-FORTSIM-

SIMULATION USING STRUCTURED FORTRAN PLUS TABLE MANAGEMENT

Richard D, Crumm and Sen-Lang Wang
Computer Sciences Corporation, Falls Church, Virginia

Edward H. Cooper
Defense Communications Engineering Center, Reston, Virginia

INTRODUCTION

The Defense Communications System (DCS) Performance
Simulator developed by Computer Sciences Corporation for the
Defense Communications Agency (DCA) is composed of four
discrete-event and two analytical models which are used in the
management of voice and data communication networks under
the operational control of DCA., Some of the models have been
in existence for more than 10 years and were originally imple-
mented using assembly language, When the DCA computing
systems were upgraded to third generation machines, it was
necessary to convert the models to a higher order language.
Because of its large size, the modeling of the DCS prohibited
the use of a simulation language such as Simscript. FORTRAN
was selected as the principal language because of its extensive
use, wide acceptance, and reasonable standardization among
manufacturers,

Several limitations associated with FORTRAN led the
DCA to investigate new techniques for simplifying the writing
of large programs in this language, The principal limitations
for large scale modeling are:

e The general structuring of FORTRAN coding, while
suitable for scientific programming, is somewhat
limited when used for applications such as modeling.

e The subscripted array concept used by FORTRAN
for memory addressing is not readily adaptable to the
management of the numerous status tables inherent
to large scale discrete event simulation models.

e Since FORTRAN is a word oriented language, it can
have massive memory storage requirements, A
simple yes or no indicator which can be represented
by a 1 or 0 in one bit of memory requires a full word
of storage. Although most manufacturers supply
instructions to facilitate bit manipulation, these
instructions are not standardized.

The primary objectives in implementing the FORTRAN
Simulation (FORTSIM) program were to:

e Provide structured programming instructions

e Facilitate the integration of program segments into
model systems

e Reduce redundant coding by including a Macro
capability

e Permit program development and debugging on a full
word basis

e Provide a bit manipulation scheme which would permit
source coding to be relatively machine independent

o Provide readability of source code.

STRUCTURED PROGRAMMING INSTRUCTIONS

FORTSIM allows the use of four instructions which facil-
itate the top-down, structured programming approach when using

15

the FORTRAN language. The instructions are: IF (...)
THEN...ELSE, WHILE (...), UNTIL (...), and DO
SEGMENT XXXXX.

IF (...) THEN Instructions

The IF instruction is usable in two forms:

IF(...) THEN or IF(...) THEN

coe oo

ces ELSE
ENDIF e
ENDIF

In the first case the coding between THEN and ENDIF is
executed whenever the logical condition is TRUE, and in the
second case, the coding between THEN and ELSE is executed
for TRUE and that between ELSE and ENDIF for FALSE, These
instructions may be nested (up to 50 deep) bearing in mind that
the ELSE and ENDIF instructions are not labeled so as to relate
them to a particular IF instruction, In processing these instruc-
tions, the program considers them related to the unterminated IF
(...) THEN instructions immediately preceding them in the sequen-
tial flow of coding. An example of nesting would be:

— IF(...) THEN
i}.?'(...) THEN
ELSE
ENDIF

ENDIF

Control may be transferred to statements within the range
of the IF ... ENDIF instructions. Program flow then will be the
same as though the logical expression were TRUE (or FALSE, if
entered following an ELSE),

WHILE (...) Instructions

The form of this instruction is:

WHILE (...)

ENDWHILE

The execution of this set of instructions is similar to a set
of IF (...) THEN ... ENDIF instructions except that upon reach-
ing the ENDWHILE instruction, control returns to the WHILE
instruction, where the logical expression is again evaluated. The
program will remain in this loop until the condition is FALSE, at
which time control is transferred to the statement following the
ENDWHILE instruction, WHILE (...) instructions may be nested
(up to 50) in the same manner as IF (...) THEN.

Control may be transferred into the middle of a WHILE ...
ENDWHILE loop; however, control will not fall through the

ENDWHILE instruction but will be passed to the WHILE (...)
instruction,

If the condition is FALSE the first time tested, the loop is
not executed,

UNTIL (...) Instructions

The form of this instruction is:

UNTIL (...)

