total inhibitory influence
on the cell. An initial set of equations for the operation
of the G and B cells under these assumptions is:
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where G, represents the total excitatory influence on the
3 G-cell,

B represents the B-cell output,

and T are connection thresholds,

k

W and v, are connection weights,

m
Ij is the external input to the G-cell,
Gg is the output pulse rate of the G-cell,
M; x>M
Mr%J =X ;m<x<M
m
m;x<m,
for m <0 <M, and

+
LJ is x if x > 0 and is zero otherwise.

Note that the output rate of the G-cell is constrained to
lie between a maximum value greater than zero and a

minimum less than zero. The maximum reflects the fact that
nerve cells cannot fire more rapidly than some maximum rate.
The minimum is set to a value less than zero under the
assumption that the zero level in the model represents a
nonzero spontaneous firing rate in the actual nerve cells.
Then the minimum value in the model corresponds to a firing



rate of zero in the actual cells.

Each G and B cell is driven through weighted threshold
connections by the output rates of neighboring cells. That
is, neither is influenced by any neighbor to which it is
connected until that neighbor begins to fire above a spec-
ified rate. The influence of the neighbor is weighted by
a constant associated with the connection. Note that
neighbors firing below threshold rates and at rates below
the spontaneous level do not lead to depression of the
firing of the cell. Hence cells that are firing below the
spontaneous rate are effectively uncoupled from the system.
We assume then that information processing and maintenance
of a background spontaneous firing rate (the system equi-
librium state) are two separable factors in our system
dynamics.

A simulation of this system of equations has been
carried out using an integration routine written in
FORTRAN. The propagating waves illustrated in Fig. 4 yere
generated with the connection template shown in Fig. 1 and
the associated weight and threshold profiles of Fig. 3.
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Fig. 3. Initial weight and threshold profiles. Ordinates
indicate number of neighbor relative to cell. (a) G to G

weights. (b) G to B weights. (¢) G to G thresholds. (d) G

to B thresholds.
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Fig. 4. Wave produced with profiles of Fig. 3. Dashed

lines indicate progression of wave.

All cell values were set initially to zero, representing an
undisturbed system displaying spontaneous firing. Following
external stimulation at the position indicated by the arrow
in Fig. 4, each sufficiently excited G-neuromime stimulated
neighboring G's according to the G-G weight and threshold
profiles and inhibited a wider range of G's according to the
G-B profiles. The indicated weight and threshold settings
allow the excitation of each G to build to a high enough
level to excite further G's before being countered by a
heavy and long-lasting inhibition arising from the central
weight and threshold of the G-B profile. This central
connection corresponds to a strong self-inhibition activated
when the cell fires enough.

A wave may travel to the ends of the lamella and die
there, or may die before reaching the ends. 1In the first
case, the wave propagates with a constant shape until the
end of the lamella is reached. At that point, there are
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no further G cells to excite and the wave dies. Because of
the connection thresholds, the zero level of activity is
stable, so no further activity arises in the lamella until a
new input is presented. In the second case, inhibition
builds that eventually stops the wave. Here, the wave's
amplitude decays as it travels until further propagation is
impossible. The distance traveled depends on the strength
of inhibition and on the relative B time constant. The

full memory model to be described below uses waves that die

after going a short distance rather than those that propagate
unchanged.

The strong self-inhibition employed above results in a
circuit that for long periods after passage of a wave is
unable to support another wave. Too long a period of
depression decreases the chance that new inputs can enter
the lamella, as will be described in section four, so means
of shortening the depression time were sought. Two ways to
shorten the depression time are to decrease the level of
inhibition needed to produce waves and to decrease the in-
hibition time constant. 1In order to decrease inhibition
levels, an amplitude-dependent nonlinearity is used to
allow low levels of inhibition to have a greater effect on
the circuit. The amplitude-dependent gain appears in the
computation of the output rate as follows:
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where G,, G,, and Bj are as before,
P is a bias term set close to unity,
W is a weight set greater than one, and

F is the logistic function given by

1
F(x) =
1+ ce-d(x-xo)
and illustrated in Fig. 5.
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Fig. 5. Logistic function.

For small values of inhibition, G's output rate is
approximately the difference between excitation and inhibi-
tion as before. As the level of inhibition rises, however,
its weighting in the output rate calculation increases from
unity to 1 + W. In this way low levels of inhibition may
have a great effect on the system. The lower values of
inhibition decay to zero sooner, leaving the system
depressed for a shorter operiod of time.

A smaller inhibition time constant may be used if
different weight and threshold profiles are employed,
corresponding to a different way of producing waves.

With the modified weight profiles, self-inhibition

begins to build when the G-cell reaches lower levels of
firing, due to the smaller self-inhibitory connection thres-

hold, but builds more slowly than before due to the decreased
weight involved. 1In the previous scheme, waves were produced
by allowing cells to build to large firing rates and then
depressing them with strong inhibition. In order to produce
waves, this inhibition had to last long enough for the
excitatory levels to decay below the thresholds necessary for
coupling to other cells. Shorter-lasting or weaker inhibi-
tion allowed the cells to remain for long periods of time

at a level just above the self-inhibition threshold. 1In



order to produce the wave profiles of Fig. 4, in which each

cell fires for a short time and then is silenced, the inhi- Lomella | -~
bition time constant had to be great enough to keep the cell £y
depressed until the wave passed out of its neighborhood and
its excitatory level decayed considerably. In the new
scheme, however, inhibitionm is applied more slowly, and
instead of depressing the cell immediately, pulls the out-
put rate down gradually. Hence inhibitory levels need not
remain large for too long, and the inhibition time constant
may be shortened. Figure 6 shows waves generated by this
scheme. These waves leave the circuit depressed for

shorter periods of time, and so are better suited for use in
the overall model. Again, these waves may travel to the
ends of the lamellae, or may die due to inhibitory buildup
before reaching the ends. <«——Transverse >
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Fig. 7. Simple association of inputs. Open circles repre-
sent G neuromimes excited by present input; hatched
circles represent E neuromimes excited by last input's Gs.

