dILS/SMH 20 IWIL

AR A A S A S S 0 AR S IR R R R A I I e A I e I I e I I S R R

£ = ¥ X £ X x X

£ E @ X
= T £ E
i e o = i S S S e) EE€€€E€€E€€€E€€€€
—— e £ = ———

=x
———
—— -
XXX XX T XXXXX e x x TxT X xxx
———
x o 0 0~ o o
—
o o o w o o
—
Pl o o - w ™ o x
FJLVY HOLYSYOSVAT .:\\(\h\ -
w o T D DD
D DLV TooD D TXDDLD DD 0 G D w e o
w —
FSOIL -OLTY, ga¥=x
T 0D DDDODDD DD ww VDD DD DO
€€€€€€€E€E€E€€ WLWWWwWwwwwwwwwww wwww Lond
A R R R R SRR N R T L A N N B N VE R VIR VU IN) €€€EEE€€€€E€””O_QQQ’"0"’&.”09’0’0”0”&77””
NN NN N NN RN N NNNNNRORNNDRNRNNRNNN NN Lad R S R SR AER N P R
NN NRNRNN NN NN N NN NNNN - S
ASILS N
MhENQtL PONNNRNNRNNRNNRNNRNRNNRNN NN
-
S -
IS

LR - & JsoyLxia
STOISYHIONS SIHIH TN , svvsrs®torosr Sttt

——
S

»
B R I I T I W N N NN N A NN

000040¢0~00000v0000040.,.004000#00000090000000000060#006#9000000‘09460#4600000

£ LINCOSS HSYM I -
5 1on00dd Hsbm 3v-§ | VOV IS 4O 400 |
7 25700dd HSUM 33 - ¥

0009000000040000000004000*90000#09090440#940000900~4¢0000¢4490090’0¢00009009

FONRLS GNS AYT TUN/S

o O oo
|“AvivivivivlejvivivielvivivivivivivivielvivivEvivivEvivivAvivivR ol w) 000000 GOOGOGGGOGOOG000000000000000000000

IWIL A NMOILNSIYISIA IAISVYHIOVS T LIGIHYT

0#90000000QOOQQQQvo00000000004000‘000000900000009000900#04006000900900400900

ANIIY IS

2 %08
IS M FT/HYHIOVE S

y A

203

81y 1
61y 1
L1y 1

(4001) 438 1>naoyd

6014
614
614
8e1v
6°14
81y
Loty
91y
w1y
LTy
814

(4001) 438 12na0¥d

v
L LT O~ At

g1+
814
814
8e1%
8e 1%
CARE)
L1y
1024
weZh
G2y
EARA €
(4001) 438 15Nn300odd

w
MMOT T T T

92+
S22
kAR A4
G2y
G224
wely
G*2Zv
929
924
22%
2°2%
9e2% SO
(4001) 438 1>nd0oY¥d

%]
oMM ammmmm

6°¢€9
€°€9
L*€9
30 %

6°L9
€°L9
1°L9
Z*L9
Y°*L9
L9
€°L9
8°LS
L°8%
0°8%
LeLY
3d %

8° LY
€84
€8y
0°8%
0°8%
1°8%
€8
€8
€8y
0°8%
994
(OS]
30 %

9°s?
€92
[ALT4
SdnN %

G*%e
8°6¢
9°9¢2
(224
zeel
€62
0°€e
o°€l
9?1
6°01
s°01
Sdn %

z* 11
6°21
AR
€€l
6°21
g2t
€1l
z*81
0°6¢
0°*92
v*92
SdN %

192
0°s2
8°*%¢
g6l
8°G2
962
0°se
162
8°62
1L
862
G*9¢
Sdn %

9°G
0*9
S*9

1417vK

veel
LARA
121
1°21
€21
621
o°el
seLl
L1z
6°12
022

Tylvw

IAR44
L2
8°2¢
[R4
LANS4
w22
w22
2°ee
L1z
1°12
0°ce
AR X4

[yLVK

1¥LVW %

%

o

%

T1°62
9°8¢
6°82

162
T1°62
0°6¢
562
L*62
8°82
1°0¢
9°G¢E
L°S€E
6°6¢
0°9¢
1IviW

8°G¢e
kA1
£°s¢e
€6t
A1
6°GE
SeLE
S*0%Y
[Ra24
82y
Sy
LIvW

924
6°2%
o°ey
924
S*2y
L2y
€oey
€oey
8°2%
814
L*8€E
6°0¢
LvYW

LvW %

)

