SIMULATION OF NERVE CELL KINETICS USING INTERACTIVE SIMULATION LANGUAGE

R. D. Benham

Interactive Mini Systems, Inc.
5312 W Tucannon
Kennewick, Washington 99336

Daniel K. Hartline
Nepartment of Bioloay
University of California, San Dieqo
La Jolla, California 92037

INTRODUCTION

Interactive Simulation Language (ISL) can be used by
scientists and engineers without prior programming experi-
ence for the solution of nonlinear algebraic and differ-
ential equations. ISL permits hands-on interactive oper-
ation in which the user can monitor the course of a compu-
tation (via scope, printers, etc) and change parameter
values during execution (via knobs, switches, keyboard).
ISL functions well in either an all digital system or in a
system utilizing an analog interface. Since ISL is modular
computing functions can be added or deleted for tailoring
the language to many applications in data collection, data
analysis, curve fitting, hybrid computer simulation, etc.

ISL processes simulations quite rapidly by using a

single word mantissa and a single word exponent (minipoint).

In addition extremely large problems can be solved on a
small computer. ISL is currently operational on PDP 8/12,
PDP 7/9/15, PDP 11, NOVA, EAI 640/PACER 100, DDP/PRIME,

and many hybrid computers. This paper shows application of
ISL to neurobiology by:

presenting an overview of ISL programming
illustrating the techniques for the simulation
of a repetitively firing nerve cell

presenting comparative results for ISL and SNAX

ISL_PROGRAMMING OVERVIEW

It is easiest to consider the ISL system as providing
a large number of operational elements such as found on an
analog computer. These elements include integrator, add,
multiply, and many others (see Table 1). An ISL program
is formed by “"interconnecting" these elements to satisfy
the equation being solved.

Drawing the Block Diagram

To illustrate the programming technique consider the
equation for adaptation (A) of a nerve cell:

dh + 0.6 (A - Aye) = O Afgy = 1.0
F (0)

The first step in programming is to equate the highest
derivative to the lower order terms, For example:

dA = -0.6 (A - Apyf)
T IN
The simulation diagram (using symbols from Table 1) is:
A *‘ '(A = AINF) 0/.% dA
O’ O ew

AINF
Next by adding an integrator to the diagram the function
(A) is available:

1.0

AINF

Notice the initial condition is shown as an auxiliary input
to the integrator. To complete the simulation diagram it
is necessary to assign numbers to each operational element.
The rule for assigning numbers is analogous to building the
simulation diagram, That is, to form the derivatives and
then integrate the highest derivative first, Thus:

(3) 1.0

- 0.6
AINE) () !I', A

The final step in preparing the simulation diagram is
to form operational blocks that:

. label headings (HDE statement)

. identify printing or plotting variables (PRI)

. allow the program to iterate and determine when
computation should stop (FIN statement)

To aid in the interpretation of tabulated output data,
provision exists for specifying headers above each column.
These headings will be the names given to the variables
identified by the operational equivalent in the print (PRI)
statement, Up to five names (having 6 characters can be
included in one heading statement (HDR). The HDR auto-
matically labels the first value as TIME before using the
defined labels. Accordingly the print statement gives the
value of time. A header and print statement for the example
could be:

6 HDR A
7 PRI 4

A finish (FIN) statement, as shown below, would be
incorporated into each ISL program., This statement allows
iteration and also provides the user with a means of manu-
ally terminating a run with a keyboard interrupt. Its
diagram would be:

FIN
1.5 3

“I’____A

When the value of the first input (time) is less than the
second input, then for a new iteration, the FIN statement
transfers control to statement N, When the first input is
greater than or equal to the second input the next numerical
statement is executed. In this example we will use an END
statement to terminate the run.

