AN INTERACTIVE LANGUAGE FOR DISCUTE

DIGITAL SIMULATION

Dr. G. K. Hutchinson
University of Wisconsin
Milwaukee, Wisconsin

Introduction

Although difficult to prove, many feel that a major de-
terant to the use of simulation as a practical problem solv-
ing tool is the difficulty and length of time involved in
designing, programming and verifying simulation models.

This paper discusses CAPS, Computer Aided Programming for
simulation, a simulation system developed at the University
of Birmingham by Dr. A. T. Clementson. CAPS uses the prin-
ciples of computer aided design to assist a user in describ-
ing his problem through an interactive dialog. CAPS then
writes the user's model in ECSL, Extended Control Simulation
Language. The model generated is guaranteed to be logically
consistant and the program will execute on the first run.
The result is a substantial reduction from the time of prob-
lem definition to the point where simulation output is
available for decision making.

The CAPS/ECSL simulation package is based upon the de-
composition of the system under study using activity cycles,
rather than events processes or work flow. Activity cycles
have been used as a basis for systems analysis for some time
in England and were used as the foundation upon which Mr. R.
Hills built the HOCUS simulation language. There are many
indications that ECSL is the most popular simulation lan-
guage in England, even before the availability of CAPS. The
purpose of this paper is to show the ease with which simula-
tions can be performed using the CAPS/ECSL system.

The first section contains an introduction to activity
cycles and discusses the CAPS dialogs with an example. The
appendix contains the actual CAPS dialog for generating a
model of the system, a listing of the ECSL code generated by
CAPS, and the results of executing the code. Interested
readers should be able to use CAPS after reading the paper.

An Introduction to Activity Cycles

Before simulation activities can begin, some method
must be chosen for breaking down a complex system, such as a
store or factory, into smaller and simpler subsystems for
ease of manipulation and understanding. This process is la-
beled decomposition and activity cycles is one of the
methods used. For the purposes of this paper, a system is
considered to be composed of entities, things which we wish
to talk about and whose behavior we wish to describe as time
advences. In a factory, the entities might be men, machines
and jobs. In a store, they might be customers, clerks, and
helpers. These entities may have attributes which distin-
guish and describe them. Customers might have budgets and
number of items. Clerks might have check-out rates and
skill levels. Helpers could be described by pay and perfor-
mance rates.

The basic step in decomposing a system under study is
to identify the entities of interest and group them into
classes having similar or identical behavior patterns.
These patterns are determined by observing that entities
have two possible states, active and idle. Conceptually, it
is useful to think of the entities as alternating between
states of activeness and idleness, even if the time spent,
or duration, of one of the states is of zero length. For
instance, a customer might have the activity cycle shown in
Figure 1, where active states are shown as oblongs and idle
states, or Queues, as circles.

25

Customer
Cycle

CHECK
ouT SHOP

Figure 1. Customer Cycle

Slem—

The queue, PAUSE, might have zero duration, as the customer
might start the activity, SHOP, immediately begin upon the
completion of the activity, ENTER. It appears that the cus-
tomer will immediately re-enter the store upon completion of
the activity, CHECKOUT. Actually this merely reflects the
fact that the diagram must be drawn so as to close the cycle
for each entity, a requirement of CAPS. The implications of
this will be discussed.

In most systems of interest, entities that are of im-
portance will usually spend some time in the queues, because
the activity for which they are queued requires more than
one entity before it can be undertaken. These activities
are known as cooperative activities. For instance, the ac-
tivity CHECK OUT might require a clerk. Assuming the only
activity for the clerk is CHECK OUT, the activity cycle
would be as shown in Figure 2.

CLERK CHECK

CYCLE ouT

Clerk Cycle

‘——-~“““~1;

Figure 2.

The basic rule for cooperative activities is that each of
the entities required by the activity must be in its imme-
diate predecessor queue before the activity can begin. Thus,
if a clerk is in IDLE and no customer is in WAIT, the clerk
will spend at least a unit of time in queue.

The other major type of activity is the bound activity,
which requires a single entity. For example, ENTER and SHOP
are bound activities as shown in Figure 1. A customer fin-
ishing CHECK OUT passes through LEAVE without the passage of
time and begins ENTER, an unrealistic situation (under most
circumstances) which will be corrected.

It is usually useful to integrate the activity cycles
for the various entities, for the store--the activity cycle
diagram is shown in Figure 3.