[

L°6E
1°6€
g6t
X30 %

9°6¢€
8°6¢
6°6¢
2°0%
9°0%
9°6¢€
€°6¢€
0°*6¢€
0*6¢
2°6€
9°6¢
X330 %

S°6¢E
€°6¢t
2°6¢
2°6¢
v6€E
2°6¢
Z2°8¢
Legl
0°01
w6

X30 %

* o o o o

e o o o o o

X =N~~~ 3TN TONT T~

w
oo

&

SONIQVOT ¥VD TIVY

8%6L
8°6L
S°6¢
Sd %

0°08
0°08
0°08
0°08
0°08
9°6L
8°6L
6°6L
6°6L
6°6L
0°08
Sad %

o°ow
0°08
8°6L
86L
6°6L
8°6L
0° 0%
0°08
1°08
€°6L
€°6L
8°6¢L
Sq %

IIT LI9IHXd

G°G68¢€08
§°912191
8°02€191
S87 sa

14882091
2°29608
8°9€2291
0°LT1191
2212091
9°,81191
1°869091
€°%0908
14021091
2°961191
8°0L€08
SA71 sa

6°¢€%008
€°65608
6°96608
912018
9°6%9191
L*RLHTI9T
€°006191
Z2°%%6091
2°9%¢091
0°%65091
0°€6€08
SA7 Ssa

6°10208
6°8%2191
1°96608
L°102291
1°8%118
v°€9608
S°*T10€091
062018
G*R8.08
1°99,191
8°6£608
LPT96191

»9°*S
09°%
20°*2

»9°641 €
09°841 2
20941 1

QHSNA 3WIL 3IWll mvd ON Y9

GHeel
26°02
0861
[AGFAN
G0°*s1
ocL*a1
2%°*01
SL*9
1S
G9°€
LO°1

L AVQ H04 SONTAvO1

A AR A At 11
26°0%1 01
08°6€1
GT*LET
G0°sel
0L*2€1
29°0¢el
sL*921
10621
§9°¢€21
L0*121

~NMITNOMN~DD

QHSN4 3WILl 3Wll mMvy ON dV)

00°*%2Z
GHe22
s8°02
G261
[<CAVAN
oL*%1
60°21
L%%6
0%°s
sL*?
01°0

9 AvVQ ¥04 SONIavO?

00°021
Gv°*811
GR*9TT
§2°611
G9°¢e11
0L°0T1
60°801
L9601
0%°*101
SL*B6

01°96

——

~NMITNHNO™~ DO~

QHSNS 3WIL 3IWIL My ON ¥V)

96°22
[TAR T
00°81
0r°91
62°%1
69°21
[LARN
08°8
60°¢L
S0°*S
6L°¢C
sL*l

S AVQ ¥04 SONIavOD

96°%6 21
[TAR Y] 11
00°06 01
0L°88
62°98
69°4%8
G9°¢8
08°08
60°6L
s0*LL
6LYL
SLEL

A~ NMm TN O~ DD

SA71 SQ CHSN3 3Wll IWIl mvy ON ¥VD

k4 AVA ¥04 SONTAVOD

204

COMPUTER SYSTEM SIMULATION WITH GASP IV

Gain Wong
General Electric Company, Sunnyvale, California

SIMTRAN is a process oriented computer system simula-
tor. SIMTRAN employs a preprocessor to allow the analyst
to take a process oriented view of the system he is attempt-
ing to model. A process oriented view is superior to the
usual event oriented view, when modeling complex computer
systems, where multi-level modeling and easy modification
of the model are desired.

