AUTOMATICALLY

SIMULATION . OF COMPUTER SYSTEMS USING

GENERATED‘ LOAD DESCRIPTIONS

ABSTRACT

A complete description of a computer system
must include three groups of components:

1. The hardware components

2. The software components (the operating
system), and))

3. The load components (the stream of tasks
to be processed).

When computer systems are simulated all of these
components are found as features of the simula-
tions. The hardware normally appears as a col-
lection of tables and associated operational
data. The operating system appears both as
tables and as scheduling or assignment algo-
rithms. The load is represented either as a
sequence of requests for service (use of system
resources) or as a set of functions which can
generate such a sequence of requests. In many
applications, the description of the load turns
out to be the most difficult task.

This paper discusses some techniques and
procedures which have been used to automatically
generate the required load descriptions. The
emphasis is on a request sequence generator which
uses data found in a system event trace. One
such technique, called trace-driven modeling, has
been implemented at the Purdue University Com-
puting Center. This implementation is discussed
and its usefulness and accuracy are illustrated
with actual data.

INTRODUCTION

The performance of a computer system depends
on three major components:

1. The hardware system
2. The software system, and
3. The load.

Each of these components also affects the per-
formance of a simulated computer system. Conse-
‘quently, the designer of a discrete event system
simulator must include each of thése components
in his simulator (1).

MacDougall (2) presents a clear and concise
description of techniques which can be used to

Herbert D. Schwetman

Purdue University

model the hardware and software components. The
modeling of the load is a more difficult under-
taking. This difficulty may be a significant fac-
tor in limiting the use of simulation models in
the planning, design and operation of computer
systems.

This paper briefly discusses discrete event
simulation of computer systems, with emphasis on
the load or task modeling phase of such simulation.
A relatively new technique, called trace-driven
modeling, is presented. The technique shows prom-
ise of being capable of accurately modeling the
behavior of tasks executing in a computer system.
A description of a trace-driven model of the CDC
6500 computer system in use at the Purdue Univer-—
sity Computing Center is presented. Data which
displays the degree of accuracy attainable with
this model is included.

BACKGROUND

MacDougall has modeled a computer system as a
collection of resources. A resource is a set of
one or more elements with only one queue for
waiting requests., Thus, in a system containing
dual central processor units (CPU's) there would
be a single CPU resource with two elements. On

-the other hand, in a system with several disk

drives, each drive is a separate resource, because
a task must request data from a particular drive.
Hence there would be a separate queue for each
drive.

In an actual system, the operating system has
responsibility for initiating and terminating
tasks and for responding to requests for service
(access to resources) made by these tasks. In a
multi~-programming environment, there can be many
concurrently executing tasks and thus many simul-
taneous requests for access to the resources of
the system., The operating system coordinates
these concurrent requests so that all accesses to
the resources occur in a correct manner.

These task—~control and access-coordination
features are also present in a simulated system.
In MacDougall's approach, much of the access co-
ordination function can be modeled in the queue-
handling mechanisms. For example, if requests
which are waiting for access to a resource are
enqueued in order of an ascending queue priority,

Winter Simulation Conference 699

700

e
~—

LOAD DESCRIPTIONS ... Continued

then several different resource scheduling disci-
plines can be implemented by merely manipulating
the queue priority.

In summary, it is possible to6 model the re-
sources which comprise a system as a collection
of tables and queues., It is possible to model
many aspects of the operating system as a col-
lection of queue-handling algorithms, and both of
these factors can be simulated using relatively
straightforward techniques. Modeling the load
imposed by a collection of tasks (equivalently
the driving function for the simulator) is a more
difficult problem, ’

One method of modeling the task load has
been to use load-generating functions (3). 1In
this method, whenever a request for service is
needed by the simulator a function is invoked
which produces the required values of the request.
For example, if a point is reached at which a CPU
request is needed, a CPU-burst-time-function is
invoked to generate a time ihterval for the next
CPU request. The degree of sophistication of
this function can vary widely. The simplest
function would return a constant value. A more
¢omplicated function would use characteristics of
the modeled task and statistically derived param-
eters to produce a more realistic interval. The
range of complexity possible is almost limitless.

Another method for modeling the load has
been to prepare a set of job or task scripts
(1, 4, 5). 1In this method, each active task has
an associated list of system requests. Each re-
quest includes the name of the requested resource,
the amount of the resource (often in units of
time) and other pertinent information. The task
load is modeled by having the simulator inter-
pret these scripts as the sequence of resource
demands. This second method can be viewed as a
special type of the request-generating function
described above; in this script method, each call
to the generating function produces the next re-
quest from the script for that task.