th
with the mth G-cell in the k . lamella,
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2 Tz is tihe connection time constant,
¢ 0
& ka is the firing rate of the G-cell,
Efj is the firing rate of the E-cell, and

rxl+ is equal to x if x > 0, and is zero otherwise.

Connections are modified according to the Hebb modifi-
cation rule (5). A connection is strengthened if the E and
Fig. 6 . Waves produced with modified profiles. G it links are simultaneously active above the thresholds
6c and 8, while an unused connection decays to zero at a
rate determined by T;. Strengths of the longitudinal lines

Cell position

The equations employed here are similar to those used are initially zero, with some exceptions discussed below.
by Ratliff (23) to investigate the dynamics of lateral
inhibition, and by Grossberg (13) to explore learning and The thresholds in the modification rule allow the
memory in a number of circuit anatomies. In neither case system to discriminate inputs that are to be learned from
were these equations employed to produce traveling waves of the waves and from the effects of noise. A system input is
activity. The wave generating mechanism in this one-dimen- assumed to excite a G-cell to a firing level much greater
sional system is similar to the ones studied by Beurle (24) than the maximum reached during passage of a wava. The
anr:I by Wilson and Cowan (22). In each case, the wave peak value of 8; 1is set just below this input excitation level
arises and propagates due to positive feedback between to prevent associations from forming between G's excited by
excitatory elements. In Beurle's studies this feedback is waves. Similarly, 6p is set just below the level of
contro]..led by the refractory properties of the model cells, excitation reached by an E-cell when a wave passes by it, so
while in Wilson and Cowan's model, as in the one presented that inputs are associated only with a few E's recently
here, inhibitory buildup stops runaway positive feedback. excited by waves.
As stated above, the activity level of a given cell in our
model may represent the average firing rate of a nerve Thus if an E excited by one of the first input's G's
cel:!. or the number of cells in a coupled population that are gives rise to a longitudinal line that makes contact with
firing at a given moment. The nonlinear inhibition used one of the G's excited by the second input, that connection
here may z:epxjefent a nonlinearity in the way single cells is strengthened according to the learning rule above. Later
r'eact to inhibition, or the action of a population of presentation of the first input will again excite that E, in
inhibitory cells with a distribution of thresholds. turn tending to activate the second input's G via the
strengthened connection. If the system is properly
MEMORY STORAGE AND RECALL IN THE MODEL. constructed, as discussed below, each of the second input's
. G's will with high probability be connected in this way to
The model is designed to learn and recall both the sets at least one of the first input's G's. Repeated presentation
of cells stimulated by system inputs and the time intervals of the sequence will result in connections strong enough to
betwe?n %nputs. It performs this recall by a process of excite the G's to the input level of excitation. Presenta-
association chaining, in which each input or evoked memory tion of the first input will then cause immediate activation
of an input stimulates (after the proper time interval) the of the second input's G's, effecting recall of the sequence.

' N
set of G's normally stimv:llated by the mext input of the This chaining process may then continue with the association
sequence. This set of G's then stimulates the set associated between the second and third inputs, and so on
with the next input, continuing the process of recall. ’ )

If the next input does not occur immediately, a trace of

) This process is in?icatgd in Fig. 7 for the'case in the first input must be held in the system long enough to
which the second input immediately follows the first. The form associations as described above, and to code the inter-
model mU§t form associations such that future presentation val between inputs. Input storage and interval coding are
of the f1rst'inp?t will.cause imme?iat? stimulation of the accomplished through the wave action of the G's. Each over-
seco?d input's G's. ?h}s associat10n|1s handled via the all input excites a few G's throughout the system, giving
1ong1tudi?al lines arising from the E's. The strength of rise to waves moving in the associated lamellae. These
each longitudinal connection is modeled as a first-order waves excite E's as they go, so that an input's G's may be
differential equation as assoclated with waves generated by the previous input,

dzkm r effecting both storage and interval coding.
ij _ _,km 0 PN Ea ) +
TZTEEJ— Zij + (ka(t) 6g) riEij(t) - eEiT This process is illustrated in Fig. 8. A wave generated
: . by the first input at time Tg in lamella 4 moves along the
where Zi? connects the j  E-cell in the 1™ tamelila lamella, as indicated by the cross-hatched rectangle. Before



dieing, the wave will move a distance determined by the
inhibitory parameters. In order to handle time intcrvals
longer than those obtainable with a wave moving along a
single lamella, some of the longitudinal comnections arc
permanently strengthened initially so that a wave activating
such a connection may generate a wave in another lamella.
The second wave may continue after the first has dicd, and
may generate more waves. A series of such wave generations
is indicated by the dotted lines in Fig. 3 while arrows
show the directions of wave motion along lamellae. At
time Tg + D a wave generated in this way is at the
position shown in lamella 1 when a new input excites a
G-neuromime in lamella 2, as indicated by the cross-

hatched square. If a longitudinal connection cxists be-
tween an E excited by the wave at that time and the G
excited by the new input, that connection is strengthened
according to the system's learning rule. Such a connection
is indicated by the dashed line in Fig. 8.
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Fig. 8. Association of inputs and waves.