SIMTRAN was developed from GASP IV, a general purpose
FORTRAN-based simulation language. All of the simulation
modeling and reporting capabilities available in GASP IV
are available in SIMTRAN. In addition, SIMTRAN provides
facilities for modeling process and resource management.
These facilities are very helpful in constructing simula-
tion models of computer systems because a large part of the
behavior of computer systems depends on process and re-
source management strategies.

MODELING CAPABILITIES

Computer simulation is a modeling technique where a
computer program is written whose behavior resembles that
of the system which is being modeled. The more closely
the behavior of the simulation program resembles the be-
havior of the real system, the better is the simulation
model. A simulation language is a tool which facilitates
the development of simulation programs, and aids in exer-
cising them.

GASP IV is a general purpose FORTRAN-based simulation
language. GASP IV provides the user with an event oriented
view of his system, facilities for collecting statistics
about the simulation model and generating reports, and the
power and flexibility of the procedure oriented programming
language FORTRAN IV.

GASP IV may be successfully utilized to perform com-
puter system simulation. The modeling of computer systems
would be significantly aided however by 1) allowing the
user to take a process oriented view, and 2) providing
facilities for modeling process and resource management.

GASP IV imposes an event oriented view of the system
being modeled. This view tends to be single level since
all state changes of the system, occurring in various
levels of detail, are represented by events at one level.
A process oriented view lends itself to multi-level model-
ing since process descriptions allow the analyst to
describe a process in terms of its activities and the con-
ditions under which the process proceeds from one activity
to another, without having to explicitly sequence events.
An activity of a process can easily be a process with its
own activities.

With a process oriented view, the system is viewed
dynamically as a collection of interacting processes, with
the interactions controlled and coordinated by the occur-
rence of events. The advantages of this view are many.
One advantage is that a process oriented model is many
times a more natural way to express the structure of a
system. Another advantage is that the user does not have
to define and keep track of the events which signal state
changes in the system. Instead, event definition and
sequencing is done by the simulator, and is invisible to
the user. A further advantage is that process orientation
automatically provides for process structuring. A process,
with all of the event definition and sequencing implied by
it, can easily be a subprocess of another process. Pro-
cess structuring is very difficult to obtain with strictly
an event oriented view.

GASP IV does not provide explicit facilities for model-
ing process and resource management, because it is a gener-
al purpose simulation language. Such facilities, however,
would be very valuable for the user who wishes to model
computer systems. SIMIRAN provides both process and re-

205

source management facilities. The process management facil-
ities are useful because of the process oriented view allow-
ed by SIMIRAN. The resource management facilities are im-
portant because of their heavy use in the modeling of
computer systems.

Five process management facilities are available in
SIMTRAN. These are 1) INIT - to initiate a process, 2)
ACTIV - to activate a process which has previously been
initiated, 3) DELAY - to cause the current process to be
suspended and re-activated after a specified time interval,
4) SUSPEND - to cause the current process to be suspended,
and 5) TERM - to cause the current process to be terminated.

A SIMIRAN process is an incarnation of a SIMTRAN pro-
cess description. Zero, one or more processes may exist for
a given process description. Each incarnation of a process
description is an independent entity; process-local memory
is maintained by the SIMTRAN system. Processes are initi-
ated by another process executing an INIT, and they termin-
ate when they execute a TERM. Processes may execute ACTIVs
to coordinate the execution of other processes, and they may
execute DELAYs and SUSPENDs to coordinate their own execu-
tion.

Five resource management facilities are available in
SIMTRAN. These are 1) CREATE - to create a descriptor of
a resource of a specified type and with a specified initial
allocation, 2) RQST - to request a unit of a previously
created resource, 4) STATUS - to obtain status information
about a previously created resource, and 5) DESTR - to
destroy the descriptor of a previously created resource;
all references to that resource will no longer be valid.

A SIMIRAN resource descriptor represents a real re-
source. It may be dynamically created and destroyed. Pro-
cesses may invoke RQST, RLSE and STATUS calls on previously
created resources. The SIMTRAN system will allocate and
de-allocate resource units according to the type of the
resource. Further, the SIMIRAN system will keep statistics
on the utilization of all resources.