ENDUNTIL

The execution of this set of instructions is similar to the WHILE
(...) set except that the loop is not executed when the condition is
TRUE but passes to the instruction following the ENDUNTIL.
Nesting and passing control into the loop are the same, If the con-
dition is TRUE the first time it is tested, the loop is not executed.

Combinations of IF (...) THEN, WHILE (,..), and UNTIL (...)
Instructions

IF (...) THEN, WHILE (...), and UNTIL (...) instructions
may be nested in the same manner as DO loops, Care must be
taken to be certain that loops do not overlap.

Nested Overlapped
UNTIL (...) UNTIL (...)

[WHILE (eod) WHILE (...)
ENDWHILE ENDUNTIL

ENDUNTIL ENDWHILE

The overlapped coding in the preceding example could produce un-
predictable results depending upon the logical expressions,

When several nested loops have the same common end, an
ENDALL statement may be used in place of multiple ENDIF,
ENDWHILE, or ENDUNTIL statements. This statement will ter-
minate all open loops regardless of type in the following order:
all IF (...) THENs, all UNTILs (...), and all WHILEs (...). If
the nested loops are not all the same type, overlapped coding
could result.

Segmented Coding

The use of segmented coding can often eliminate the use of
subroutines which consume execution time for linkage, It can also
be used to reduce redundant code, Sections of coding may be
designated as segments in the following manner:

SEGMENT XXXXX

END SEGMENT XXXXX

The code so designed may then be executed by 'falling
through'' the SEGMENT statement or from other parts of the pro-
gram with the statement DO SEGMENT XXXXX,

In any main program or subroutine, up to 50 sections of code
may be designed as segments and up to 45 DO SEGMENT instruc-
tions may be used for each segment, Areas of code designated as
a segment should be reasonably straight line code; they may be

16

nested but may not overlap, Related SEGMENT and DO SEG-
MENT instructions must be within the same main program or
subroutine, The segment name may contain up to 31 alpha-
numeric characters, including special characters (except semi-
colons, vertical bars, or question marks).

MACRO INSTRUCTIONS

The use of Macros can relieve the programmer of the
tedious task of repetitive coding. FORTSIM permits a secuence
of previously defined statements to be introduced into the source
coding. Since the use of a given sequence of statements may not
be identical in every instance, up to 50 parameters may be
passed from the calling statement into the stored statements,
tailoring the Macro to a precise application,

For an example of how to construct and use a Macro, con-
sider where several three-dimensional arrays are to be cleared.
Assume that IARRAY is dimensioned (10, 20, 30); then, the
coding to clear the array might be:

DO10I=1,10
DO 10 J =1,20
DO 10 K =1, 30

10 IARRAY (1,J,K) =0

Similar coding would be required for the clearing of each array.
This repetitive coding could be eliminated by constructing a
Macro such as:

MACRO CLEAR-ARRAY

DO $*1$1=1,2

DO $*1$ J =1,3

DO $*1$ K = 1,4
$*¥1$ 1 (I, J,K) =0

The first line names the Macro CLEAR-ARRAY. A dollar sign-
number-dollar sign (1) combination indicates that parameters
are to be passed from the source coding, For this Macro to be
executed more than once, the statement label used at the foot of
the DO loop must be different for each execution, The dollar
sign-asterisk-number-dollar sign combination ($*1$) is a sym-
bolic statement number which signals the FORTSIM program to
supply a unique generated statement number at each execution,
Up to 30 of these symbolic statement numbers may be used in
each Macro.

The instruction used in the source coding to execute the
preceding example would be:

MACRO CLEAR-ARRAY $IARRAY $10$20$%30$

The format of the card is free form. At least one blank
column must appear between the word MACRO and the Macro
name, and between the Macro name and the first parameter,

The Macro name may be up to 31 characters in length and may
contain special characters.