Now if at some later time the first input is again
presented to the system, a wave will be generated at the
same place in lamella 4. If this wave causes the same
sequence of waves to be generated as before, after an
interval of length D, the expected time between the two
inputs, a wave will activate the learned longitudinal
connection, exciting one of the second input's G's. If
each of the second input's G's is associated in this way
with at least one wave stemming from the first input, pre-
sentation of the first input will cause the activation of
the second input's G's after about D seconds. This process
may then continue, effecting recall of the sequence.

SYSTEM DESIGN CONSTRAINTS

The association system described above can fail in
five main ways. The first set of problems concerns the
representation of inputs using patterns of moving waves.
If the waves all die, or the pattern falls into a cycle,
information is lost and proper association becomes impos-—
sible. Interference between the wave pattern and the inputs
to the network is the second problem. Cells that lie in
the troughs of waves are inhibited, so inputs cannot excite
them enough for associations to form. A third difficulty
concerns the probability of association. If the system is
not properly designed, the probability that a wave can
become associated with a given input will be too small for
reliable operation. The fourth class of problems concerns
interference between wave patterns generated by successive
inputs. Finally, the fifth problem arises from the effects
of changes in the system's structure brought about by learn-
ing. Each of these problems is treated below. In some
cases, proper setting of system parameters can alleviate
the difficulty. Other problems require that further
mechanisms be added to the model

Pattern Persistance and Cycling

The first problem arises because all the waves gen-
erated by a given input may die out before the next input
arrives.,

This will happen if there are too few opportunities
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for waves to generate others in other lamellae. Simulations
indicate that waves generally persist indefinitely in
systems with more than a few prestrengthened connections
from each lamella to the others. Second, a given set of
waves may fall into a cyclic pattern of movement through
the network, thus losing the ability to represent the exact
interval between inputs. Simulation again shows that in
systems with more than a few strong connections between
lamellae, wave interactions are complex enough to preclude
this possibility. These difficulties, then, will seldom
arise in systems with enough prestrenthened connections
between lamellae.

Trough Interfercnce and Association

The second set of problems concerns the interference
between a wave pattern and an input, and the probability
that all of an input's G's become associated with waves.
These two problems are linked through their dependence on
the number of waves in the system. First, the input may
stimulate a cell that lies in the trough of a wave. Such a
cell is inhibited and cannot reach a firing level that
allows it to become associated with other waves or to gen-
erate a wave itself. That part of the input, then, cannot
enter the system and is unavailable for association with
other inputs. Second, a stimulated cell may not become
associated with any wave in the system. This will occur
if there are too few waves or if there are too few long-
itudinal connections available for association. Formulas
dealing with these two sources of failure are derived in the
appendix. There, Table 4 shows the result of applying the
formulas to a system with parameters given in Table 3, in
which waves and stimulated cells are distributed at random.
It may be seen that full input entry and full association in
such a system are possible only when the numbers of waves
and stimulated cells are kept quite low with respect to the
total number of cells.

The number of waves present in the system depends on
the number of cells initially stimulated and on the number
of prestrengthened longitudinal connections between lamellae.
With too many such connections, too many waves are spawned
and input entry becomes a problem. With too few connec-
tions, however, the wave pattern may die or fall into a
cycle, as discussed previously. Simulation shows that
systems with enough prestrengthened connections to avoid
cycling and pattern extinction generate far too many waves
to ensure that none of an input's G's is inhibited. Further,
the number of waves exhibits oscillations, as shown in Fig.
9 , making the system at times able to accept inputs and
unable at other times. Accordingly, means were sought to
hold the number of waves at a constant low level, while
still avoiding pattern extinction and cycling.

Fig. 9. Plot of number of waves produced in uncontrolled

system as a function of time.

The overall number of waves in the network can be
controlled through regulation of wave death. Recall that
waves are assumed to travel a certain distance (called the
propagation distance), then die due to inhibitory buildup.
A feedback mechanism was added to control the rumber of
waves by changing this distance. The propagation distance



may be the same at all points in the system, corresponding
to an overall setting of inhibitory parameters, or may
vary locally, corresponding to local parameter setting.
In either case, when the number of waves in the system is
small, the propagation distance is made large. This
insures that waves will travel far enough to generate
other waves before dicing, thus keeping the overall wave
pattern from dieing. As the number of waves grows, the
propagation distance is decreased to keep waves from
generating too many others. In the case of global pro-
pagation distance variation, the propagation distance at
each point i1s adjusted according to the total number of
waves in the system. With local variation, the distance
is set at each point according to the number of waves
present in an area about that point.

ISP

Fig. 10- Plot of number of waves produced in controlled
system as a function of time.

Fig. 10 illustrates the result of applying global
propagation distance variation to a system with the same
parameters as those used in Fig. 9. The number of waves
is considerably reduced and is more constant than before.
Similar results are obtained using local variation.

Local variation has the added advantage that waves are

able to spread more evenly through the network, leading to
increased local probabilities of association. This method
of propagation distance variation thus allows the number of
waves to be controlled to satisfy the input entry and
association constraints and to keep the wave pattern

from dieing entirely or falling into a short cycle.