Preparing the Listing

The program is entered into the computer by using the
instructions shown in Table 2. The user area of memory is
first erased with the "K" command. Then by typing "A"
(for APPEND) the teletype responds by typing (0) for the
first line number. The user may then type in the program:

CON = 1.0E-1
ADD -4, 0
POT 1, 6.0E-1
CON = 1.0€0
INT 3, 2

S WO

S= 1.PQ@E-2 T=10 RANGE = 1.800E @
TIME A heh e....1....2....3.---4----S----6-'--7--°°8°"'9'°°°§'°'°1°"'2
9.0200E @ 1.020E 0 0.002E ¢ o
9+999E-2 9.474E-1 9.999E-2 A
2.000E-1 8.979E-1 2.000E-1 A
3.000E-1 8.513E-1 3.00GE-1 A
4.000E-1 8.874E-1 4. GAGE- 1 A
S.@00E-1 7.661E-1 S.@@BE-1 A
6.0Q0E-1 7.272E-1 6. 0QQE-1 N
7.80QE-1 6-9C6E-1 7.000E-1 R
8.000E-1 6+ S61E-1 8.300E-1
9.0B8CE-1 6. 236E-1 9.000E-1 A
1.G00E @ 5.931E-1 1.990E 0 A
1. 100 @ 5.642E- 1 1. 10QE @ A
1.200E @ 5.371E-1 1.200E @ A
1.300E ¢ 5.116E-1 1. 300E @ A
1. 400 ¢ 4.876E-1 1. 4P0E @ A
1.500E © 4.6495-1 1. 500E @ A
a. Tabular output b. Teletype Plot
Figure 1. ISL Output for Adaptation Example

TME S

HOR A

PRI 4

CON = 1.5 0
FIN 5, 8
END 10

—
OWwWmDMN OO,

For each line of code the teletype prints a line number,
following which the user types a three-character function
code, followed by its arguments (separated by commas). Argu-
ments are either "inputs" to the elements (see integrators)
or numerical values assigned to them (floating point notition
for POTs and CONs).

If a spelling error is detected while entering the
program the printer will respond by typing a question mark
(?) and retype the statement number. It then waits for the
correct information. The computer will not catch “patching
errors", For example if a 7 were typed for a 4 in statement
1, the computer would not recognize the error. However the
user can correct any numerical error at any time prior to
terminating the entry with the "slash" (/). This signals
the computer to cancel the entry and accept a new one. Any
statement can be modified or re-entered with the MODIFY (M)
command shown in Table 2.

Running the Program

The program is run by selecting the integration step
size and print interval with the "I" command. For the
current example a step size of S = 1.0E-2 and a print inter-
val of T = 10 will allow tabular output as shown in Figure 1:
By using the X command of Table 2 the information is plotted.
Notice the range for 50 spaces is set to 1.0 as defined by
the RANGE = 1.000E O comment.

Of much more interest is to output the results to a
scope and repetitively run the simulation while varying AINF
with an analog pot. This may be done by modifying the
following 1ines with the "M" command:

0 ADC O (use pot O to change Apyr)

6 DIS 5, 8,4,7 (plot A versus Time on scope)
7 CON=2.0E0 (normalized value of A)

10 CHM 10 (allows repetitive operation)
11 END 11

With scope output and parameter variation through an
analog pot (through an ADC channel) better interactive com-
munication is established than with just a TTY printer or a
line printer. With this form of interaction one can begin
to appreciate the speed and power of a simulation using ISL.
Solutions will appear about 250 times faster than possible
with interactive languages like BASIC. In addition an 8K

156

compucer equipped with ISL can solve up to 100 non-linear
differential equations. Over 1000 equations can be solved
with 32K of memory.