To provide adequate flexibility, Macro coding may call
other Macros, which in turn may call other Macros, etc. While
this feature provides flexibility, it also provides the possibility
of endless looping in the FORTSIM program if the Macros are
recursive (Macro A calls B, B calls C, C calls A), To eliminate
this possibility, the program allows up to 50 imbedded Macro
calls for any Macro call appearing in the source coding,

TABLE MANAGEMENT

FORTSIM uses the data dictionary approach to provide an
indirect addressing capability, Meaningful names are assigned
to all table items. These names, called reference names or
references, are used in the source coding in place of array

names, etc. Using a supermarket problem as an example, con-
sider those items which might appear in a status table to describe
the checkout counters.

Entry Description Reference Name Address

Counter open flag CCOPEN ICCRAY (1, CCNUNM)
Average time to ring item CCRING ICCRRAY (2, CCNUM)
Average time to bag each item CCBAG ICCRAY (3, CCNUM)
Average time to collect money CCRIP ICCRAY (¢, CCNUM)
Number of people in queue CCQUE ICCRAY (5, CCNUM)

In normal FORTRAN coding, the addresses shown on the
right would be used for access to the status table. Using FORT-
SIM, the reference name is all that is needed in source coding,
once the variable CCNUM is set to the desired value. The state-
ment

IF (CCOPEN. EQ. 1) THEN...
is simpler to write and more meaningful than:
IF (ICCRAY (1, CCNUM). EQ.1) THEN ...

Also, consider the maximum values to be used in the fields.
The following might be representative values:

Maximum Bits

Field Value Required
Counter open flag 1 1
Average time to ring each item (in tenths of seconds) 100 17
Average time to bag each item (in tenths of seconds) 100 7
Average time to collect money (in seconds) 120 7
Number of people in queue 30 5

The total number of bits required is 27 which will fit into one
word of storage on most machines, If the five items were to be
packed into one word on an IBM 360 or 370, the word layout might
look like:

T S
BITS 0-4 5- 11 12-18 19 - 25 26 - 30

T

AG CCRIP
USED CC RING cC e CCQue

FIELD

zmoo0a] - w

The dimension statement could now bhe:
DIMENSION ICCRAY (10)

thus permitting an 80-percent reduction in memory space for this
table, The input tables to FORTSIM might appear:

Reference Nume Reference Address Number of Bits Starting Bit

CCOPEN ICCRAY (CCUNM) 1 31
CCQLUE ICCRAY (CCNUM) 5 26
CCRIP ICCRAY (CCNUM) 7 19
CCBAG ICCRAY (CCNUM) 7 12
CCRING ICCRAY (CCNUM) 7 5

Whether the tables are defined on a full word or a packed-
bit basis, the source coding remains the same,

17

Use of Reference Names in Source Coding

Reference names may be used freely in normal arithmetic
statements, logical and arithmetic IF statements, and WHILE
and UNTIL instructions, Reference names may not be sub-
scripted; however, those which are assigned integer values may
be used as subscripts. Reference names may be used in the list
of INPUT/OUTPUT statements and as the initial, test, or incre-
mental values of a DO LOOP index. They may also be used in
an implied DO LOOP in an I/O statement,

In certain cases, the generated coding created by FORTSIM
contains a variable with the same designation as a reference
name. For example, when a reference is used as a subscript,
the contents of the addressed memory location (which may itself
be subscripted and bit-packed) must be moved to a variable to be
properly executed. For this reason, the naming of references
should follow the same rules as variables in regard to real and
integer designations.

If references are to be used in subroutines or functions, it
is necessary that the indirect address definitions (array ICCRAY
and table pointer CCNUM in the preceding examples) be made
available. This can be accomplished by passing them as argu-
ments; however, the recommended procedure is to place all such
arrays and pointers in COMMON., (This can be simplified by
constructing a Macro which contains the COMMON statement(s)
and calling it in the main program and every subroutine or func-
tion,) For this reason, no provision has been made to use refer-
ences as arguments in CALL, SUBROUTINE, ENTRY, or
FUNCTION statements,

DATA MANIPULATION INSTRUCTIONS

To provide source coding with some readability not inherent
to FORTRAN and to reduce coding, seven data manipulation in-
structions are available which may be used in place of arithmetic
statements. The instructions are: ADD, SUB(tract), MOVE,
SET, CLEAR, INC(rement), and DEC(rement).