Inter-sequence Interference

Another cause of difficulty is the interference
between wave patterns generated by different inputs or by
successive presentations of the same input. As an example,
consider the sequence formed by regular repetition of a sin-
gle input, and suppose that there are already waves in the
system when this input is first presented. These waves will
interact with those generated by the new input, so that the
pattern that exists when the input is presented the second
time may not be the same as the initial wave pattern.
Because of this difference, the third presentation of the
input is likely to become associated with still another
pattern, and so on. This difficulty stems from the
instability of the wave patterns, which is such that two
patterns that differ only slightly give rise over time to
patterns that are more and more different. Because of this
instability, it is possible that a repeated input will not
generate the same wave pattern twice over very many
repetitions, and hence that no strong connections will form
in a short time. The network would thus have stored a
large number of memories of this input and would take a
prohibitively long time to train. Even if a short sequence
of patterns were formed, if the input was presented with a
different initial pattern during recall, the learned
sequence of patterns might not arise again, leading to a
recall failure.

The first mechanism added to combat this interference
problem is one that inhibits all waves when a peak of
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maximum activity is detected anywhere in the system. This
corresponds to a strong blanket inhibition applied when an
input is presented or when a strong association is recalled.
It's assumed that the strong peaks of activity are able to
survive this inhibition and to generate new waves of
activity. With the wave-killing mechanism in operation,
interference effects are limited to two forms. First

are the effects of inhibitory troughs left behind by waves
killed when the input was presented. Second is the effect
of lingering longitudinal connection inhibition.

Wave troughs give rise to the input entry problem, as
discussed earlier. Troughs left after waves are killed
also block the propagation of waves generated by new
peaks of activity. The effects of these forms of inter-
ference may be minimized by use of the proper numbers of
waves. Longitudinal connection inhibition left after the
wave pattern is killed can affect the development of the
new pattern by blocking wave generation. As above, the
instability of the wave patterns is such that further pat-
terns generated without the waves whose generation is blocked
will differ from patterns generated with those waves.
Because of the differences, associations will not readily
form and recall may be impossible. A way to obviate this
difficulty is to assume that E's have a maximal inhibitory
level, and to set all E's to this level when the wave
killing mechanism is activated. This corresponds to a
saturating inhibitory input applied at that time to all E's.
This input effectively eradicates all traces of the E-
inhibition due to the previous pattern, allowing the new
pattern to develop with interference due only to the wave
troughs. The two mechanisms of wave killing and E inhibi-
tion input and saturation can be used to minimize the
effects of interference between wave patterns due to
successive inputs.

Interference Effects of Learning

The final difficulty lies in the effects of changes in
the system's structure brought about by learning. Because
waves travel throughout the system between input presenta-
tions, a longitudinal line that has been strengthened
through learning is likely to be activated at times when it
should not be. Activation of a strong enough connection at
the wrong time will cause a wave to arise in the system at a
point in the development of the wave pattern where none had
been before. Such extra waves will alter the development of
the pattern, making proper association and recall impossible.

A way to ensure that longitudinal lines strengthened
through learning are activated only at the proper times is to
allow E activation only when a particular pattern of waves
exists in the network. In this scheme, an E that gives rise
to no strengthened connections, that is, one that has never
taken part in association or that has forgotten any
associations ever made, may be activated by a single wave
that goes by its position, as before. When an E takes part
in association, however, that E learns the pattern of waves
in an area around its position in the network. Thereafter,
the E can be activated only when the wave pattern in the
network matches its stored pattern. If the stored pattern is
composed of enough waves, it is unlikely to occur at any but
the correct time.

This mechanism requires a change in the way the E's are
activated. Each E must have strong connections from G's in
its lamella, and weak comnections from G's in other lamellae.
All of these connections must be trainable, such that when a
longitudinal line stemming from the E is strengthened, any
connection to the E from a G active at or above the wave
propagation level is also made strong. At the same time, the
E's threshold of activation must increase, so that the entire
set of strengthened connections must be excited to activate
the E. 1In this way, a particular wave pattern is stored in

the connections to the E from G's in its own and neighboring
lamellae.

. ?hese mechanisms added to the basic model, then,
minimize the effects of the problems arising from fluctua-
tions in the number of waves in the network and from the

instability of the wave patterns. The number of waves must
be kept small enough to allow inputs to enter the system



freely, but large enough to allow proper association and

to keep the wave pattern from dieing or cycling. The
number of waves is controlled through feedback that de-
creases the wave propagation distance as the number of
waves increases. Pattern instability gives rise to
problems of interference between patterns generated by
successive inputs and to disturbances due to learning it-
self. Interference problems are minimized using a wave
inhibition mechanism and a strong longitudinal line
inhibition, both of which operate when an input is presented
to the network. Pattern disruption due to improper activa-
tion of longitudinal lines strengthened through learning

1s prevented by allowing longitudinal lines to be activated
only when specific patterns of waves are present in the
system. These mechanisms are related to changes in the
operation of the basic model, and may be interpreted in
terms of the action of particular excitatory and inhibitory
mechanisms in the hippocampal system. The means of
simulating this system, and results of simulation, are
discussed below.

SYSTEM SIMULATION

The differential equation formulation of the model,
described in section two, has the disadvantages of being
difficult to control and expensive to simulate. It is
difficult to know in advance what detailed characteristics
the wave generating mechanism must have so that the overall
system can function properly. Much work would be needed to
find ways to realize a given set of desired characteristics
in turns of the dynamic equations. Furthermore, a large
system of such equations can be simulated only at consider-
able expense. In order to simplify the simulation and to
make the system easier to control, simulation of the full
model was carried out using cells modeled as pairs of finite-
state automata, rather than as differential equations.