SIMIRAN is capable of modeling three types of resources.
Message (M) type resources are consumable resources, in
that they are produced by one process and consumed by an-
other. Processes produce message units by RLSEing them,
and they consume message units by RQSTing them. A process
that RQSTs a unit of a message resource for which no re-
source units currently exist is SUSPENDed, put on a prior-
ity queue, and ACTIVated when a message unit becomes avail-
able.

Facility (F) type resources are serially reusable re-
sources. This means that the resource has a finite, fixed
number of units, each of which may be free (unallocated)
or allocated. Units of facility type resources are allo-
cated to a process when the process executes a RQST, and
a resource unit is available for allocation. Facility type
resource units are deallocated when a process which was
previously allocated a resource unit executes a RLSE. A
process that RQSTs a unit of a facility resource for which
no resource units are currently free is SUSPENDed, put on
a priority queue, and ACTIVated when a resource unit be-
comes free.

Storage (S) type resources are also serially reusable
resources. They are different from facility type resources
in the way in which resource units are allocated. Facility
type resources are allocated a unit at a time, where each
unit is equivalent. Storage type resource units are num-
bered; they are allocated a chunk at a time, where each
chunk consists of a specified number of consecutively num-
bered storage resource units. If a process RQSTs a chunk
of a storage resource and no sufficiently large chunk of
the storage resource is free, then the process is SUSPENDed,
put on a priority queue, and ACTIVated when a large enough
chunk becomes free.

SIMTRAN DESIGN AND IMPLEMENTATTON

SIMTRAN allows the analyst to develop a process orlent-
ed computer simulation program within the FORTRAN environ-
ment. In order to allow process orlented modeling, STMTRAN
must provide 1) routlnes in the run time executive to han-
dle process initiation, synchronization, sequencing and
termination, 2) a mechanism which allows a process which
is executing within a FORTRAN subroutine to be suspended
and later reactivated where it left off, and 3) a mechan-
ism which allows different processes, executing within the
same FORTRAN subroutine, to access variables local to the
process.

SIMTRAN processes are represented by a process descrip-~
tion and a transaction number. A process description is
simply a FORTRAN subroutine. A transaction number is a
pointer to a set of data representing the values of the
process-local attributes. The process management routines
provided by SIMTRAN will now be discussed in more detail.

1. CALL INIT (T, process f, activity #, priority,
transaction #)

This routine performs process initiation; storage
is allocated for the attributes of the new pro-
cess and a transaction number is returned pointing
to the location of these attributes. This process
is then scheduled to start at the current simulated
time plus T.

The process f# identifies the process description
for the process to be initiated. Processes are
divided into activities; SIMTRAN provides facil-
ities for a process to control its own progression
from one activity to the next (DELAY and SUSPEND)
and to control the progression of other processes
from one activity to the next (ACTIV). The prior-
ity of a process is used for scheduling its execu-
tion.

2. CALL ACTIV (T, process f#, activity #, priority,
transaction #)

This routine performs process synchronization; the
process specified by the process # and transaction
is scheduled to occur at the current simulated
time plus T. The activated process is restarted
at the specified activity and with the specified
priority.

3. CALL DELAY (T)

This routine performs process sequencing; the cur-
rent process becomes inactive and is scheduled to
be reactivated at the current simulation time plus
T.

4. CALL SUSPEND

This routine also performs process sequencing; the
current process becomes inactive. It will remain
inactive until activated by another process.

5. CALL TERM

This routine performs process termination; storage
is de-allocated for the attributes of the current
process.

SIMTRAN processes consist of a number of activities.
An activity is the unit by which the SIMTRAN process man-
agement routines schedule processes. An activity number
can be associated with each activity of a process. If a
computed go to statement, indexed by activity number, is
placed at the beginning of the FORTRAN subroutine repre-
senting the process, then we have a means of allowing a
process to become inactive, and then be reactivated where
it left off. Process n executing in activity m can sched-
ule itself to be reactivated at a later time by making an

206

entry for process n, activity m+l in the event list, and
then returning control to the run time executive. When
the process is later reactivated, the computed go to state-
ment will cause the process to resume with the proper ac-
tivity.