SIMULATING A REPETITIVELY FIRING NERVE CELL

This section illustrates the use of ISL on the more
complex problem of a repetitively firing nerve cell. The
model is summarized with the simulation diagram of Figure 2
and the 1isting of Figure 3. Notice that the ISL simulation
diagram combines both the mathematical and logical flow
diagrams for the nerve cell. As such it is an aid (ie.
mathematical analog) in visualizing the operation of the
cell. The model is composed of 8 non-linear differential
equations that account for:

Conductance associated with each spike

Current injected with a microelectrode

Resting potential adaptation

Short and long term active response adaptation
Active pacemaker response

Threshold

Perturbation variable

)

)

9
I
A
A1,A2)
p
8
W

S-S —W0n

The basic equation for each term is similar to the
equation for adaptation used for describing ISL programming
in the last section. However there are additional complex-
ities as can be seen by close inspection of Figure 2. A
Cell will fire (spike) when the membrane potential (V)
becomes equal to or greater than the threshold (8). When
this happens new initial conditions are automatically
calculated and imposed for the terms gs, Ar, Al, A2, W, and
B. The form of the IC up-date equation is given for the
adaptations:

Pnew = Po1d + AolAmay = Angld) = Agig (1- A+ Ao
max ma x
The new value is a fixed fraction of the distance from the

olq value to a maximum value. The ISL implementation for
this equation is:

The initial condition calculations appear after the FIN
statement (no. 5}) so that they all are calculated when
V=08 and t = time of the spike. Since ISL includes a

CURRENT CONTRIBUTION
Jeo-gyg J -1

SYNAPTIC CONDUCTANCE

By = - 1 (g, - Ky X"
‘?‘Eﬂ

ACTIVE PACEMAKER RESPONSE
Pe-1(P-Pyp)
Tr
T ® Tpm for PL Py
-Tn/gm P>Pg

Py = kpm(¥ - A) - £2)
=0

for V>,
veopn

TAr

DE}‘P ine

RESTING POTENTIAL ADAPTATION
Ap = =1 (Ap - kg (Eg +E + 1)

ADAPTATION
Ay = - L (A7 - kpX")

PERTURBATION VARIABLE

ie - gau
Tm

0.7E0
ADAPTATION . THRESHOLD
A = - L (A] - ka X)) © - 8p = - L((6 - 6p) - keX')
Tay Ta
Figure 2. ISL Simulation Diagram for Repetitively Firing Nerve Cell

