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Abstract

A technique is presented to generate rate equations for
.random enzymatic mechanisms in a systematic manner. The
generation of constraint equations arrived from the prin-

ciple of detailed balance is. also discussed.

The rate

constants of the reaction mechanisms are then estimated by
a stepwise least squares algorithm. ’

I.. CGeneration of Initial Rate Equation

In 1956, King and Altman devised a systemat-
ic method, applicable to random as well as -sequen-
tial binding order mechanisms, for deriving ini-
tial velocity rate equations (4). This manual
technique uses rate constants and reactant con-
céntrations obtained from all valid pathways of
a mechanism in the formulation of an initial
velocity rate equation.

As the complexity of the mechanism increases
so does the difficulty in deriving the rate equat-
tion even with the technique of King and Altman,
Utilizing linear graph theory concepts, the
method developed by Lam and Priest (5) generates
all valid patterns for an enzyme mechanism. An
enzymatic mechanism is described as a connected
graph with numbered branches and numbered nodes,
corresponding to reaction steps and enzyme forms,
respectively. Patterns can be generated from
the graph by applying Wang algebra principles in
a stepwise procedure. These patterns are then
used to generate the initial velocity equations.

II. Generation of the Constraint Equations.

The value of the rate constants belonging
to cycles within a random binding mechanism are
restricted as a result of the law of micro-
reversibility. The law of microreversibility,
also known as the principle of detailed balance,
requires forward and reverse fluxes in a time
independent state to be equal. Consider an
entire reaction for a mechanism at steady-state
conditions. The concentrdations of its inter-
mediate enzyme complexes remain constant. If a
cycle within the mechanism is at equilibrium,
with no net change occurring for its reactant
concentrations, then all enzyme complex con-
centrations for that cycle remain constant. For
each of these enzyme complexes in the cycle, the
change of its concentration over time, i.e., the
forward flux minus the reverse flux of that

reaction step, is equal to zero. It then follows
that the forward flux is equal to the reverse flux
in a cycle.

Due to the cyclic nature, the equality bet-
ween forward flux and reverse flux in a cycle can
be reduced by substitution and elimination of the
enzyme complex and reactant concentrations. The
resulting relationship equates the product of the
ratios of rate constants for each reaction in the
cycle to unity (2, 3). Specifically, the product
of the rate constants of a cycle in a clockwise
direction is equal to the product of the rémaining
rate constants in the counter clockwise direction.
This type of relationship is hereby called a
constraint equation. There are as many constraint
equations as there are reversible cycles in the
mechanism,

However, there could be more than one cycle
in a mechanism. Conceivably, a particular rate
constant could appear in many cycles. Thus, it
further restricts the value of that rate constant.
As the mechanism increases in complexity, it be-
comes very difficult, to determine all the cycles
and their corresponding constraint equations by
inspection. A systematic process for generating
the constraint equations will be demonstrated with
slides.

ITI. Parameters Estimation

Once the initial velocity rate equation and
constraint equations are generated, the usual ob-
jective is to determine the values of the unknown
rate constants. The parameters of the rate equa-
tion, namely, rate constants, are estimated in.a
least squares sense by means of a stepwise re-
gression algorithm (1). Within each iteration,
parameters are selected so that the greatest re-
duction in the error sum of squares would result.
If necessary, only a subset of the parameters are
modified in a given iteration to avoid the sin-
gularity problem of inverting a matrix. The
partial derivatives needed in linearization are
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computed by the difference method since they are
difficult to obtain analytically. In order to
retain enough accuracdy in the value of the.part-
ial derivatives, double precision arithmetic is
used throughout the program. :

Testing the model depends a great deal on
the derived equation (1), Since the expected
mean square error may be a bilased estimator of
variance, the usual procedure for deciding on the
""best" model by selecting the smallest variance
is not really valid in the nonlinear case. An
approximate ¥ test (1) is provided to determine
the lack of fit. A graphic comparison of observed
values and predicted values from different models
may pinpoint the "best" fitting model.
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