It is clear that a new activity of a process is defined
at each point in the process where the process could become
Inactive. The determination of the activities of a process
and the assignment of activity numbers may be done explic-
1tly by the user, or they may be performed by a preprocess-
or. The latter alternative has been taken in order to fos-
ter structured programming practices.

The simulation language constructs provided by SIMTRAN
are as follows:

1. PROCESS name

This construct identifies the beginning of a pro-
cess description. The preprocessor generates a
FORTRAN subroutine statement for a subroutine with
the specified name. Further, the preprocessor gen-
erates a labeled common declaration for the SIMTRAN
internal variables and process local variables.

The SIMIRAN internal variables include the current
simulation time, the current process number, the
current activity number, the current priority, and
the current transaction number. The process local
variables are for the process local attributes.

2. BEGIN

This construct identifies the first activity of the
process. An unconditional go to statement is gen-
erated. The destination of this go to statement
will be a computed go to statement, indexed by acti-
vity number, at the end of the subroutine. The
reason the computed go to statement is placed at
the end of the subroutine is the constituent acti-
vities of the process are not known until then.

A statement label is then generated by the prepro-
cessor. This statement label will be associated
with activity number 1.

3. CALL DELAY (T)

This construct causes code to be generated so that
(a) the current activity number is updated by in-
crementing it by one, (b) the process management
routine to reactivate the current process at the
current simulation time plus T is called, and (c)
the process then returns to the run time executive.
Further, a new statement label is generated by the
preprocessor. This statement label will be associ-
ated with the updated activity number.

4. CALL SUSPEND

This construct causes code to be generated so that
the current activity number is updated by incre-
menting it by one. Further, a new statement label
is generated by the preprocessor. This statement
label will be associated with the updated activity
number.

5. CALL RQST (resource #, parameter)

This construct causes code to be generated so that
the current activity number is updated by incre-
menting it by one. A new statement label is then
generated by the preprocessor. This statement la-
bel will be associated with the updated activity
number. Next, code is generated so that (a) the
resource management routine to request a unit of
the specified resource is called, and (b) the value
returned by the resource management routine is test-
ed: if the value returned indicates a request fail-
ure, then the process returns to the run time
executive. In this case, the current process has

been entered on the waiting list associated with
the requested resource. When the requested re-
source becomes available, the requesting process
will be reactivated. If the value returned in-
dicates a request success, then the process con-
tinues with the next activity.

6. END

This construct identifies the end of a process
description. A subroutine call to the process
management routine for terminating processes is
generated. A statement label whose statement
number matches the destination of the uncondition-
al go to statement generated for the BEGIN con-
struct is now generated. Finally, the computed
go to statement, indexed by activity number, with
the statement numbers associated with each of the
activities of the process is generated, followed
by the FORTRAN END statement.

SIMTRAN provides the means for processes to maintain
process local variables. This is accomplished by dynamic-
ally allocating storage for these variables when a process
is initiated. When a process is activated by the run time
executive, the variables local to the process are copied
from the dynamically allocated storage area into a common
block labeled LOCAL. This facilitates access to these
local variables. When a process returns control to the
run time executive, the current contents of the common
block labeled LOCAL are copied back into the proper place
in the dynamically allocated storage area.

The resource management routines provided by SIMTRAN
enable the user to easily model the scheduling and alloca-
tion of resources in a computer system. The resource
management routines provided by SIMITRAN will now be dis-
cussed in more detail.

1. CALL CREATE (resource type, resource name,
resource ff, parameter)

This routine performs resource creation. A des-
criptor is allocated for the resource being created
and a resource number is returned pointing to this
descriptor. The resource type may be message type,
facility type, or storage type. The resource name
is a name which is to be associated with this re-
source. The parameter specifies the number of re-
source units initially available.

2. Value = RQST (resource #, parameter)

This routine will allocate a unit of the specified
resource to the requesting process if possible.

If not, the requesting process will be placed on
the waiting list associated with the requested
resource. The resource type of the requested re-
source determines the allocation strategy that is
taken. The parameter normally specifies the number
of resource units requested.