Each simulated cell consists of a wave-generation
portion, representing the action of the G and B cells, and
a longitudinal line activation portion that represents the
E and U cells. The operation of each cell's wave-genera-
tion automaton reflects the generation of wave activity
in the differential equation form of the model. These
automata are much more easily controlled than the dif-
ferential equations, however, and may easily be designed to
have desired wave propagation characteristics. In this
formulation, the entire wave peak is represented by a
single cell in a specified state. Each cell therefore
represents a number of cells in the differential equation
formulation, making this simulation more economical.
Similarly, all of the E's activated by a wave peak at a
given position in the system are now modeled in the single
longitudinal-activation automaton associated with the cell
at that position. The structures of these automata are
described below.

The Wave-Generating Automaton

The wave-generating automaton of each cell is shown
in Fig. 11. Each state is numbered, and larger numbers
represent higher levels of firing in the differential
equation formulation. State Q is the resting state, in
which a cell remains if undisturbed and to which it returns
following perturbation. The highest state, I, represents
the level of activation reached when a system input excites
a quiescent cell. States W and T are the wave propagation
and maximal trough states, respectively, representing the
level reached as a wave peak passes the cell and the level
of maximal inhibition following the peak. States between
the trough state and the quiescent state are trough
recovery states, through which a cell goes to quiescent
following passage of a wave. The states between the
quiescent state and the wave state are states of subacti-
vation to which a cell is sent by small inputs. Finally,
the states between the wave state and the state of maximal
activation are superactivation states representing levels
great enough to generate waves but smaller than the state
to which a cell is sent by a system input.
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Each cell has three sources of input. These inputs
are wave-activation inputs from neighboring cells in the

same lamella, system inputs, and longitudinal-activation

Fig. 11.
—+—+—+1indicates action with no input,
wave input from neighbors,

Structure of wave-generating automaton.

— — —action of
action of input applied
to non-quiescent cell. Multiple arrows indicate that state
entered depends on size of input.

inputs from cells in other lamellae. If a cell is quiescent,
that is, if the cell's wave-generating automaton is in
state Q, a system input to the cell moves it to state I.
From I, the cell goes in one time-step to cell W, the wave
state. From state W the cell goes to the maximal trough
state, T, at the next time-step, regardless of further
inputs. This corresponds to a strong inhibition triggered
by the cell's recent activity. If the cell receives no
further inputs it moves one state at a time from T to the
quiescent state. Any input to the cell while it is in one
of the trough states causes it to go back to T again,
representing the effect of further inhibition.

In order to propagate waves, each cell receives inputs
from the two nearest neighbors in its lamella. A quiescent
cell enters the wave state at a given time when one of its
neighbors was in the wave state or greater at the time
before. The cell next enters the lowest trough state, as
above. In this way, a wave moves through a quiescent
region represented by a cell in the wave state followed by
cells in the trough states. The single cell in the wave
state represents the entire wave peak in the differential
equation form of the model. A cell in any trough state is
sent to the lowest trough state at the next time-step if
one of its neighbors is in the wave state or greater.

Thus when two waves collide they annihilate one another,
leaving behind only an inhibited region that recovers to
quiescence. This action reflects the behavior of colliding
waves in the dynamic formulation of the model.

The third source of inputs to a cell is activity
communicated over the longitudinal lines from cells in
other lamellae. The activity level of a given longitudinal
line is an integer calculated in a manner described below.
The activity levels of all longitudinal lines to a given
cell are summed at each time-step, together with the
external input to the cell, to arrive at the total
extrinsic input to the cell at that time. If a cell is in
any state other than the quiescent state or a preactivation
state when it receives a nonzero extrinsic input, it is
sent to the lowest trough state at the next time step.

This corresponds to a strong inhibition activated by the
cell's recent activity and reinforced by further inputs to
the cell. A small input to a quiescent cell will set the
cell to a subactivation state, from which it goes to
quiescence 1if it receives no further inputs. Larger inputs
set the cell to the wave state or to a superactivation
state. The superactivation states decay to the wave

state in one step with no further inputs. An input to a
cell in a superactivated state sends it to the lowest
trough state at the next time. A strong enough total input
can send a quiescent cell to the maximal activation state.
In this way, the activation of longitudinal lines can result
in the generation of new waves and strong peaks of activity
in the system.



The Longitudinal-Activation Automaton

A longitudinal line is activated as a result of the
action of both portions of the cell that gives rise to the
line. The structure of the longitudinal-activation
automaton , denoted LA, is shown in Fig. 12. The LA
automaton has a quiescent state, Q, an activated state, A,
and a set of trough states, T;y. Each LA automaton re-
ceives an activating input from the wave-generating automa-
ton in its own cell, and inhibiting inputs from the LA
automata associated with neighboring cells in its own
lamella. Like the E's in the dynamic form of the model, an
LA automaton with no preferred wave pattern can be acti-
vated by a wave that passes by its position in the lamella.
The LA automaton is inhibited following its own firing or
the firing of neighboring LA automata.

Y

T, HA Toy B Ty R Q0 beex A
Fig. 12. Structure of the longitudinal-activation auto-

maton. +—+—+ indicates action with no input, - - - — in-
dicates activating input, action of inhibitory input
from neighbors, ————action of self-inhibition. Multiple
arrows indicate state entered depends on size of input.

