A NEW LOOK AT PROCESS ORIENTED SIMULATION LANGUAGES

Jair M. Babad and Linus Schrage
Graduate School of Business, University of Chicago, Chicago, Illinois

1. Introduction

The role of simulation as a research and analysis tool
is widely recognized, and many simulation programming lan-
guages have been developed to facilitate the translation of
simulation models into executable simulation programs.

These languages may be (broadly) classified according to

the underlying modelling approach as continuous (e.g.,
CSMP/360,DYNAMO) or discrete. The discrete languages may

be further classified as event-oriented (e.g., SIMSCRIPT,
GASP), activity-oriented (e.g., ECSL), or process-oriented
(e.g., GPSS, SIMULA, and recent versions of SIMSCRIPT II.5).
Of these, the process orientation is probably the most wide-
ly used due to the popularity of GPSS, which is attributable
in part to IBM's support, as well as to the naturalness of
the process orientation for describing simulated systems.
Even SIMSCRIPT, the most widely used event-oriented simula-
tion language, has recently added process-oriented commands
to its vocabulary. Due to this popularity of the process
orientation, it seems appropriate to restrict attention to
this set of language types.

All process simulation languages (PSL) essentially
translate a simulation process flow-chart into a set of
blocks, or subroutine calls, within the language. During
the simulation transactions (or processes in computer
science terminology) are generated and move through the
process blocks, and various statistics are collected. The
processing of transactions and statistics might involve
various computations and reports. PSL's provide facilities
and commands for all these processing requirements, but
these provisions lag behind current developments in program-
ming, simulation and statistics. In particular, PSL's do
not take into account the time-series nature of the statis-
tical phenomena generated by the simulation. Most PSL's
are designed for a batch-processing environment, in con-
trast to the growing popularity of interactive computer
processing. PSL's also seem to ignore the model construc-
tion process, as some of them include very crude and limited
debugging facilities.

These deficiencies are undoubtedly attributed to the
""archaic" nature of currently successful PSL's. GPSS, the
most widely used PSL, was designed in the late fifties, and
its main commands and capabilities remain as they were
originally implemented. In particular, GPSS is virtually
useless for ordinary computational and processing tasks—

a most disturbing fact, as GPSS is mostly model, and not
statistics, oriented. SIMSCRIPT, though a full-fledged
programming language, has only recently added a limited
vocabulary of process oriented commands. It is heavily
commited to event-oriented simulation, a commitment which
is reflected in the nature of simulation models in SIM-
SCRIPT. The process oriented user who would like to use
SIMSCRIPT should therefore pay a high premium for facilities
that he does not need, both in comprehension time and in
processing costs. SIMULA is an extension of ALGOL and is
powerful in some respects but still lacking in other
Trespects.

These observations motivated our interest in a new
look at process simulation languages. We first describe
the modelling, statistics gathering and programming re-
quirements that, we believe, should be accommodated by any
PSL. This description leads us to a set of principles and
guidelines for a proposed (new) PSL. These guidelines are
directed at the capabilities of the language, rather than
at grammatical and syntactical aspects of it. We hope that
these guidelines will lead (eventually) to the implementa-
tion of such a language, and to an even wider use of process
simulation.

2. Modelling and Programming in Process Simulation

Process simulation is based on a process flow chart,
which follows the progress of a transaction through the
simulated system, from its arrival event to its departure
event. The interaction between a specific transaction,the
various elements of the system, and other transactions, is

31

described by a set of blocks. A PSL accepts a description
of such blocks and flow charts, and simulates the system
either interpretively, or through compiled code (of the
accepted process flow charts). Generally, cach block in a
flow chart corresponding one PSL instruction—a subroutine
call or a block macro. For simplicity, we will denote
these statements as blocks in the sequel.

As is clear from this description, a PSL should con-
tain blocks that describe the progress of a transaction
through the system. These include generation, advancing
and termination blocks. However, in contrast to event
simulation, a PSL should take into account interaction
among transactions, which may result in conditional ad-
vancement or waiting. This ''conditional progress'" requires
a complicated and sophisticated ''clock' —or an (underlying)
list manipulation mechanism; clearly, an efficient opera-
tion of this mechanism is essential to effective simulation.
In particular, a user who knows his simulated model, and
who can manipulate the events list mechanism, might achieve
considerable savings in computing time. Current PSL's,
however, include very limited capabilities for user's
manipulation of the events list. While this approach makes
PSL design easier, it is less desirable from the user's
point of view.