Both of these methods have been used in
documented system-simulation projects. The
script method can produce realistic models of

. specified collections of tasks. In particular,

a task script can be produced to recreate speci=
fied patterns of resource demands. The cost and
difficulty in producing a set of task scripts

can be significant, particulatrly if done manually.
Task-description languages which decrease the
required effort have been designed (4). Even
with this type of aid, there is still a problem
in gathering the information required to produce
realistic scripts.

A statistically-derived request-—generating
function can be designed to generate request
sequences which exhibit specified statistical
properties. The required parameters can be auto-
matically produced through analysis of system
performance data if the system is available. The
implementation of these functions can be much less
difficult than the preparation of task scripts.

January 14-16, 1974

TRACE-DRIVEN MODELING

A relatively new technique for modeling the
system load has appeared in the form of trace-—
driven modeling (6, 7). This approach uses task
scripts similar to those described above, but with
trace-driven modeling these scripts are automati-
cally prepared from system event—trace data (8).

A system event-trace is a record of all signif-
icant events which occur during the operation of
the system. One method of recording this data is
to use a data-gathering routine integrated into the
control section of the operating system (9).

Events of interest, such as the request, assignment
and release of system resources by tasks, can be
identified, time stamped and recorded by the data-
gathering routine: Subsequent analysis of this
sequence of events can produce the task scripts
suitable for use by a system simulator.

As an example of this script~generation pro-
cess, consider the sequence of events depicted in
Figure 1. 1It can be observed that there are two
tasks (labeled A and B respectively) competing for
three resources: the CPU, channel 1 and channel 2.
The generated task scripts would be two sequences
of requests for theée resources with the required
time of use (service time) associated with each
request, Figure 2 displays the scripts which could
be generated using the sequence found in Figure 1.
It should be noted that all delays or walting times
have ‘been left out of the scripts. Presumably,
these would be functions of the system and the
other competing tasks but would not be considered
part of a tagk description.

FIGURE 1
Sample Event-Trace
Line No. Time Task Event Resource
1 .000 A Asg CPU
2 .002 A Asg CHL
3 .003 A Rel CPU
4 .003 B Asg CPU
5 .010 B Asg CH2
6 .011 B Rel CPU
7 .020 A Asg CPU
8 .021 A 'Rel CPU
9 .052 A Rel CH1
10 .052 A Asg CPU
11 . 060 A Rel CPU
12 .068 B Rel CH2
13 .068 A Asg CH2
14 .068 B Asg CPU
15 .070 B Rel CPU

FICURE 2 THE PURDUE TRACE-DRIVEN MODEL

The main computer at the Purdue University

A .
utomatically Generated Computing Center is a CDC 6500 computer system.

Task Scripts The operating system is the Purdue-MACE system, a
locally derived version of the MACE-5 system avail-
Task Resource Amount able from CDC. This computer system and its sever-
A CPU .002 al operating systems have been described in the
CH1 1050 literature (10, 11). The feature of the 6500/Pur-
CPU .010 que—MACE system which is of interest for this paper
CH2 . is the interface betwegn user programs and the
operating system, for it is demands for system serv-
B CPU " 007 ice from user programs that will be the source of
* the task descriptions.
CH2 .058
CPU +003 In the Purdue-MACE system, an active task
occupies a control point (a virtual processor) and
A trace-driven model of the system shown in a contiguous block of main (central) memory. A
the example would have three simulated single- task normally competes with other active tasks for
element resources corresponding to the CPU and use of one of the two central processing units. A
channels 1 and 2 respectively. Associated with task can request system service by presenting
each resource would be a queue for requests wait- three-letter coded requests with parameters to the
ing for access to that resource. The simulator operating system. Some of these requests include:
would initiate each task (when appropriate) and
then sequence through the task scripts, requesting 1. Relinquishing use of the CPU resource
the resources designated by the successive script until some ‘event -occurs,
entries for the indicated periods of time. The 2. Termination of a program,
desired usage and queueing statistics would be 3. 1I/0 service, and
accumulated during the period of simulated oper- 4. Use of other system facilities.