The format of the ADD, SUB, and MOVE instructions are:

ADD (sending field) TO (receiving field)
SUB (sending field) FROM (receiving field)
MOVE (sending field) TO (receiving field)

The instructions are free form where blanks are significant as
field delimiters. The sending fields of these instructions are not
limited to a single value, but may be any expression which could
appear to the right of an equal sign in an arithmetic statement
(no imbedded blanks), The receiving field may be a reference
name, variable, or array element, It may also be multiply de-
fined. The instruction

ADD AAAA TO BBBB CCCC DDDD
will produce the following FORTRAN statements

BBBB = BBBB + AAAA
CCCC = CCCC + AAAA
DDDD = DDDD + AAAA

The INC and DEC instructions add or subtract the integer
value of one, The SET and CLEAR instructions equate the re-
ceiving field with integer one or zero. The receiving fields of
these instructions may also be multiply defined. The formats
are:

INC JJJJ KKKK LLLL
DEC JJJJ KKKK LLLL
SET JJJJ KKKK LLLL
CLEAR JJJJ KKKK LLLL

There is no numerical limit placed on the number of receiving
fields; however, the complete instruction must he contained on two
cards, i.e., not more than one continuation card is permitted.

FORTRAN STATEMENTS

Normal FORTRAN statements are passed by the FORTSIM
program to the output data set which is the input to the compiler.
Most statements are examined for reference names which must be
replaced with the coding which provides true addresses and bit
manipulation, The following is a summary of the variations per-
mitted by the FORTSIM program,

Statement Labels

Statement labels may be symbolic names as well as standard
numerics, Symbolic labels may be up to 31 characters and may be
any combination of letters, numbers, and special characters
(except semicolons, vertical bars, or question marks), They may
not contain imbedded blanks. The first character should be alpha-
betic; however, if the first character is a C, it should never be
punched in column 1 since that card would be treated as a comment
card. When used as a label, the symbolic name must begin be-
tween columns 1 and 5.

IF Statements

Statement labels in arithmetic IFs may be symbolic. The
imperative expression in a logical IF may use reference names
following the rules of the particular statement type, Since the use
of references may cause more than one line of generated coding,
some logical IFs are converted with GO TO and CONTINUE state-
ments.,

The imperative expression of a logical IF statement may not
be a MACRO, ELSE, ENDIF, WHILE, ENDWHILE, UNTIL, END-
UNTIL, ENDALL, SEGMENT, or END SEGMENT instruction,

The program will also reject another IF statement or the start of a
DO loop. A DO SEGMENT instruction is acceptable. All of these
instructions may be included within IF (,..) THEN... ELSE...
ENDIF sets.

GO TO and ASSIGN Statements

Unconditional, Computed, and Assigned GO TO statements
may contain symbolic statement labels, The variable in a Com-
puted GO TO may be a reference name. The label in an ASSIGN
statement may be symbolic.

Card Format

The average FORTRAN statement uses less than half of a
punched card which results in wasted space in source code files,
In the source code input to FORTSIM, cards may contain more than
one statement or may contain comments following the statement(s).
Multiple statements may be punched into a single card by separat-
ing the statements with a semicolon or vertical bar; however, any
statement which requires a label must begin on a new card using
columns 1 to 5 for the label. To place comments in a card, the
coding may be terminated with a question mark and the remainder
of the card will be ignored by FORTSIM. Since DATA and FORMAT
statements could normally contain the separator characters, these
cards are not scanned and may not contain comments or be part of
a multiple statement card, Reference names appearing in DA TA
statements are treated as program variables, Also, any card with
the letter C in column 1 is considered a comment and is ignored by
FORTSIM.