T)
Q CUSTOMER
— _Asor]

.4 OUT |t

’ N

Figure 3. Combined Clerk and Customer Cycles

It is important to note that this diagram contains the
complete logic of the store system as we now know it, based
on two entities types, customers and clerks. The activity
cycle diagram is independent of the number of customers or
clerks. Thus, the diagram is equally applicable to a super-
market or a corner shop. The complexities associated with
quantities of entities interacting disappear and the analyst
can concentrate on the behavior of classes of entities.

The unrealism of customers immediately returning to
shop after leaving was previously noted. It is easiest to
visualize the queue LEAVE as being a pool of customers,
serving as both a source and sink while fulfilling the re-
quirement of closing the activity cycle. This presents the
problem of restraining the customers from immediately enter-
ing the store after departing. This can easily be done by
introducing a logical entity, ARRIVES, which has the cycle
given in Figure L.

NEXT

ARRIVES

Figure 4. logical Cycle Limiting Customer Entry

Now ENTER is a cooperative activity that can't begin until
an arrives is in START and a customer is in LEAVE. The
logical entity, arrives, serves as a metering device for
customers coming into the store, the rate being determined
by the cycle duration of arrives. If ENTER is given a dura-
tion of 0, then the cycle time for arrives is the duration
of NEXT. Choosing the distribution of NEXT sets the pattern
of customer arrivals or, in queuing terms, the birth rate.

CAPS Dialogs

The basic input to CAPS is the logic of the activity
cycle for each entity. These are specified, upon request by
CAPS, by giving, for each entity, the alternating queues--~
proceeded by a Q--and activities--preceeded by an A. CAPS
performs many logic and consistency tests as the user sup-
plies these cycles, pointing out the consequences of the
user's model and inconsistencies (see Reference I for de-
tails). In fact, CAPS will not allow a user to proceed un-
til e logically consistant model has been specified. Users
are often surprised by CAPS's ability to point out shortcom-
ings in their models, such as: "SHOP is a bound activity
(it will start immediately upon completion of the preceding
activity)", "No more than 3 of the 10 CUSTOMERS can be ac-
tive at one time", or most devastating "Your problem does
not require simulation, the static solution is...".

To complete the information needed for simulation pur-
poses the following categories of user input must be given:

The duration of each activity

The queuing disciplines followed by each queue
. The starting conditions

. The system recording functions.

Fw -

Activity durations may be a constant (10), a random

26

/’(\\
-

_ -~ DURATION = NEGEXP(10) - _

ARRIVES

RETURN)

PAUSE
DURATION =
NORMAL(20,5) | SKIP
DURATION = NORMAL(8,2)
CHECK @
1 ouT
.

Figure 5.

Store Activity Cycle Diegram

Queuing disciplines are assumed to be first-in first-
out unless otherwise stated. Other disciplines, such as
last-in first-out, random, or maximum of an expression, are
readily available. For instance, the clerk might choose the
next customer for CHECK OUT to maximize the expected tip.

The starting conditions for the simulation are usually
chosen to avoid the transient conditions associated with
starting conditions of "empty and idle". This is easily ac-
complished by indicating the activities in progress and
their completion times. All entities which are not involved
in activities in progress must be placed in appropriate
queues and the length of the simulation stated.

Simulations run with CAPS written programs automatical-
ly provide the user with a count of the number of each ac-
tivity started. In addition, the user can specify the re-
cording of the length and weit time distributions for any
queue in which entities mey spend time.

The final user input is the duration of the simulation
run. The example chosen is simple, by design, to illustrate
the basic capabilities of CAPS. Interested readers will
note that the system being simulated could be solved without
simulation.

The appendix contains a listing of the actual CAPS dia-
log, with comments; a listing of the ECSL code written by
CAPS; and the results of executing the code. The computing
system used was the University of Wisconsin's Univac 1110
and the elapsed time from sign on to completion was 30 min-
utes. The CAPS/ECSL System is operational on a world-wide
basis on any computer having a 16K core, backing store, and
an ASCII Fortran IV compiler.

The generation of this code for the model in ECSL is
very important, for it gives the analyst the ability to ea-
sily modify the model generated by CAPS to incorporate
features inconvenient to handle in CAPS or beyond the domain
of CAPS. Studies at the University of Birmingham indicate
that even for such cases, CAPS can generate about 90% of the
final code of a model. They have also found that it takes
nearly 10 times as many Fortran, as compared to ECSL, state-
ments for a given problem.