The user writing his SIMTRAN program normally
writes CALL RQST (x,y). The preprocessor trans-—
lates this to ANS = RQST (x,y) so that code may
easily be generated to test the value returned
from RQST. The value returned is 1 for request
success, and @ for request failure.

3. CALL RLSE (resource #, parameter)

This routine will de-allocate a unit of the spec-
ified resource for facility and storage type re-
sources, and produce a unit of the specified re-
source for message type resources. If any process-
es have been entered on the waiting list associated
with the released resource, then the highest prior-
ity process is reactivated. The parameter nor-
mally specifies the number of resource units re-
leased.

207

4. CALL STATUS (resource f, parameter)

This routine returns status information concerning
the specified resource. The number of free re-
source units of the specified resource is normally
returned as the parameter.

5. CALL DESTR (resource #)
This routine performs resource destruction. The
descriptor for the specified resource is de-alloc-

ated.

MODELING WITH SIMTRAN

SIMTRAN is used by the analyst to build a computer simu-
lation model of the computer system that the analyst is
studying. The analyst must understand both the static
structure, and the dynamic behavior of the system he is
attempting to model. Further, he must be able to visualize
his system in terms of processes cooperating with each other
to process data and processes competing with each other for
resources.

A brief description of a SIMTRAN model of a distributed
transaction processing system will now be presented. A
transaction processing system is a computer system where
a number of operators sit at terminals and every so often
enter commands. These commands cause application tasks to
begin execution. A distributed transaction processing
system consists of a network of transaction processing
systems. An operator sitting at a terminal connected to
one computer system may enter commands which cause appli-
cation tasks to begin execution at another computer system.

The processes in this system are (1) the operators who
enter commands, and (2) the application tasks which execute
commands. We may write a general process description for
an operator, parameterized by two things - the computer
system the operator is connected to, and the mix of com-
mands that the operator is to enter. This process descrip-
tion will model the behavior of the operator by initiating
various application tasks every so often. We may write a
different process description for each application task.
These process descriptions will model the behavior of the
application tasks as they request computer resources to
accomplish their processing, and later release them.

The resources in this system are (1) the central pro-
cessor in each computer system, (2) the central memory in
each computer system, and (3) the input/output channel in
each computer system. The application tasks initiated by
the operator processes will compete for these resources.
SIMTRAN will gather statistics about the throughput of
application tasks for a given amount of resources, and
about the utilization of resources for a given mix of
application tasks.

The model of a distributed transaction processing system
presented above is a simple one, but it shows how the anal-
yst would go about visualizing his system in terms of pro-
cesses and resources. Further, the simple model is capable
of providing useful insights about the gross behavior of
such a system. A more detailed model might include such
things as the communication system over which operator com-
mands are transmitted, an application task manager which
schedules application tasks on a priority basis, and a data
base manager which controls access to the data base by pro-
viding concurrency checking. The model that the analyst
will finally build depends on what aspects of the system
he is interested in studying.

The SIMTRAN user is not limited to a process oriented
view; the next event oriented view of GASP IV is still
available to him. As long as the analyst is doing discrete
simulation, however, the process oriented view of SIMIRAN
will allow the analyst to use all of the modeling and re-
port generation capabilities of GASP IV. It is only when
the analyst wishes to do continuous simulation that the
analyst must leave the process oriented view.

The analyst who wishes to perform combined discrete/
continuous simulation may easily interface the state event
modeling of GASP IV with the process oriented view of
SIMTRAN. When a GASP IV state event occurs, a SIMTRAN
process may be initiated to perform some processing, or
a message may be sent to an already exlsting SIMIRAN

process.