To illustrate LA activation, first consider a cell
that has no preferred activation pattern, that is, one that
has not recently taken part in an association. If the
wave-generating portion of that cell is at or above the
wave state, and the cell's LA automaton is not in an
inhibited state, then the LA automaton is sent to the act-
ivated state and the longitudinal lines stemming from the
cell are activated. At the same time, the LA automata of
neighboring cells receive inhibitory inputs depending on
their distances from the cell whose lines became active.
Inhibitory inputs are additive, and the greater the total
inhibitory input at a given time, the lower the inhibition
state to which the LA automaton is sent at the next time.
If left unperturbed, the LA automaton recovers one state
at a time to quiescence. Note that an inhibited LA
automaton can't activate its longitudinal lines or produce
inhibition in other LA automata. In this way, a wave of
activity alternately activates and inhibits LA automata as
it travels along its lamella. This sequence of events is
the same for cells with preferred wave patterns, except
that activation can occur only if the automaton is
quiescent and if the proper wave pattern exists in the
network.

The level of activity transmitted from one wave-
generating automaton to another through an activated
longitudinal line depends on the state of the activating
wave-generating automaton and on a weight value associated
with the connection between the two automata. In the
dynamic form of the model, these weights conform to
differential equations.
equations with values that are increased according to the
learning rule presented in section two, and that fall to
zero otherwise. Note, however, that the prestrengthened
connections that allow a wave in one lamella to generate
waves in others have non-zero values that are fixed for the
life of the network. The input to a cell in another lamella
due to an activated longitudinal connection is simply the
connection weight multiplied by the level above quiescence

Here, they are modeled as difference
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of the activating wave-generating automaton. Recall that
all such inputs are summed at the receiving cell to deter-

mine its state at the next time step. So a wave in one
lamella that activates a strong-enough longitudinal con-
nection can send a cell in another lamella to its highest
state, while somewhat weaker connections allow waves to
generate other waves in different parts of the system.

This formulation of the model in terms of automata is
an abstraction from the dynamic form that is designed to
be easier to control and less costly to simulate. Enough
of the operation of the differential equations has been
embodied in the functioning of the automata, however, that
results obtained with this form of the model can also be
achieved using the dynamic system form. Results of
simulating the automaton form of the full model are
described below.

SIMULATION RESUT.TS

A simulation of the system in the automaton form
described above was carried out to investigate the effects
of interference and to determine the network's memory
capacity. Two networks were created that differed in the
details of their structure and in their wave control
parameters. In order to ensure that associlations were made
properly and that recall errors were minimized, two
further constraints were imposed on the operation of these
networks. First, when an input entered the system, the
network was searched to find at least two cells active at
or above the wave propagation level at the time before
that did not already give rise to strengthened connectionms.
These cells were then connected to the cell excited by the
input, and the connections were given non-zero values.

At the same time, the wave pattern about each of the cells
chosen for connection was searched until more than a fixed
minimum number of waves were found. The positions of these
waves were then recorded to act as the activating config-
urations for the cells chosen for association.

The first condition ensured that if there were any free
cells activated by waves when an input entered the system,
then the input would be associated with at least one wave in
the network. This corresponds to a network in which each E
gives rise to a large number of longitudinal lines ready for
association. The second condition ensured that the activat-
ing wave configurations were large enough to be unique in
the course of development of a wave pattern. The first
condition may be relaxed to allow associations to form only
with some probability. Likewise, the second condition may
be changed by allowing a fixed-area search for waves to use
in forming the activating configurations. Under the relaxed
conditions, however, association failure is possible, and
activating configurations too small to be unique may be
formed. These sources of error were eliminated here in
order to investigate memory capacity and the effects of
errors due to interference.

Table 1 lists the parameters of the two simulated
networks. In each case prestrengthened longitudinal con-
nections were chosen according to an exponential
probability distribution. In these simulations, the
values of these and all other strengthened longitudinal
connections did not decay, so that memory capacity could be
evaluated. Connection strengthening parameters were
chosen such that four occurrences of strengthening were
required to make a connection strong enough to be able to
generate a peak of maximal activity. Each system input
consisted of two cells chosen from all cells of the network
according to a uniform distribution. Input sequences were
composed of two inputs repeated at fixed intervals chosen
with uniform probability from a range of between thirty and
fifty time steps.

Wave propagation distance was set according to the
equation below:

D = max[D ., D -ay - |—N/az‘|]

n max

where D is wave propagation distance at a given point in the



network,Pzw is the probability that a longitudinal connection
is selected for prestrengthening. Other parameters as named
in appendix and below.

Network
Number L NC R L Dmax Dmin g1 %2 Pz Pzw
A 9 59 20 4 25 2 12 4 40,0045
B 9 59 30 6 25 4 6 2 4 .0045
Table 1. Network Parameters
Dmin and Dmax are the minimum and maximum allowable

propagation distances,

N is the number of waves in a rectangular region
centered about the point in question, R cells wide
and L lamellae deep, as indicated in Table 1.

al,a2 are constants, and

ﬁﬂ denotes the largest integer less than or equal to

m.

With this rule, the wave propagation distance decreased in
steps of size a; for each increase in N of size a3. In
network A, wave control was established on the basis of
the number of waves in a region about each cell that is
smaller than the region used in network B. In B, the
distance was decreased gradually as the number of waves
increased, while in A the decrease was more abrupt due to
the larger values of a; and a;. Wave control was better
in A than in B, leading to a more nearly constant number
of waves in A. This difference in the wave control effects
is reflected in the networks storage and recall success
rates, as described below.