ECSL is a complete simulation language with power e-
quivalent to SIMSCRIPT and SIMULA. It is the most widely
used simulation language in England, perhaps because of

their heavy use of activity cycles for systems decomposi-

tion. It is a completely structured language with built-in
trace and debugging facilities. It has full set operators,
short assignments (X+1 not X=X+1), implicit subscripts and
full statistical capabilities, including independent random
number streams and antithical series.

Conclusions

The ability of the CAPS/ECSL system to provide simula-
tion output in a short time frame has been illustrated for a
very simple problem. The use of activity cycles as a basis
for system decomposition, for input to CAPS, and for ease of
communication of the logical relationships of a system has
been demonstrated. The CAPS/ECSL system appears to hold
promise as a vehicle for making simulation a practical prob-
lem solving tool and as a basis for teaching the use of sim-
ulation in realistic environments.

References

1. Clementson, A. T., "Computer Aided Programming for Simu-
lation", Univeristy of Birmingham.

2. "Extended Control and Simulation Language - User's Manu-
al University of Birmingham.

3. Hutchinson, G. K., "An Introduction to Activity Cycles.
Simuletter, October, 1975.

L. Hutchinson, G. K., "An Introduction to CAPS", Simuletter,
October, 1975.

Appendix

I. CAPS Dialog

The following is e reproduction of the actual CAPS in-
teractive dialog with the University of Wisconsin Univac
1110. CAPS output is in capitals and user responses in low-
er case. The symbol (CR) is used for carriage return, fre-
quently used as a signal to CAPS of the end of a processing
subsection. The dialog took place in 15 minutes on a 30 cps
Tl terminal.

COMPUTER AIDED PROGRAMMING - SIMULATION***C A P S*¥%11/21/75
UNIVERSITY OF WISCONSIN.CONTACT G.HUTCHINSON 963-427h

DO YOU WISH TO HAVE INSTRUCTIONAL COMMENTS-

Yes

DURING THIS DISCUSSION YOU WILL BE ASKED FOR A NUMBER OF
LISTS.

WHEN A LIST IS COMPLETE A BLANK LINE SHOULD BE ENTERED.

IF WHEN TYPING YOU MAKE ERRORS, THESE MAY BE CORRECTED

BY BACKSPACING (ERACES LAST CHARACTER) USE THE CTRL+H KEYS
OR ERACE FIELD (ERACES LINE) USE THE CTRL + X KEYS

WHEN A LINE IS COMPLETE PRESS EOF.

PLEASE NOTE-ONCE EOF HAS BEEN PRESSED

IT MAY NOT BE POSSIBLE T MAKE CORRECTIONS IMMEDIATELY
THE DISCUSSION IS IN FIVE SECTIONS
LOGIC-PRIORITIES-ARITHMETIC-RECORDING-INITIAL CONDITIONS
AT THE END OF EACH SECTION IT IS PPOSSIBLE

TO RETURN TO THE BEGINNING OF ANY EARLIER SECTION

DO YOU WISH TO START A NEW PROBLEM
Yes

PROBLEM NAME -

Shopping

TYPE NAME OF ENTITIES
Customer
HOW MANY
12
TYPE A LIST OF THE STATES THROUGH WHICH THESE ENTITIES PASS.
THIS SHOULD CONSIST OF EITHER-
A) AN ALTERNATION OF QUEUES AND ACTIVITIES,
STARTINGAND ENDING WITH A QUEUE
OR B) A LIST OF ACTIVITIES ALONE
PRECEDE QUEUES BY Q AND ACTIVITIES BY A
qleave
aenter
qpause

27

ashop

qwait

acheck

qleave

(er)

{8 THIS CYCLE CORRECT
yes

TYPE NAME OF ENTITIES
clerk

HOW MANY
2

TYPE LIST OF STATES AS ABOVE
qidle
acheck
qidle
(er)

IS THIS CYCLE CORRECT
yes

TYPE NAME OF ENTITIES
arrives

HOW MANY

1

TYPE LIST OF STATES AS ABOVE
qreturn

anext
gstart
aenter

qreturn

(er)

IS THIS CYCLE CORRECT
yes

TYPE NAME OF ENTITIES
(er)