The capability to manipulate the clock mechanism is
of particular importance in an interactive simulation, in
which the user might decide to change the flow of events
or skip some events. The advantages of such interaction
are self-evident, and in accordance with the experimental
nature of simulation. Further, such an interactive capa-
bility would tremendously enhance the debugging of simula-
tion models. Debugging is an arduous task by itself; but
when it is coupled with the random nature of simulation,
the limited control of the user on the system's progress,
and the very limited report generating capabilities of
some PSL's, it becomes an almost impossible task. Inter-
active simulation is therefore very important for debugging
complex simulation models.

On the other hand, it is very clear that interactive
simulation might lead to deadlock situations and increased
overhead, and therefore must be carefully designed. This
is one area in which current PSL's are clearly deficient,
and which requires much work by designers of any new PSL.

Another area in which current PSL's are deficient are
limited computational capabilities. This is the case
mainly with GPSS, because of its INTEGER inherent mode,
the cumbersome FUNCTION and VARIABLE blocks, and the lack
of standard functions. A possible solution is the use of
a full-fledged programming language--e.g., to link a
FORTRAN or PL/I module to a GPSS program, or to learn the
whole SIMSCRIPT language. This solution is a hindrance
to many users who would like to use simulation without
overburdening themselves with many programming details.

Another programming aspect which is alien to the
process simulation, but is necessitated by current PSL, is
the declaration or preamble, section of the simulation
program. In this section the user defines the entities to
be included in the simulation and their interrelations.
Historically, all the early programming languages required
such a section in users' programs. But the experience of
APL shows that many of the declarations in this introduc-
tory section might be eliminated. As this section is
usually the source for many programming errors its (par-
tial) elimination is clearly desirable.

In the same spirit, the structure of SIMSCRIPT pro-
grams is far from process oriented because of its need for
a PREAMBLE and MAIN. As a result, a simulation program in
one of these languages does not resemble the model as
closely as a GPSS program does, and much of the process
simulation appeal and naturalness are eliminated. On the
other hand, GPSS is (too much) oriented toward assembly
language, and its instructions are too rigid. In particu-
lar, they lack the "English-like' form of SIMSCRIPT.



3. Statistics Collection in Simulation

All current PSL's have single instructions or blocks
which do global statistics collection. Examples of these
are the QUEUE-DEPART and TABULATE blocks of GPSS, and the
TALLY and ACCUMULATE of SIMSCRIPT. In addition, each of
these languages has some words (or names) that are used
solely for statistical purposes, like some of the SNA's in
GPSS, and MEAN of SIMSCRIPT. However, the approach of PSL
to statistics is not less archaic than some of their model-
ling and programming concepts, as they do not per se take
into account the time series nature of the statistical
phenomena that are generated by the simulation. In particu-
lar, present day built-in statistics collection instructions
compute estimates of variance as if the individual observa-
tions were independent, whereas it is well known that the
waiting times, say, of jobs in a shop tend to be highly
serially correlated. A PSL should enable the user to easily
collect time series statistics, and, at the minimum, serial
correlations and covariance matrices.

Another statistical facility that is of value is the
capability to aggregate, or group, individual observations
(like job waiting times), into larger macro-observations.
This aggregation tends to reduce the correlation among
macro-observations. Another aggregation mechanism should
be data-dependent—e.g., enabling the user to group observa-
tions along the lines of the ''regeneration point" approach
of Babad [1], Fishman [6], and Crane and Iglehart [4].

The user should also have the ability to ''preload" the
system, discard certain intervals of initial data, or save
the system status for future use. All of these capabilities
are essentially nonexistant in current PSL, or are cumber-
some and very restrictive.

It should be noted that much work should still be done
on the empirical evaluation of the various methods proposed
for analyzing simulation data. The works of Law [8], Babad
[1], and Duket and Pritsker [S5] indicate that data analysis
methods should be thoroughly tested on a well understood
system, regardless of the apparent reasonableness of these
methods .

4. Guidelines for a Process Simulation Language

The discussion above demonstrates the need for a new
PSL, which would overcome many, if not all, of the deficien-
cies in current PSL. In this section we present our ideas
for the structure of such a language. We believe that this
language is long overdue, and hope to see it implemented in
the near future. For ease of reference, let us denote it
as NPSL, i.e., the New Process Simulation Language. We
would like the statement syntax of NPSL to be much like that
of SIMSCRIPT II.