Both networks were trained as follows. At the start
of each trairing session, four inputs were chosen to pre-
sent to the network. Two of the inputs were to form the
sequence to be learned and two were to act as ''temporal
context” during learning and recall. The first context
input was presented to the network, and the wave pattern
due to that input was allowed to develop. After a time,
the first input of the sequence to be learned was pre-
sented, followed at the appropriate time by the second
input, and then again by the first. This sequence was
repeated several times to allow strong associations to
form. To test the network's ability to recall the
sequence, all waves were then erased from the system and
the second context input was presented. As before, the
pattern due to this input was allowed to develop for a
time and then the newly-learned sequence was presented
twice. If the network had learned the new sequence
properly, and if interference problems did not occur, the
network would continue to regenerate the sequence following
cueing. After a complete training session, successful or
not, the network was saved to be used in further training.
In this way, the effects of storing many sequences in a
single network could be evaluated.

Network training was stopped when errors occurred in
three successive sequences. These errors could be fail-
ures of association or interference from previously stored
sequences. After the networks were trained to capacity
according to this criterion, each was tested for recall
of its stored sequences in order to test for interference
between stored sequences. In this testing, the context
input was presented as in learning, and the sequence to be
recalled was presented twice. As before, successful recall
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meant that the network would continue to regenerate the
sequence after cueing was stopped. As in training, recall
could fail due to lack of proper associations or to inter-
ference effects.

No. No. No. - No. No.
Network Jump Assoc. Seq. Interference Assoc. Success
Number Conn. Conn. Stored Failures Failures Rate
A 110 262 23 H 2 702
8 130 235 24 s 4 627

Table 2, Results of Simulation.

Results of these simulations are shown in Table 2.
Approximately the same number of sequences were stored in
each of the two networks, and each formed about the same
number of strong associations and wave-jump connections. In
most cases, recall was established after one or two presen-
tations of the inputs, that is, after about one presentation
of the entire sequence. In each network, failures
occurred due to context interference (interference from the
pattern of waves generated by the previous input), stemming
in each case from a context failure during learning.
Similarly, association failures during training gave rise to
recall failures.

Interference between stored sequences also occurred in
each network. In network A, three sequences composed of
similar inputs interfered with each other, leading to a
recall composed of parts of all three when any was used as a
cue. Two other traces in network A interfered with one
another. Two pairs of sequences in network B interfered with
one another. 1In one case, a sequence disrupted the recall
of another, but was not itself disturbed. In the second
case, a sequence that was not fully stored due to an
association failure disrupted recall of another sequence.

In no case did the wave pattern cycle between input
presentations. The wave pattern died entirely in only one
case. The cause of death was blockage of the new input's
waves by the troughs left behind by the previous pattern.

Counting all forms of failure, network A had a success
rate of 70%, while B's success rate was 62%. Success rate
is measured as the percentage, among all sequences presented
to the network before the final three failures, in which
there was proper storage and recall. Network A was more
successful than B because wave control was better inm A.
Failures in B often occurred because there were too few or
too many waves in the system. The control in A was such
that there was more often the proper number of waves to
allow association without blocking the inputs.

If failures due to interference from stored sequences
are not included, the success rates are 85% and 687%,
respectively. Mechanisms may be added that diminish the
effects of stored-trace interference by actively erasing
the older sequence's connections when interference occurs,
Such mechanisms would then increase the success rate of the
network, at the expense of the loss of older memories.

Association failures occur when an input enters the
system at a time when all waves are at positions that
already give rise to strengthened longitudinal connections.
This source of error can be minimized by changes in system
architecture or by allowing the network to store only up to
about half its expected capacity. Passive forgetting due to
decay of connection weights and spontaneous loss of stored
activation patterns may be employed to erase old memories,
keeping the network always at about half capacity. Again,
the chance of error is minimized at the expense of the loss
of o0ld memories.

DISCUISSTON

A temporal sequence memory model based on the structure
of the dentate gyrus region of the mammalian hippocampus



was proposed in section two. This memory uses nonlinear
propagating waves to generate a representation of its
inputs to effect memorization of a sequence of inputs to-
gether with the time intervals between them. Mechanisms
were added to this memory model to overcome sources of
interference and instability, and the full system was
simulated to test the effects of errors and to determine
the memory's capacity. Although several types of errors
occur in the operation of the network, success rates of
70% can be achieved using proper control of the number of
waves in the network. Elimination of interference through
active memory erasure ylelds an 857 success rate.

These error rates are based on only one network, but
are supported as approximate error rate figures by similar
results from the other network. Extensive simulation of
the wave generating mechanism shows that most networks
with a given set of parameters are similar in their wave
generation properties. Since the sources of error are
intimately linked with the wave pattern dynamics, most
networks having proper control of the numbers of waves
will show 607 to 90% success rate. Success rates can be
increased through the use of mechanisms that erase old or
conflicting memories to decrease the chances of failures
due to lack of associations and to interference from stored
sequences.

Success rates will also be changed if the forced
association rule used in simulation is altered. Under
this rule, two or more associations were forced to form
between each input cell and the cells activated by waves at
the time the input entered the system. However, each
activated cell was allowed to associate with only one of
the two input cells. As training continued and memory
capacity was used up, the chance decreased that there
were enough waves in the system to associate with the inputs
according to this rule. The forced association rule could
be modified to allow each activated cell to form connections
to both input cells, and to make connections with some
probability. This modified rule corresponds more
closely to the learning rule in the original description
of the model. Under the modified rule, the chance of
assoclation failure is decreased, since any activated
cell that does not already have an association connection
can contact either or both of the cells activated by the
input. At the same time, however, failure may occur
under this rule, since associations are formed with some
probability. The balance between these two effects could
be explored in further simulations. Note that the modified
association rule also extends the memory's effective
capacity, since fewer cells are likely to associate with a
given input.