ARE THERE ANY ACTIVITIES WHICH USE MORE THAN ONE
ENTITY OF A PARTICULAR TYPE-
no

FROM WHAT YOU SAID SO FAR, THE FOLLOWING ARE THE

MAXIMUM NUMBER OF SIMULTANEOUS REALISATION OF THE ACTIVI-

TIES

ACTIVITY NUMBER
ENTER 1
SHOP 12
CHECK 2
NEXT 1

DO YOU WISH TO APPLY ANY LOWER LIMITS
no

ACTIVITY SHOP APPEARS TO BE BOUND TO ENTER
I.E. THE FOLLOWING QUEUES ARE DUMMIES

PAUSE

DO YOU AGREE
yes

DO YOU WISH TO SEE A SUMMARY OF THE CYCLES
yes

CUSTOM 12 QLEAVE AENTER Q ASHOP QWAIT ACHECK QLEAVE
CLERK 2 QIDLE ACHECK QIDLE

ARRIVE 1 QRETURN ANEXT QSTART AENTER QRETURN

ENTER USES 1 CUSTOM 1 ARRIVE
SHOP USES 1 CUSTOM
CHECK USES 1 CUSTOM 1 CLERK
NEXT USES 1 ARRIVE
DO YOU WISH TO MAKE ANY CHANGES IN THE LOGIC SECTION
no

PRIORITIES
ARE THERE ANY QUEUES WHOSE DISCIPLINE IS NOT F-I-F-O -

no

THE FOLLOWING ARE BOUND ACTIVITIES

(A BOUND ACTIVITY IS ONE WHICH WILL ALWAYS START IMMEDI-

ATELY
UPON THE COMPLETION OF THE PRECEDING ACTIVITY)

SHOP

THE ORDER OF THE FOLLOWING ACTIVITIES IN UNIMPORTANT
CHECK
NEXT

ENTER
DO YOU WISH TO MAKE ANY CHANGES IN THE PRIORITY SECTION
no

ARITHMETIC

AFTER EACH ACTIVITY NAME, TYPE, FORMULA FOR ITS DURATION
CHECK =

normal (8 2 xx)

NEXT +

negexp (10 xc)

ENTER =

o

SHOP =

normal (20 5 xd)

IN WHICH ACTIVITY IS XX EVALUATED-
(N.B. IF VARIABLE IS NOT TO BE EVALUATED BY ANY ACTIVITY,
JUST TYPE EOF)
(er)
WHAT IS ITS INITIAL VALUE-
1235
IN WHICH ACTIVITY IS XC
(cr)
WHAT IS ITS INITIAL VALUE-
321
IN WHICH ACTIVITY IS XD
(er)
WHAT IS ITS INITIAL VALUE-
987
DO YOU WISH TO DEFINE ANY OTHER ATTRIBUTES FOR ENTITIES
no
DO YOU WISH TO MAKE ANY CHANGES IN THE ARITHMETIC SECTION
no
RECORDING
TWO KINDS OF RECORDING MAY BE INCLUDED
1) LENGTH OF QUEE
2) LENGTH OF TIME ENTITY IS DELAYED IN QUEUE
TYPE, AFTER THE QUEUE NAME, WHICH KIND OF RECORDING IS RE-
QUIRED
TYPE 0, IF NO RECORDING REQUIRED
TYPE 3, IF BOTH KINDS ARE REQUIRED
WAIT =

EVALUATED-

EVALUATED-

LEAVE

IDLE =

FOR EACH QUEUE FOR WHICH DELAYS ARE TO BE RECORDED
SPECIFY THE HISTOGRAM RANGE

(THIS RANGE WILL BE DIVIDED INTO 10 EQUAL
WAIT RANGE=0 TO
Lo

IDLE RANGE=0 TO

INTERVALS)

20
DO YOU WISH TO MAKE ANY CHANGES IN THE RECORDING SECTION
no

INITIAL CONDITIONS
ARE THERE ANY ACTIVITIES IN PROGRESS
yes
(NOTE-TERMINATION TIMES MUST BE CONSTANTS)
ACTIVITY -
shop
TERMINATION TIME =
5
TERMINATION TIME =
1k
TERMINATION TIME =
22
TERMINATION TIME =
23
TERMINATION TIME =
(er)
ACTIVITY -
check
TERMINATION TIME
I

TERMINATION TIME =
(cr)

28

ACTIVITY -

next

TERMINATION TIME =
2

ACTIVITY -

(er)