The basic structural element of NPSL is a block, in
the sense of a PL/I block; i.e., a block in NPSL is a
sequence of one or more instructions, which are logically
related and can be referenced as a unit. A block will thus
be used to describe the progress of a transaction through
the system, a computation to be done, a report to be print-
ed, a declaration of an entity, and the like. In other
words, a block is used both in the role of a SEGMENT in
GPSS, and a FUNCTION in FORTRAN. The use of blocks imposes
modularity on the user, and corresponds to the current
trend in program development and structure. Each block will
be identified by its name (or label) and by a key word which
would describe its purpose; e.g., COMPUTE block, PROCESS
block, and the like. A reference to the name in other parts
of the simulation program will then automatically involve
the named block.

The modelling of a system will involve transactions,
their progress through the system, and their interactions.
Three types of objects will be recognized by NPSL: trans-
actions, resources and sets. A transaction is considered
to be the element whose progress through the system is
described by a process block. It is GENERATEd, may be a
MEMBER of a set and/or OWN another object, and eventually
its progress through the system is TERMINATEd. A trans-
action may have as many attributes as needed for and during
the simulation; these attributes might be set automatically
by the NPSL, e.g., when they have been declared, or might be
set dynamically by the user. A transaction USE's a resource;

32

this use automatically manages the involved resources.
Finally, a transaction may be SCHEDULEd for some future time;
in this case the transaction should be deactivated till this
future time, when the NPSL will automatically activate the
transaction. It should be noted that we envision the USE

and SCHEDULE as very general operations, which may be condi-
tioned on (essentially) any thing that happens and/or exists
in the system. In other words, a transaction might USE a
resource WHILE no other transaction with higher priority

uses it, or it might USE resource A WHILE resource B is being
USEd by a transaction with a given attribute, etc. Conse-
quently, USE and SCHEDULE will accommodate simple FIFO
queues, as well as complex priority and preemption situa-
tions. Note that we do not distinguish between priorities
and other attributes; thus, for example, a transaction might
have many priorities, each for the use of another resource.

Resources correspond to FACILITIES and STORAGES in
GPSS. Each resource has a capacity, is associated with a
rate (or distribution) of service, may be LOCKed (or shut-
off), etc. Further, the USE of a given resource might be
conditioned, e.g., resource A may be USEd by transactions
with priority exceeding B, or only when transactions with
attribute C are also using this resource.

Finally, sets might be used for automatic grouping of
other entities —either for statistical and reporting pur-
poses, or for control of the system's progress. Thus, the
progress of a transaction might be delayed due to its inclu-
sion in some set, etc. We allow very general set structures
— both hierarchical and network type sets. For example,
entities in a family might be described by a hierarchical
set, in which there is a set of parents which owns a set of
children. The parental set might include two elements —
father and mother —without any imposed hierarchy. Further,
a set might be defined as the last k entities of a certain
type, or as a group of k elements. Thus, the system would
allow, for example, for moving averages (by considering the
average value for a set of the last k elements), or for
group averages (of a set of k elements, which is then
emptied and "restarted"). This grouping might also be con-
ditioned on the occurrence of certain events, e.g., certain
''regeneration points."

The language elements that have been discussed so far,
are in our opinion sufficient for the modelling of any sys-
tem. But, an NPSL clearly requires additional language
elements. In particular, we should discuss briefly the
(simulation) control, statistics collection, computational
and programming aspects, and input/output facilities.

The control of the simulation should include both
transactions progress control and run control. We already
mentioned the activation/deactivation capabilities of
SCHEDULE. We suggest including SCAN and MONITOR control
blocks in the NPSL. The user should be able to MONITOR
the system for the occurrence of a specific event, like a
certain point in time, a queue that is filled to capacity,
and so forth, When a MONITORed event occurs, the status of
the system at this point will be saved; the user should thus
be able to SCAN for this status, and re-run the system from
this status on. Similarly,the user 'should be able to tell
the NPSL that it should reSCAN the pending transactions
list, that it should not SCAN certain transactions lists;
or that it should SCAN to the next event; i.e., running
the simulation "one event at a time," which is an
especially useful debugging device.