18

PROGRAM IMPLEMENTATION

The FORTSIM program is written in ANSI COBOL and is
implemented on an IBM 370/155. Its memory requirements are
adjustable based on the number of references and Macros de-
sired. The current requirement of 224K (needed by the level H
FORTRAN compiler) will allow the following:

e 150 Macros with up to 800 cards
® 350 reference names

e 250 symbolic statement labels

e 50 segments,

The program should be executable on any system which
supports ANSI COBOL (minor changes may be needed in the
Environment Division) with all features usable except the bit
manipulation. For this, program modifications are necessary
for systems which do not have the SHFTL, SHFTR, and LAND
instructions found in the Extended Logic section of the IBM
360/370 level H FORTRAN compiler, Previous versions of
FORTSIM (without structured instructions) have been imple-
mented on the UNIVAC 1108 and Honeywell 6050 systems,

The FORTSIM Macro features have been compiled into a
separate program, Macro Generator, It is used principally with
COBOL programs but may be used with FORTRAN, PL/I, ALC,
or any card-oriented language.

COMPARISONS OF FORTRAN AND FORTSIM CODING

A project currently in progress at Computer Sciences
Corporation is the use of structured programming and FORTSIM
Macro features to convert a Satellite Channel Model from
UNIVAC 1108 to IBM 370/155 operation, The following is a com-
parison of the before and after coding of one main program:

FORTRAN FORTSIM

Statement numbers (excluding

FORMATS and DO LOOPS) 114 30
GO TO Statements 43 16
COMPUTED GO TO Statements 17 0
IF(...) GO TO Statements 52 24
IF(...) THEN Instructions 0 31
IF(...) THEN ... ELSE Instructions 0 29
Source Coding Cards 1058 936
Subroutines and FUNCTIONS 25 12
DO LOOPS 26 18

The use of IF (...) THEN and IF (...) THEN ... ELSE
removed many GO TO and CONTINUE statements which cluttered
the program. Consequently, some DO LOOPS were found redund-
ant and could be combined. The use of Macros and Segments
permitted the subroutines to be reduced by over half,

As an example of memory reduction made possible by table
references and bit manipulation, consider one set of status tables
used in another model that simulates the AUTODIN Store-and-
Forward Message Network, This network has approximately 1400
Tributary Subscribers. The status table to describe a tributary
and its transmission lines to and from the switching center re-

quires 37 items. With unpacked tables, core requirements would
be:

1400 x 37 = 51,800 words = 207, 2K bytes

Even using 1-, 2-

. and 4-byte arrays, the require
would be: Y ! ments

1400 x 61 bytes = 85, 4K bytes

Using bit packing, the 37 items fit into 10 words; thus,
the requirements are:

1400 x 10 = 14,000 words = 56K bytes

The use of Macros can materially reduce the time required
to produce a running program, Not only does the calling of a
Macro require fewer lines of coding to be written, but it also can
reduce debug time since error free coding is normally generated.
The following is a partial list of checked-out Macros used in the
Defense Communications System Performance Simulator models:

e Calendar of Events Management

® Queueing and unqueueing of messages and events

e Writing of Event Descriptors for post-simulation report
programs

e Managing dynamic storage in discrete-event models
o Binary table search routines
e Gathering statistics from status tables
® Generating probability distributions
e Determining routing paths,
SUMMARY
Extensive additions to the capabilities of FORTRAN have

been made in a simulation language called FORTSIM. This
approach provides the following additional capabilities:

19

e Parametric Macro capability
e DO Segments

e IF(...) THEN... ELSE, WHILE (...), UNTIL (...)
instructions for top-down structured programming

e Bit packing, if needed, for memory reduction

e Table management with indirect addressing

° Free form coding and multiple instructions per card
e Symbolic statement labels

e Extensive error checking of coding

e Data manipulation instructions

o A larger percentage of error free coding by the use of
Macros

e Program debugging is greatly simplified.

This approach requires a preprocessor which essentially
adds an additional pass to the FORTRAN compiler, For the IBM
360/370 computers, cataloged procedures have been written which
are similar to the standard compiler procedures, thus simplifying
its use,

Finally, FORTSIM has been used extensively at the DCA in
the development of large simulation models and has had enthu-
siastic reception by programmers. An extensive library of Macros
have been developed for discrete simulation applications. Port-
ability of programs is greatly enhanced without recourse to reduc-
ing the instruction set. Preprocessors for IBM 370/155, Honeywell
6000 series, and UNIVAC 1108 have been written and used. A
version for online use with limited core is under development.