¢ ~E ¢ . o.cocz ¢ ¢ 42 INT 5S4, 31 = P.C0CE @ 43

‘ . 44 INT 53, =36 = ¢.00QE @ 44

ATL @, 81 = ¢.CCOE @ 1
é cov 2 - 1.0e0F @ 2 45 INT €1, 35S = 0.00CE O 4s
3 AL 38, -39, 2 - c.aceE ¢ 3 4e ALT 7., 43, 44 = 0.00CE @ 46
4 AT 3, 18 - B.0g@E 0@ 4 47 LAC 1, 37, 1 = @.0@CE @ a7
< ALL 710, 42, 71 - C.coPE @ < B DAC 33, 82, 2 = 2.000E @ 48
; v 3 s . r.coeE @ . © LAC 46, 82, 2 = 2.c00c @ 49
7 AL €, 18 = 2.000E @ 7 se LAC 56, 84, 1 = 0.C0QE @ se
a tor 5. 1.QCAE 2 - ¢.¢PCE 0 8 51 FIN 46, 33 = ¢.00CE @ 51
5 ALL 74, -8 . c.eeeE @ 5 52 ALD -44, -53, -7, S6, -39 = .@00E
Y ML 9, 8 - @.cC0E o 1o 53 INC 54, 52 = 0.00CE @ 53
11 POT 4, l.00CE-1 = 0.000E @ 1 54 CoN 54 = i°gggg g :g
12 ALL 11, -4a@ = ¢.00PE @ 12 55 coN S5 A >
13 POT 12, 1.@PCE 2 = 0.BCQE ¢ 13 s6 o2 TS o o
14 ALL 4, 29 = 0.CCCE ¢ 14 57 CON 5 = 5.
15 POT 14, 1.0€05-1 = @.GCCE ©@ 15 S8 POT 45, 9.@@CE-1 = @.000F @ 58
16 ALL -39, 15 = 0.000E ¢ 1€ 59 cov 59 = 9.PCOE © 59
17 POT 16, 1.€PCE @ = @G.GQCE ¢ 17 6@ ALD -61, 59, 45, -58 = @.000F
15 con 18 - ¢.peoE @ 18 61 INC 5S4, 6@ = P.@ACE ¢ 61
0 PO™ 4, leproE-d - o.porE @ 19 62 POT 42, 1.00QE-S5 = @.CCQE 0 62
2 ALL 19, -41 = c.ceeE ¢ 20 63 CON 63 = l.eeeE-2 63
21 POT 2¢., 2.08CE | = C.@GPE @ 21 64 AIL -65, 63, 42, -62 = @.C0CF
22 POT 4, 1.00CE-1 = ©.000E ¢ 22 65 INC 54, 64 = e.¢e¢t @ 65
53 ALL oo, -a2 - e.eveE @ 53 €6 FOT 41, 1.@@PE-5 = B.0GCOE g 66
54 POT 23, S.0€0E @ = ¢.0CQE @ 24 67 CoN 67 A 67
25 ALL 7, -41, -42 = ¢.n00E @ 25 8 ADD -69, €7, 4l, -66 = ¢.C00
26 POT 25, 1.000T 2 = @.0CPE A 26 & INC 54, 68 = @.ceeE ¢ 69
27 con 27 =-5.000E-1 27 7e con 78 = 1.000E @ 70
o8 IPL 46, 27, 26, S4 = €.0CCE ¢ 28 n coN 71 Tooerr 10
0 ALL 28, 4% - C.gooE @ 59 72 POT 40, 1.0€PE-2 = a.@eeg g i
3¢ IPL 54, 29, 8, 55 = 0.00CE @ 3@ ™oy D enoer T
31 MUL 29, 30 = 0.0C0E 0 31 . 20E
a2 POT 4, 1.CE0E-1 = 2.0CCE ¢ 32 75 ALL 76, =72, 4@, 74 = 0.0
3 ALL 45, 57 - e.ores @ 33 76 INC S4, 75 = ¢.C00E @ 76
a4 ALL 32, -45 - 0.2¢QE ¢ 34 77 POT 39, 2.@@PE-S = @.@QCE O 77
35 POT 34, 2.50CE 2 = @.-C@CE ¢ 35 7 covo T8 e e
b9y L a4 B - o.coec o e) ALL =86, 78, 39, =77 = 0.000%
o con 37 - l.oeoE @ b 80 INC 54, 79 = 0.000E ¢ 8e
» INT 5S4, 1@ - ¢.20CE ¢ 38 81 INC 54, @ = Q.0C0E @ g1

= S.AGRCRS
» INT 80, 17 = ¢.00CE @ 39 gi ggz ?2 : é‘gsz . gi
up INT 7¢, 13 = @.P0CE @ 4@ a4 CON 84 =-1.02@CE @ 84
al INT 69, 21 = ¢.0QCE C 41 5 NL 0 - P.000E @ as
42 INT 65, 24 = P.QCOE ¢ 42 E .
Figure 3. ISL Listing for a Repetitively Firing Nerve Cell

157

TRRESHOLD CRITERION

60

64

68

75

79

second IC iteration the calculation must not be up-dated
during the second pass. The solution to this is the INC
block which allows correction during the compute pass but
not the second IC pass through the program. Since the INC
block adds the new input to the old output, the INC output
must be subtracted from the input to satisfy the above
equation..

The Change Mode (CHM) instruction (block 82) allows
simulation control for repetitive operation. ISL has two
modes: “"compute" in which normal program execution occurs
and "initial conditions" (IC), in which initial conditions
are set as shown in the proceding example. When the CHM
is executed and ISL is in IC, the mode is changed to
compute. Control is then transfered to block 0 (zero).
Conversely when CHM is executed and ISL is in compute mode
the mode is changed to IC for an initial condition pass.
The FIN statement then allows for the next instruction to
be executed when in IC mode. This allows the CHM block
to again change the mode back to compute from IC mode.