Similarly, we propose to have for debugging purposes
TRACE — UNTRACE and FLOW—UNFLOW blocks, which might be con-
ditioned on the occurrence of certain events. Both should
be activated, by the execution of desired blocks, as well
as by the usage of requested names--either as receptors in
assignments (i.e., when they appear on the left hand side
of an equation) or elsewhere. Notice also that the MONITOR
and SCAN capabilities, when combined, constitute a capabil-
ity which is essential for debugging.

The MONITORing capability is of value when the sys-
tem's overall control is considered. The user can reSTART
the system from every MONITORed status, and thus can start
his simulation at a preconceived status, discard initial,
nonstable, data, and the like. The overall system's control
will be performed by a CONTROL block. Note that parallel



runs, which are used to compare alternative policies, might
be easily performed; e.g., be STARTing with initial run,
MONITORing the status at the end of the run, reSTARTing from
this status for each alternative policy, and MONITORing the
status at the end of each policy's run. Finally, a COMPUTE
block could be used to compare the MONITORed policy's runs.
In other words, we believe that the control elements speci-
fied above are powerful enough, and sufficiently flexible,
to accommodate many simulations that are impossible, or
cumbersome to perform in today's PSL.

For statistics collection, we propose automatic record-
ing of attributes' changes, as is being done today by
SIMSCRIPT (for elements which are defined in the PREAMBLE)
or by GPSS (for SNA). However, as is true with any other
capability of the NPSL, this automatic recording may be con-
ditioned. Similarly, we envision automatic recording of
entities' statistics, which include the standard measures
like mean and variance. In addition, the user should be
able to request automatic recording of covariances, serial
correlations of certain orders, and similar statistics.

Note that these capabilities, when applied to sets, allow
the grouping of data which is as so desired for covariance
reduction, as described in an earlier section. The NPSL
would also automatically perform final statistical analysis,
like confidence intervals, conversion of sums of squares to
variances, etc.

Finally, a few words should be devoted to standard
programming facilities. We would like to see a powerful
report generator. This will be similar to the one used by
SIMSCRIPT, or by advanced Management Information Systems.
Each report will be defined by a block, which would be in-
voked when needed. The NPSL will also have standard compu-
tational facilities, including branching, looping (in a
PL/1 type Do ..WHILE.. style), etc. In particular, the NPSL
should include powerful and reliable distribution generators
among its standard computational functions.

5. Conclusion

In this paper we outlined our approach to process
simulation languages. We started with a quick analysis of
deficiencies in current process simulation languages, and
then described the main features that (we believe) such a

33

language should have.

Our notions may be challenged by

many, and we are sure that such a challenge will only im-
prove the quality of such a proposed language, and enrich
the whole field of process simulation.

(1]

(2]

(3]

(4]

[s]

(6]

(7]

(8]

(9]

REFERENCES

Babad, J., '"The IBM GPSS Random Number Generator,'
to appear in GPSS Application Cases, ed. by T. Schriber.

Conway, R. W.; Johnson, B. M.; and Maxwell, W. L.,
""Some Problems of Digital Systems Simulation,"
Management Science, Vol. 6, No. 1, pp. 92-110,
October 1959.

Conway, R. W., "Some Tactical Problems in Digital
Simulation,' Management Science, Vol. 10, No. 1,
pp. 47-61, October, 1963.

Crane, M. A., and Iglehart, D. L., "Simulating Stable
Stochastic Systems: II. Regenerative Processes and
Discrete-Event Simulations,” Operations Research,
Vol. 23, No. 1, pp. 33-45, January, 1975.

Duket, S. D., and Pritsker, A. A. B., "Spectral Methods
of Simulation Output,” Technical Report, Purdue
University, 1975.

Fishman, G. S., '"Bias Considerations in Simulation
Experiments," Operations Research, pp. 785-790, 1972.

Fishman, G. S., and Kiviat, P. J., '"The Analysis of
Simulation Generated Time Series,' Management Science,
Vol. 13, pp. 525-557, March, 1967.

Law, A., "A Comparison of Two Techniques for Deter-
mining the Accuracy of Simulation Output,' Technical
Report, Department of I. E., University of Wisconsin,
June, 1975.

Merrill, F., and Schrage, L., "Efficient Use of Jurors:
A Field Study and Simulation Model of a Court System,'"
Washington University Law Quarterly, Vol. 1969, No. 2,
pp. 151-183, Spring, 1969.




