WELL--FORMED MODELS FOR DISCRETE SIMULATION

Simulation Correctness

Discrete simulation models of non-trivial
complexity are notoriously difficult to debug.

In the first place usable systems descriptions of
the real world component being modelled are rarely
in existence (although these are emerging in the
realm of computer systems). (1,2) Secondly
individuals often have incomplete knowledge of
the system in question (indeed, much of the value
of a simulation model, like that of the Critical
Path Method, is in bring individusls together

in order to agree upon a systems description).
Even though structured approaches exist for model
description, such as the EVENT routines in
SIMSCRIPT and the ACTIVITY routine in SIMUILA, are
available, many and varied detailed traces are
required in oxder to test the simulation logic.
Often, in complex models, many subtle conditions
will remain undected for some time, and yet affect
model behavior in such a way that outputs remain
plausible.. '

This paper-describes a procedure and system for
ensuring the logical consistency of a discrete
similation model. The initial system, WORMS I,
is intended primarily for models that will be
implemented in an event-oriented language such

as SIMSCRIPT, In such a language, EVENT routines
must be created which specify under what condi-~
tions will the model change state, and what will
be the resultant conditions and/or sub- .events

in the model., For somewhat complex situations

it is a non-trivial matter to implement these
routines correctly, especially with the absence
of any convenient language for specifying these
events. The WORMS system provides such a
descriptive facility, analyses their logical
(transition) consequences, and allows the modeller
to make alterations to his model interactively.

‘Graphical "Simulation Modéls

In the past, several graphical models have been
developed in order to represent the concurrent
activities of discrete simulation and computexr
multiprocessing. For a survey see the recent
paper by Bagr. (3) Many of the models have been

* the formulation.

Douglas Seeley

'University of British Columbia,

designed specifically for parallel computation
and for the detecdtion of deadlock in resource-
sharing systems. Petri's models, commonly known
as Petri nets, have been widely used as a
reference point in exploring such systems.
paper is not an exception.

This

Petri nets (see Baer (3) or Holt (2) for formal
descriptions) are used to describe the event
structure of a system and the conditions that are
required for, and result from each event. An
event is represented by a vertical bar into which
lead arcs from circles which represent all of the
conditions which must hold in order that the
event take place. Arcs from the vertical bar
lead to those system conditions which result.

The holding of a condition is indicated by the
placing of a token on its location. All paths
through the net must encounter events and condi-
tions alternately.

In the WORMS system a modification of Petri nets
to a collection of "event graphs' is used (to be
more precise, these could be called event transi-
tion graphs, since a single event may require
several graphs in order to specify the transitions
of which it is composed). A Petri net can become
a complex and difficult graph structure to inter-
pret for non-trivial models; moreover, the concept
of an allowable system state does not appear in

In WORMS-however, the event
transition logic is decomposed into a collection
of event graphs., In this representation an event

‘ (change of system state) appears as either a box

(indicating the completion of a process-in-time)
or as a vertical bar indicating an instantaneous
state transition (sub-event). However, the arcs
leading into and out of the event now relate not

. to loosely defined conditions but exactly to

system states,

This is done in the following manner: A discrete
"system is composed of a collection of components
(entities) each of which will be in one of a
variety of substates. For instance a service
facility may be busy, idle or blocked and a queue
may be a particular length, A vector specifying
the substates of each system component will
therefore represent a system state. In the nodes

Winter Simulation Conference

725



on-either sidé of the event graph are the speci-
fications of the substate or substate range of
some of the system components, Components that
are not specified may be in any substate valid
for them, and these substates will remain un-
changed by the event. Consequently, the event
graph represents a mapping from one range of
system states into another, The collection of
events graphs for the system therefore, corres~
ponds exactly to the transition function of the
finite-state automata analogous to the discrete
simulation model being considered,- It will be
shown in a later example how natural this. repre-
sentation is for event-oriented modelling,