Table 1 SIMTRAN Simulation Constructs

PROCESS name

BEGIN

CALL DELAY (T)

CALL SUSPEND

CALL RQST (resource #, parameter)

END

Table 2 SIMTRAN Process and Resource

Management Facilities

EL’OCESS management

INIT (T, process #, activity #, priority,

transaction #)

ACTIV (T, process f#, activity #, priority,

transaction #)

DELAY (T)
SUSPEND

TERM

resource management

CREATE (resource type, resource name, resource f#,

parameter)

ROST (resource f#/, parameter)

RLSE (resource f#, parameter)

STATUS (resource f#f, parameter)
DESTR (resource #)

208

PROCESS name

(declarations)

BEGIN

(SIMTRAN, GASP

END

IV and FORTRAN statements)

Figure 1 Structure of a SIMTRAN Process Description

SIMTRAN FORTRAN
CONSTRUCT STATEMENTS
PROCESS name SUBROUTINE name

COMMON/LOCAL/LOCAL (25)
INTEGER ANS, ACTVN
EQUIVALENCE (ACTVN, LOCAL (3))

BEGIN

M
CALL DELAY (T)

M
CALL SUSPEND

M
CALL RQST (X,Y)

M
END

N

GO TO N
CONTINUE

ACTVN = next activity #
CALL DELAY (T)

RETURN

CONTINUE

ACTVN = next activity #
RETURN
CONTINUE

ACTVN = next activity #
CONTINUE

ANS = RQST (X,Y)

IF (ANS.EQ.®) RETURN

CALL TERM

CONTINUE

GO TO (M1, ..., Mn), ACTVN
END

Figure 2 Implementation of SIMTRAN Constructs

REFERENCES

1.

Blunden, G. P. and H. S. Krasnow, "The Process Concept

as a Basis for Simulation Modeling", Simulation, Vol 9,

No. 2 (Aug 1967).

Boyse, J. W. and David R. Warn, "A Straightforward
Model for Computer Performance Prediction", Computing
Surveys, Vol 7, No. 2 (June 1975).

Dahl, 0. J. and K. Nygaard, "SIMULA - An ALGOL-based
Simulation Language', CACM, Vol 9, No. 1 (Sep 1966).

Dewan, P. B., Donaghey, C. F. and J. B. Wyatt, "OSSL -
A Specialized Language for Simulating Computer Sys-
tems", Proc AFIPS SJCC, Vol 40, 1972.

Gordon, Geoffrey, System Simulation.
N. J.: Prentice Hall, Inc., 1969.

Howard, V. J., "A Model to Investigate Interprocess
Communication in a Distributed Computer System', IFAC-
IFIP Workshop on Real Time Programming, Mar 1974.

Klernrock, Leonard, "Resource Allocation in Computer
Systems and Computer-Communication Networks', IFIP
Conference on Information Processing, Stockholm,

Aug 1974.

MacDougall, M. H., "Computer System Simulation: An

Introduction”, Computing Surveys, Vol 2, No. 3
(Sep 1970) .

MacDougall, M. H. and J. Stuart McAlpine, '"Computer
System Simulation with ASPOL'", Symposium on The Simu-
lation of Computer Systems, Gaithersburg, Md.,

Jun 1973.

Englewood Cliffs,

209

10.

11.

12.

13.

14.

15.

16.

Nielsen, Norman R., "ECCS: An Extendable Computer
System Simulator", Third Conference on Applications
of Simulation, New York, Dec 1969.

Pritsker, A. Alan B., The GASP IV Simulation Language.
New York: John Wiley & Sons, 1974.

Saleeb, Shafeek J. and Mokhtar B. Riad, "Use of Simu-
lation for Operating System Optimization', IFIP
Conference on Information Processing, Stockholm,

Aug 1974.

Shaw, Alan, Weiderman, Nelson, Andrews, Gregory,
Felayn, Mary-Beth, Rieber, John, and Gain Wong, "A
Multiprogramming Nucleus with Dynamic Resource
Facilities', Software - Practice and Experience,
Vol 5, No. 3, 1975.

Walden, David C., "A System for Interprocess Communi-
cation in a Resource Sharing Computer Network', CACM,
Vol 15, No. 4, Apr 1972.

Weiderman, N. H., Synchronization and Simulation in
Operating System Construction, PhD Thesis, Computer
Science, Cornell University, Technical Report 71-102,
1971.

Zurcher, F. W. and B. Randell, "Iteration Multilevel
Modeling - A Methodology for Computer System Design',
Proceedings of the IFIP Congress, Edinburgh, Scotland,
Aug 1968.