Notice that blocks 0. 81, and 1 are used for generating
time. Fach time there is a spike (V = 8), time as generated
by the TE block (N) is automatically reset to 0. Therefore
by using the INC (block 81) the value of time (when V = @)
is added to the last INC value and remembered. Thus by
adding the output of TME and INC the true accumulative time
is made available.

Motice also that the input relays (IRL) as shown in
blocks 28 and 30 are used to select values for Y, and P g4
for the active response equation (P) which are dependent on
condition requirements on certain variables.

Statements 45, 46, and 47 show the ISL commands for

outputting results to digital to analog converters which
are in turn used to drive a scope (see Figure 4),

COMPARISON OF ISL AND SNAX

The SNAX language was developed for the POP 11/45
computer and is currently used for math model development
and testing of the nerve cell simulation. The purpose of
the ISL implementation is to provide comparative information
for the two languages.

Approximately 4 hours were required to study the math
model and draw the preliminary ISL flow diagram. This
experience generated several questions that required consul-
tation for correction. An additional seven hours were need-
ed to enter, debug, test, and compare the model with the
SNAX version. The same PDP 11/45 computer was used. ISL
required 15 seconds of computer time to simulate the 14

firings shown in Figure 4. The ISL program required about
520 memory locations to hold the 85 lines of code.
Although provision exists for using hardware multiply/divide
within ISL, this feature was not used for the comparison
run. ISL could have processed the information substantialy
faster if this additional hardware would have been used.

The SNAX simulation required 230 lines of code. SNAX
processed the simulation in 14 seconds by using the floating
point processor available on the PDP 11/45. The results
for ISL and SNAX were found to be identical as can be seen
by comparing Figure 4. To verify the comparison of ISL and
SNAX a run was made where SNAX results were written over the
ISL results (saved on a memory scope) and no appreciable
difference could be noticed.

Figure 3A and 3B show two different time scales for a
simulation of an abrupt depolarization to the cel! which
is responded to by an initially high but exponentially .
declining firing rate. For each simulation the upper Tine
represents threshold (8) and the lower line membrane
potential (V). Impulse time-course is not simulated, but
impulses occur at the discontinuities of 8 aqd V, repre-
senting resets of these quantities by the spike.

CONCLUSIONS

ISL is an efficient general purpose language suitahle
for simulation of analog computer functions on minicomputers.
Its block diagram representation scheme aids in visualizing
the processes being simulated. For an on-line interactive
language it is rapid and conservative of memory. Its
availability on a number of different minicomputers make ISL
programs "exportable" for many of the computer systems
currently employed in neurobiology research.

ACKNOWL EDGEMENTS

Support by Interactive Mini Systems, Inc. and grants
from NSF (#GJ-43177), the Alfred P. Sloan Foundation, and
the University of California Academic Senate to DKH.

REFERENCES

1. ISL Interactive Simulation Language Programing Manual,
Interactive Mini Systems, Inc., 5312 W Tucannon,
Kennewick, Washington 99336 (1974)

2. Hartline, D. K., "SNAX: A language for interactive
neuronal modeling and data processing”, Department of
Biology, University of California, San Diego,

