BUSINESS ORIENTED SIMULATION SYSTEM (B.0.S.S.):
A SIMULATION LANGUAGE BASED ON COBOL

Andreas Philippakis
Arizona State University, Tempe, Arizona 85281

Introduction

Simulation applications are often characterized by
extensive effort over extended periods of time, involve-
ment of a number of individuals, and a long use life
marked by experimentation and modification.

These characteristics make it highly desirable for
simulation models to be easily coded into computer pro-
grams and that the main logic of these program models be
highly readable. Ease of coding is a requirement follow-
ing from the fact that many simulation projects represent
extensive modelling efforts and therefore provide poten-
tial for substantial effort reduction. The readability
requirement follows from the fact that several people may
be involved directly over the life of the project and
communication must be facilitated. In addition, the
readability requirement follows from the long life of
simulation projects. Cryptic, terse codes serve expedi-
tious needs in the short run for the analyst currently
immersed in the project, but become stumbling blocks in
the long run, both for the original author whose retension
of nonsense syllable codes is limited and for subsequent
users of the model who find learning the unnatural
vocabulary a nuisance task.

But, in addition to those characteristics that dic-
tate easy coding and readability, simulation projects are
also characterized by the important need to be capable of
handling efficiently vast numbers of numerical processes
such as random number generation and statistical collection
and analysis. This paper reports on an effort to develop
a simulation language which facilitates the coding of dis-
crete event simulation models so that they are highly
readable for ease of initial and subsequent modelling but
also computationally efficient for carrying out simulation
experiments.

Overview of B.0.S.S.

The B.0.S.S. language is designed for discrete event
[2) digital simulations. It utilizes the concepts of
"event', "attribute" and "file" in a fashion similar to
GASP II [3], another discrete event simulation language*.

An overview of the language follows while a more ex-
tended description is given in the next section. The main
characteristics of B.0.S.S. are:

The main program is written by the user in COBOL.
To appease the reader who may be frightened by
the specter of voluminous ENVIRONMENT and DATA
DIVISION codes, it is added that only minor
effort is required outside of the PROCEDURE
DIVISION.

The user needs only knowledge of a very limited
subset of COBOL since the nature of simulation
tasks does not lend itself to the great majority
of COBOL options.

*The author wishes to acknowledge the direct influence of
GASP in the development of this language.

Data handling is carried out by COBOL subprograms
which, themselves, take full advantage of COBOL
data processing and data structure capabilities.

Statistical data collection -- the heart of simu-
lation models -- is performed automatically without
the need for explicit instructions. The user
simply specifies as input data, the variables and
the options desired for statistical collection.

Event generation is a powerful but simplified
process. An event may be characterized by multiple
attributes whose values may be random variables.

Heavy emphasis is placed on formatted input record
which, in the form of a readable questionnaire,
requires the user to specify the basic characteris-
tics of the model. This input record has the
double effect of providing an explicit document for
subsequent reference and relieving the user from a
number of concerns during model logic development.

Output documentation is unusual. Instead of general
labels, output is headed by labels supplied as data
for each variable, file, and attribute.

Debugging aids are available which enable the user
to trace the executed sequence of steps and aid
the process of error detection.

The language is designed so that special purpose
modules may be added to simplify coding require-
ments for models that fall into standardized cate-
gories, such as queueing, inventory, and networks.

Elements of B.O.S.S.

Figure 1 shows a summary of the language elements.

brief description of each element follows:

1. A call to INPUT involves the reading in of
the input data and model parameters specified
in a questionnaire type input coding form.
This input form forces considerable amount
of planning on the user -- a requirement
which should serve the useful purpose of aid-
ing the complete conceptualization of the
model prior to actual coding.

2. The EVENTS element is capable of generating
future events or initiating the processing
of the imminent events. An event can be a
multi-attribute entity whose attribute
values may be constants or random variables.
Statistical accumulations can be performed
on any desired attribute. One special event
can be specified which causes intermittent
output on a scheduled basis.

3. The FILEDUMP element outputs, in a well
labeled format, file contents for analysis,
documentation, or diagnostic purposes.

4. RANDOM generates a random variate from a
function whose name specifies a distribution.
There are three types of distributions. The
first typc includes standard probability
distributions such as normal, uniform, expo-
nential, etc. The second type is a user-
defined table function, and the third is one
providing for invariable recurrence.

5. STATISTICS is used mainly to generate statis-
tical output for all variables, or for a
selected variable. Output options include
frequency tables and histogram plots.