TYPE HOW MANY ENTITIES SHOULD BE IN EACH QUEUE LISTED
AFTER THE QUEUE NAME
CUSTOM - 12 ENTITIES

5 USED BY ACTIVITIES IN PROGRESS

WAIT -

1

LEAVE -

CLERK - 2 ENTITIES
1 USED BY ACTIVITIES IN PROGRESS
IDLE -

2

ONLY 1 LEFT - TRY AGAIN

1

ARRIVE - 1 ENTITIES
1 USED BY ACTIVITIES IN PROGRESS
PLEASE GIVE THE DURATION OF THE SIMULATION
200
DO YOU WISH TO MAKE ANY CHANGES IN THE INITIAL CONDITION
SECTION
no
CHECK ,WHICH YOU HAVE USED AS A NAME, IS AN ECSL KEYWORD
PLEASE GIVE A REPLACEMENT -
ocheck
HAVE YOU FINISHED-
yes

YOUR CAPS GENERATED PROGRAM,IN ECSL IS IN FILE H.

CAPS AND MACC BID YOU ADIEU.

@ADD ,P H*SS.RUNOL

@ADD,P H*SS.RUNOL

READY

READY

FURPUR-MACC 2.0L4-11/21-12:27
11 BLOCKS COPIED

COPY COMPLETED..

@ADD H.

E.C.5.L. SYSTEM - UNIVERSITY OF WISCONSIN

@ADD H.
ADD FILE NOT ASSIGNED OR CATALOGUED
ERRO MODE ERR-TYPE: 02 ERR-CODE: 05

ERROR ADDRESS: 023522 BDI: 00000k
USFR DID AN ER EABT$

REENT ADDR:057627 BDI :200005
@ASG,UP HH.

READY

@COPY HH.,??

@COPY H.,HH.

FURPUR-MACC 2.0L4-11/21-12:28

H IS NOT CATALOGUED OR ASSIGNED
FAC STATUS: 1400010000000

@PRT,T H.

u IS NOT CATALOGUED OR ASSIGNED
FAC STATUS: 400010000000

@PR??

@EDIT, U H.

CAN'T ASSIGN INPUT FILE

@H*SS.CAPS

COMPUTER AIDED PROGRAMMING - SIMULATION**¥C A P S¥#x
11/21/75

UNIVERSITY OF WISCONSIN. CONTACT G. HUTCHINSON 963-4274

II. ECSL PROGRAM GENERATED

The CAPS dialog resulted in a program, written in ECSL.

The listing of the program follows. Note that there are no
"GO TO's", the code in modular, and logic is designated by
indentation.

E.C.S.L. SYSTEM - UNIVERSITY OF WISCONSIN

* COMPILE SHOP

E.C.S.L. SYSTEM UNIVERSITY OF WISCONSIN PROGRAM - SHOP

COMPILED ON 11/21/75 PAGE 1
1 THERE ARE 12 CUSTOM SET WAIT LEAVE WITH TIME
2 THERE ARE 2 CLERK SET IDLE WITH TIME
3 THERE ARE 1 ARRIVE SET START RETURN
L FUNCTION PICTURE NEGEXP NORMAL
5 HIST ZAWAIT (CUSTOM 0,1)
6 HIST WWAIT (10, 2, L)