La Jolla, California 92037

50 msec

Figure 4, Comparison of ISL and SNAX for a Repetitively Firing Nerve Cell

function

absolute
value

add
subtract
constant
divide
equate

multiply

pot

sine

cosine

logarithm

exponential

,square root

subroutine

return

heading

print/plot
display*®
(scope)
digital® to
analog conv

analog® to
digital conv

instruction

ABS

ADD

CON

DIv

EQT

MUL

POT

SIN
SND

cos
csD

LOG
LNX

TXP
EXP

saT

SBR

RTN

HDR

PRI
DIsS

DAC

ADC

TABLE 1

MATHEMATICAL INSTRUCTIONS

remarks

function

nstruction remarks
ARITHMETIC CONTROL
B I ' change mode CHM K reverses mode IC to C
N or CtwoIC
N1, #N2,... $NO NZ R= 4Nl & N2 & .. N9 oo ONT K e when iteration count = K
skip next instr and
Nk R = Nk H reset count to K
N end END K reverse mode when in |
N1, N2 N2 q o >— R = N1/N2 and go to block O
otherwise terminate comp
n " n - Y
N1, N2 "2 €Qr R =0 :N2=N1 finish FIN N1, N2 if Nl_.NZ take next instr
H2. otherwise up-date time
N a) and go to block O
N1, N2 i > = N1 x N
" go to GTO Nk go to block Nk
H
N1, v.yyyE y " —(>— R = N1 x vyyE vy transfer TFR N1, N2, N3 o il if N1=N2 go to N3
v-yyvE v n2
TRANSCENDENTALS "
N1 m__l :: > R = sin N1 radians LOGICAL
N1 R = sin 27rN‘l degrees
N1 N‘ R = cos N1 radians input relay IRL N1, N2, N3, N4 PP R = N3 N12N2
N1 R = cos 2 N1 degrees w— 4 R = N4 otherwise
N1 '" R = log(10) N1
N R = fogle) N1 limiter LIM N1, N2, N3 4 R = N1 N3>N1
n3 -
N1 m R = (10) exp NI = N3 N1 =N3=N2
N1 R = (e} exp N1 N N2 N3<N2
N1 "‘_@_ R = square root N1 step size SCH N1, N2, N3, K if NTZN2 S=N3and T =K
change
SUBROUTINE
SPECIAL FUNCTIONS
N1, N2 . . . N8 N1 = block transfer no.
N2 . . . N8 are inputs . :
SBR can reference all comment CCC EXAMPLE COMMENT one line of comment
blocks except 0 to 10
in the main program function FNG N1 " :: > R = f(N1)
K return to block N + 1 of generation
main program from SBR N1
K is meaningless i
increment INC N1, N2 N2. INC> R =ZN2 + N1
= N1 in I C mode
INPUT/OUTPUT f
integrate INT NI, N2, ... N9 " R =ﬁN2 + ... N9t + N1
T1, ... T5 label TTY/L.P. columns
with up to 6 chrs. each N3 p3
| TDL N1, N2, N3 = . sq.
N1, . .. N5 print/plot to TTY/L.P. :ar::bd:ay m R ;:z::g ;ggym) N325: N2
i = . .
N1, N2, N3, N4 X - axis = N1N2 ! N3<s - N2
Y - axis = N3/N4 -
N1, N2, K R = N1/N2 time THE ™ S— each fteration advances
K = channel no.
time by S
K R = ADC output
K = channel no.
program preparation and modification proqram oneratinn
A Append program B Back to numerical listing from plot
E Enter program from external device Cc enter Compute mode
Fn, m edit line m of FNG n | set Initial conditions
J enter Job (program) title H go to Hold (sense switch A for EAl computers)
K Kill (erase) current program P Parameter read and set
L List current program Qn integrator selection (Quadrature}
Ln List statement » » = 0 EULER
Ln, m List statements n through m n = 1 RUNGE-KUTTA 2
Mn Modify statement n . = 2 RUNGE-KUTTA 4
Mn, m Modify statements n through s select integration Step size
R print Remaining memory locations T select Typing frequency
w Write to external device Un select output Unit
space define a CON with current block no. n =0 teletype
extt append n = 1 line printer
CR terminates all program statements v read numerical Value
X select plotting routine and set range

NOTE:

TABLE 2.

159

MUMERTCAL ENTRIES ARE TERMINATED WITH A SPACE, COMMA, OR CARRIAGE RETURN (CR).

ISL Monitor Commands