Well-Formed Models and the "WORMS 'Systems

Petri nets were used primarily to study concur-
rency and conflict in system descriptions., A
concept of a "live net" was used to describe a
net where all transitions. can fire from a given
initial state, WORMS considers a more compre-
hensive notion of "well-formedness". In de-
bugging and testing an event-oriented simulation
model, a source of many errors is the precision
with which the event routine is coded. The event
routine usually corresponds to the group of event
graphs which are concerned with the same time
process (e,g. the completion of service from a
facility, or an inter-arrival process, etc.). In
non-trivial models, the specification of this
state mapping can be complex and the computer
code prone to logical error, error which some-
times may not be easily discovered, WORMS is a
tool that organizes this part of model building
and helps the modeller anticipate most such
logical errors. ‘

Once a model has been defined by specifying
component substates, the collection of event
graphs, transitions, and some initial states,
WORMS will determine: (a) whether there are any
trapping states (a state from which the systenm
cannot proceed); this will indicate either the
presence of an inadequate event graph, . the need
for an additional one, or an actual deadlock
possibility in the model, (b) whether an-event
transition is actually used, also indicating an
improperly specified transition function,

(c) any ambiguous states, i.e. states that may
be applied to more than one transition of the
same event type, and (d) and what states the
system cannot enter,

Whenever conditions (a) and (c) above occur, the
user can redefine the model usually by redefining
the -event graph that led to the problem and re-
initiate the analysis, The appearance of con-
dition (b) will require that the modeller back-
track through the transition logic in order to
determine why none of the states on the L,H.S.

of the event graph have been reached in the model.
A similar procedure is required when states that
are possible in the real system are discovered

in the list of those not reachable from the
current model, When all states reachable in the
real system are reachable in the model, and when
the collection of event graphs are all used and
unambiguous, the model may be said to be "well-
formed" or logically consistent. At this point

January 14-16, 1974

o

the event-oriented simulation model can be pro-

. grammed with confidence, However, this is not to

say that the simulation is a valid one; validation

-must still be carried out on the model's behavior

and on its embedded assumptions.

" 'Exteénsions

1. WORMS I uses a computer-word-per-state space,
In order to keep state-space demands on computer
memory manageable, it would be useful to construct
tables that encode large ranges of states in a
simple manner. Then, whenever a transition results
in, for instance, a’'"+n condition" the reachability
of this entire range could be expressed succinctly,
A technique related to this has been implemented
for Markov Chains by Irani and Wallace (4)

2, It is clear that the.analysis that WORMS pro-
vides could act as & syntatic<frdrt-end to. an
actual simulation language, In fact, all that is
additionally required, is the specifications of
the time-processes in order to complete the model's
definition. A program could then automatically
implement a discrete event simulation of the model,

3. The most important extension would be to allow
the description of model in a procéss-orieénted
(e.g. SIMULA or GPSS) manner. A process descrip-
tion normally entails a sequence of events,
including their before and after conditions. It
appears that it is the way process descriptions
factor and organize the states of the system,

that makes modelling in this fashion easier than
event-oriented modelling. If a process-oriented
analysis could be achieved from an elegant graphi-
cal description, then model building would be
greatly expedited.

" "Reférences

1, Tsichritzis, D., "Modular System Description",
University of Toronto, Department of Computer
Science, Technical Report No, 33.

2. Holt, R.C., "Some Deadlock Properties of
Computer Systems", Computing Surveys, Vol, 4,
No. 3, Sept. 1972.

3. Baer, J,L,, "A Survey of Some Theoretical
Aspect of Multiprocessing", Computing Surveys,
Vol, 5, No. 1, Mar, 1973.

4, TIrani, K.B.,, Wallace, V.L., "A System for the
Solution of Simple Stochastic Networks",
University of-Michigan, CONCOMP Technical
Report No. 14,

Resultant

Component
A Component
ubstates Substates
° End of i
‘ i [
M Porcess 4

* : Event . M
Component Resultant

A.n Componenty,

Substates

\ Substates