7 HIST ZBIDLE (CLERK 0,1)

8 HIST WIDLE (10, 1, 2)

9 DURATION= S

10 CHAIN

11 CUSTOM 1 INTO WAIT AFTER DURATION

12 TIME OF CUSTOM 1 = DURATION

13 DURATION= 1k

14 CHAIN

15 CUSTOM 2 INTO WAIT AFTER DURATION

16 TIME OF CUSTOM 2 = DURATION

17 DURATION= 22

18 CHAIN

19 CUSTOM 3 INTO WAIT AFTER DURATION

20 TIME OF CUSTOM 3 = DURATION

21 DURATION= 23

22 CHAIN

23 CUSTOM 4 INTO WAIT AFTER DURATION

24 TIME OF CUSTOM 4 = DURATION

25 DURATION= L

26 CHAIN

27 CUSTOM 5 INTO LEAVE AFTER DURATION

28 CLERK 1 INTO IDLE AFTER DURATION

29 TIME OF CLERK 1 = DURATION

30 DURATION= 2

31 CHAIN

32 ARRIVE 1 INTO START AFTER DURATION

33 RECYCLE

34 ACTIVITIES 200

35 BEGIN RECORD
36 DURATION=CLOCK-PREVCLOCK
37 PREVCLOCK=CLOCK

38 ADD A TO ZAWAIT ,DURATION
39 ADD B TO ZBIDLE ,DURATION

L0 BEGIN OCHECK

b1 FIND FIRST COLUMN A IN WAIT

42 FIND FIRST CLERK B IN IDLE

43 DURATION=NORMAL (8 , 2 XX)

Li OCHECK+1

45 CHAIN

L6 CUSTOM A FROM WAIT INTO LEAVE AFTER DURATION
47 ADD -TIME OF CUSTOM A TO WWAIT

48 CLERK B FROM IDLE INTO IDLE AFTER DURATION
49 ADD -TIME OF CLERK B TO WIDLE

50 TIME OF CLERK B = DURATION

51 REPEAT

52 BEGIN NEXT

E.C.S.L. SYSTEM UNIVERSITY OF WISCONSIN PROGRAM - SHOP
COMPILED ON 11/21/75 PAGE 2

53 FIND FIRST ARRIVE A IN RETURN

54 DURATION=NEGEXP (10 XC)

55 NEXT +1

56 CHAIN

ST ARRIVE A FROM RETURN INTO START AFTER DURATION

58 REPEAT

59 BEGIN ENTER

29

60 FIND FIRST COLUMN A IN LEAVE

£1 FIND FIRST ARRIVE B IN START

£2 DURATION=0

63 ENTER +1

64 ADURATION= DURATION+NORMAL (20, S5 XD)

65 CHAIN

(6, CUSTOM A FROM LEAVE INTO WAIT AFTER ADURATION
67 TIME OF CUSTOM A =ADURATION

68 ARRIVE B FROM START INTO RETURN AFTER DURATION
69 REPEAT

70 BEGIN COUNT QUEUES

71 COUNT A IN WAIT

72 COUNT B IN IDLE

73 FINALISATION
T4 PRINT/OCHECK WAS STARTED/OCHECK/ TIMES/

75 PRINT/NEXT WAS STARTED/NEXT / TIMES/

76 PRINT/FNTER WAS STARTED/ENTER / TIMES/

77 PRINT//HISTOGRAM OF LENGTH OF QUEUE WAIT /
78 PICTURE(ZAWAIT)

79 PRINT//HISTOGRAM OF DELAYS AT WAIT /

80 PICTURE(WWAIT)

81 PRINT//HISTOGRAM OF LENGTH OF QUEUE IDLE /
82 PICTURE(ZBIDLE)

83 PRINT/HISTOGRAM OF DELAYS AT IDLE /

84 PICTURE(WIDLE)

85 DATA

86 WAIT 6

87 LEAVE 7 TO 12
88 IDLE 2

89 xp 987

90 XC 321

91 XX 1235

92 END

III Program Execution

The following is the output from the execution of the
program given above. The elasped time from log-in to log-
off was 27 minutes. The program generated by CAPS can be
saved, modified and rerun to avoid going through CAPS again.
Multiple execution runs are easily accomplished to assist
the user in experimental undertakings.

E.C.S.L. SYSTEM - UNIVERSITY OF WISCONSIN
* EXECUTE

E.C.S.L. SYSTEM PROGRAM - SHOP EXE
CUTED ON 11/21/75 PAGE 1

OCHECK WAS STARTED 18 TIMES
NEXT WAS STARTED 14 TIMES
ENTER WAS STARTED 14 TIMES

HISTOGRAM OF LENGTH OF QUEUE WAIT

CELL FREQUENCY
0 LBTHFRERERKEIRREREI KNI H NI IR HN KR RN K

1 gax
2 S*

HISTOGRAM OF DELAYS AT WAIT
CELL FREQUENCY

2 LORAEHKRRRERRKAE RS
6 1*
10 1*

HISTOGRAM OF LENGTH OF QUEUE IDLE

CELL FREQUENCY
0 LORKHERERHHRRRHKRHRER KRS K

1 lSll**i********“***********I*****‘*llﬁi{***i***ﬁlll
FRRRRFRERRRR
B33 3K IR

HISTOGRAM OF DELAYS AT IDLE

CELL FREQUENCY
THRHHR R

1

3 on%

5 0

7 1*

9 LRenx
1

1 0
13 0