Input Cells i

Memory

U

[ Match-Mismatch l
Circuits

—

Vv

)

Fig. 13, Use of the model with match-mismatch circuits as
part of an habituation system.

The memory network presented here may be used as part
of an habituation system as shown in Fig. 13, following
a scheme of Horn (9). The outputs of the G's form the net-
work's overall output. The output of the memory network,
together with the outputs of the cells that form its input
are fed to a rank of match-mismatch circuits. These
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circuits may be set up initially, or may develop through a
learning process, to respond when the signal from the
memory cell corresponding to a particular input does not
match the signal from the input cell itself. Then if the
input sequence is changed after the memory has been trained,
a mismatch will be signalled and dishabituation can occur
as a result. The system will thus be able to dishabituate
due to changes in the inputs themselves or in the times
between stimuli. As stated previously, simpler habituation
networks have been designed that capture many of the
properties of habituation and that may be applied to the
problem of habituation in the dentate gyrus or hippocampal
complex. The temporal sequence memory described here
allows an habituation system based on the structure and phy-
siology of the hippocampus to duplicate known temporal
properties of habituation.

This work was supported by NIH Grant No. 5ROI NS09755-
04 COM. We wish to thank Dr. Michael Arbib and Dr. William
Kilmer of the University of Massachusetts and Dr. Turner
McLardy for helpful discussions and critical reviews of
earlier versions of this paper.

APPENDIX

Probabilities of Input Entry and Association

We calculate here the probability that an input
stimulates no cell that lies in the trough of a wave, and
the probability that a given cell stimulated by an input
becomes associated with at least one wave in the system.
The following parameters are used:

= number of lamellae,

= number of cells/lamella,

= number of cells stimulated by an input,
= number of waves in the system,

NL

NC

NH

Nw

Mw = total number of cells/wave,

MT = number of cells in a wave trough,
M

= number of cells in another lamella that a cell
in a given lamella is able to form connection to.

Fz(i,j) = probability that a longitudinal line from
lamella i reaches lamella j,

PZ = probability that a longitudinal line makes con-
tact with a given cell (out of a total of MR)
in a lamella it reaches,

PE = probability that a wave can activate a given
longitudinal line.

To find the probability that an input will stimulate a
cell in the trough of a wave, note that each wave trough
uses My cells, so that the total number of depressed cells

is Nw . MT. So
p(a given stimulated cell lies
N, - M

W T
P == =
ST NLNC

in a wave trough) =

If waves and stimulated cells are distributed at random
through the system,

p(k stimulated cells fall in wave troughs) =

N k N, -k
(kH) Pgp(1 = Pgp) H
So the probability that all stimulated cells fall out-
side wave troughs is

- _ N,
PFE =1 PST) H
To find the probability that a given stimulated cell is
connected with at least one wave in the system, we assume
first that an input is equally likely to stimulate a cell
in any of the NL lamellae. Then



p(a stimulated cell is connected to at least one wave

when there are Nw waves in the system) =

where

Pc(i,Nw) = p(a stimulated cell in lamella i is con-

nected to at least one wave, given Nw in the system).

The waves may be distributed through the network in many
ways. Each such distribution will be called a configura-
tion, and configurations will be denoted C, ,j = 1,...,Mc,
where is the total number of configurations of Ny waves
distributed in Ny lamellae. Associated with each C; is a
set of numbers K; = (k,;,...,KjN;) giving the number of
waves in each lameila foi that con%iguration.

Hence

M
C
P (1,1 =j§l PN [COR(C),

where
P(Cj) = probability that configuration Cj occurs.
Now
Pc(i,Nwlc.) = p(a stimulated cell in lamella i is
connected with at least one wave in the system
given My waves in configuration C:)
=1 - p(a stimulated cell in lamella is connected
with no wave, given Ny waves in configuration
Ci)
i
=1 - Py(i,mfcy),
where N
L X
Pw(i,Nw|Cj) = 1[1-?@®mi))in
=1
and

PA(m,i) = p(a given wave in lamella m makes contact with

a given stimulated cell in lamella 1),
p(the wave is at a cell in lamella m that
sends a z-line to the stimulated cell in

lamella i) - p(the E-cell associated with the
z-line can be activated),
= ﬁ; . Fz(m’J> . PE'

The first two terms in the final expression give the
probability of horizontal and vertical connection from a
cell in lamella m to one in lamella j, assuming that each
G—cell is connected to exactly one E-cell in its lamella.

These expressions are evaluated for a system with
parameters given in Table 3, with the results shown in
Table 4,

N =6
N, = 60
Mo = 30
Moo= 3
P =9
z
P, = .66
F_(1,3) = 1.0; 0<[i-j|<3
0.0; otherwise

Table 3. Parameter values used in preparing Table 4.

N
AN 6 7 8 9 10 i 12

[ : 7 -
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036 - |oa3_"|oso " |ost ~"|oez"|oer |07
_~ o086| .~ 083 _~" o8l 079 ,%77 _"ors| 073
- - - -
025 1033 ~"lo40 047~ 05/059 063
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Table 4.

Probabilities of full input entry and full

association using parameter values in Table 3
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