Figure 1

1. CALL INPUT

2. CALL EVENTS USING

3. CALL FILEDUMP USING

4. CALL RANDOM USING

5. CALL STATISTICS USING

6. CALL DATABASE USING

7. CALL SERVER USING

The DATABASE element provides the user with
a powerful tool for handling collections of
data in files. A number of options are
available each specifying a particular fun-
ction. The names of these functions are
self-explanatory with the exception of a
few. The INITIALIZE function sets file
pointers so that files are logically empty.
The SET-MONITOR and RESET-MONITOR functions
are debugging aids which allow selective
tracing of data flow during model execution.

The SERVER module exemplifies the capability
of the language to allow the specification
and use of special-purpose modules. The
SERVER is designed for queueing models. The
invocation of SERVER processes an arrival
event by scheduling an end-of-service event
if the specified server is free, or by
storing the arriving entity into a specified
queue. In addition, when an entity has been
serviced by the specified server, its
arrival to the next server, should there

be one, is processed and, when available,
the first entity in the queue is assigned
for service to the current server.

B.0.S.S. Language Elements

GENERATE
REMOVE

ALL
file name
file number

function-name

ACCUMULATE
CLEAR
RETRIEVE
OUTPUT-STATS
OUTPUT-TABLE
OUTPUT-PLOT
TABLE + PLOT
INPUT

STORE
STORE-FIRST
STORE-LAST
GET-FIRST
GET-LAST
GET-NTH |

GET-MIN-ABOVE
GET-MAX-BELOW
DELETE-FIRST
DELETE-LAST
DELETE-NTH
INITIALIZE-ALL
INITIALIZE-ONE
SET-MONITOR
RESET-MONITOR

GET-EQUAL $

server-name

Event-name
Event-number

ALL
ALL-VARIABLES
ALL-FILES
Variable-name
File-name

ile-name
file-number

A detailed look at the elements of the language would
exceed the scope of this paper. The reader may, however,
get a more concrete idea of the use of B.0.S.S. by turning
to a simple example application which may help bring some
of these concepts into focus.

An Example Application

A simple inventory system is to be simulated. Start-

ing with 100 units of inventory on hand the model proceeds
through time incurring two main events, issues and

receipts.

A third event is scheduled every 200 time units

to print intermediate results. The simulation terminates
after 1000 time units.

An issue represents a withdrawal from inventory.
Issues occur at time intervals characterized by a specified
probability distribution (for example normal). The amount
of each issue is a random variable with a specified prob-
ability distribution (for example uniform). When the
amount of an issue exceeds the inventory on hand, a stock-
out condition exists and a partial or complete order is
lost.



We are interested in collecting statistics on two var-
iables. The first one, INVENTORY-ON-HAND is time depen-
dent. The second one, STOCKOUTS, accumulates data on the
size of lost orders.

Figure 2 shows the DATA DIVISION entries which the
user had to write for this application, and the basic
event logic expressed in the PROCEDURE DIVISION of a pro-
gram written to carry out this simulation. It will be
noted that the language used allows a grcat deal of read-
ability. It will also be noted that the number of char-
acters per instruction is high, expecially when compared
to a language like FORTRAN. It is the belief of this
author that the cost of additional characters is inconse-
quential. The effort required in developing a simulation
program is not related to the physical effort of writing
instructions or the clerical task of keypunching. If
longer instructions increase the visibility of program
logic both at the time of initial development and debugging
and at subsequent uses of the program it seems that longer
instructions are a very small price, indeed.

Experience with B.0.S.S.

Experience with the language has been limited. A num-
ber of example models have been coded including one which
incorporates a FORTRAN search routine by Schmidt and Taylor
(4] and an autoregressive scheme by Fishman [1]. An under-
graduate simulation class has received a three-week
instruction in the use of the language and as a result
several students were able to code a complete problem. The
main limitation up to this point has been the lack of any
printed instructions on the use of the language. Efforts
are under way to put together a user's manual.

The current version of BOSS has been implemented on a
large-scale UNIVAC 1110 system. Transfer of the language
to other systems should not entail more than routine con-
version efforts.

References

Figure 2

QUANTITY

1. Fishman, George S., Concepts and Methods in Discrete
Event Digital Simulation. John Wiley & Sons, New York,
1973.

2. Kivat, Philip J., Discrete Event Simulation: Modeling
Concepts. The Rand Corporation, RM-5378-PR, Santa
Monica, California, 1967.

3. Pritsker, A. Alan B. and Philip J. Kiviat, Simulation
with GASP II. Prentice-Hall, Inc., Englewood Cliffs,
N.J., 1969.

4. Schmidt, J.W. and R.E. Taylor, Simulation and Analysis

of Industrial Systems. Richard D. Irwin, Inc.,

Homewood, I11., 1970.

USAGE COMP=-1,

EVEN
PU

b7

13

N

OCCURS 38 TIMES.

IMULATION=END
LOT *STOCKOUTS'.

TEetibuent:
ITY,.

T=RESULTS
YALL

‘e
‘s