ation and the simulation would terminate after a

preselected amount of time or when all of the task The I/0 service and use of most system facili-
scripts had been processed. Figure 3 presents an ties are accomplished by the collection of eight
event trace produced by the trace-driven model of peripheral processor units (PPU's) which are avail-
the system. able to the system. The three-letter codes corre~
sponding to the requests for service are treated
FIGURE 3 as names of PPU programs. When these requests are
presented to the system by a task, an idle PPU must
Event~Trace of Simulated System be found and assigned to that task. The assigned
. N PPU then locates the program in the system program
(with no CPU-Channel Overlap) library corresponding to the specified three-letter
Line No. Time Task Event Resource code and loads and executes that program. These
programs normally execute for a short period of
1 .000 A Req CPU time (1-500 milliseconds); however, some system-
2 .000 A Asg CPU * related PPU programs may execute for much longer
3 .000 B ‘Req CPU periods of time.
4 .002 A Rel CPU
5 .002 B Asg CPU The Purdue-MACE system also includes an event—
6 .002 A Req CH1 trace facility which can be invoked to capture and
7 .002 A Asg CH1 record events corresponding to assignments of re-
8 .009 B Rel CPU sources in response to the demands by all of the
9 .009 B Req CH2 active tasks. This facility is similar to the one
10 .009 B Asg CH2 described in Schwetman and Browne (9).
11 .052 A Rel CH1 :
12 .052 A Req CPU The initial version of the trace-driven model
13 - .052 A Asg CPU focused on the following resources: the peripheral
14 .062 A Rel CPU processor units, the central processor units, and
15 .062 A Req CH2 the central memory/control point resource. These
16 .067 B Rel CH2 resources were felt to be the most critical ones
17 .067 A Asg CH2 in the system. There is the obvious exclusion of
i8 .067 B Req CPU the data channels and I/0 devices from this list.
19 .067 B Asg CPU The project proceeded on the assumption that these
20 .070 B Rel - CPU additional resources could be easily added after
" the feasibility of the proposed approach was de-
termined.

At the Purdue University Computing Center an
event-trace facility, a task-script generator and
a discrete event system simulator similar to those
described above have been implemented. The re-
mainder of this paper describes this simulator and
some experiments which have been conducted using
these tools.

The modél consists of two major components:
the task-script generator and the system simulator.
The simulator is structured like the discrete-event
system simulator described by MacDougall, with two
changes: substitution of PPU's for 1/0 devices
and the use of task scripts to generate the

Winter Simulation Conference 701

LOAD DESCRIPTIONS ... Continued

702

sequence of requests for access to the resources
of the simulated system.

After some initial experimentation with this
first version, some modifications were suggested.
The most obvious one was the installation of a
round-robin service discipline for the CPU re-
source, with a slice~time of twenty milliseconds.
This was necessary to achieve a reasonable de-
gree of similarity in the behavior of the simu-
lated system when compared to the real system.

Other changes were made which contributed to
the realism of the model. One such change was
directed at the system tasks being modeled. Such
tasks consumed little or none of the CPU resource,
but rather proceeded by making periodic calls for
various PPU programs. The task scripts corre-
sponding to these system tasks were modified to
request no CPU service and to have an idle period
correspondlng to the elapsed real time inserted
between successive requests for PPU service.

This change produced a more realistic model of
the behavior of these system-related tasks.

The task-script generator uses the chrono-
logically ordered system event-trace to build a
task script for each task (job) encountered in
the data. The scripts were stored on a direct-
access file along with an index so that the simu-
lator could access the scripts in a completely
arbitrary order, The task in-core time, the ini-
tial task memory requirement and the initial task
priority were also recorded for use by the task-
scheduling section of the model.

A typical script for a task begins with an
entry which requests the initial priority and
memory for the task. This is followed by.a series
of requests which alternates between a request for
CPU service and a request for PPU service. Each
request includes a time value which is the length
of the requested service., This alternating series
continues until the end of the seript is reached.
Some of the PPU requests can proceed in parallel
with CPU activity while others must be the sole
activity associated with a task. These differ-
ences are denoted by the name of the PPU program
and are properly handled by the simulator.

EVALUATION OF PURDUE TRACE-DRIVEN MODEL

System simulators can be evaluated according
to several criteria. One criterion could be ease~
of-use. The simulator just described is easy to
use provided that the structure of the system
and/or the scheduling algorithms are mnot altered.
The numbers of elements within a resource, the
degree of multiprogramming, and the length of the
CPU time-slice are all parameters for the simu-
lator. The task description activity is com-
pletely automated and presents no difficulty to
prospective users of the simulator.

Another criterion is the amount of computa-

tional resources required to perform the simula-
tion. Table 1 presents .data which provides a

January 14-16,-1974

basis for the claim that these demands are not
excessive,

TABLE 1

Typical Computing Resocurces Required by

Purdue Trace-Driven Model

Run 1 Run 2
Number of Resource Assignments 45360 50473
Elapsed Simulated Time (seconds) 581.5 658.3
CPU Time Used (seconds) 18.3 23.3
Elapsed Real Time (seconds) 55 67

Still another ‘eriterion that must be met is
that the simulator be capable of providing the
necessary information to the user. This is a mat~
ter which is dependent on each instance of use of
the simulator and will not be discussed further.

‘The simulator is capable of providing all of the

standard usage and queueing statisties typically
found in system simulators.

An important remaining criterion concerns the
accuracy of the simulator. Measures, such as total
CPU time, average CPU burst time, and PPU times do
not describe the accuracy of the simulated system,
since these values are all directly available in
the task scripts. However, for the sake of com—
pleteness, these are summarized in Table 2. Other
measures, such as the in-core times for tasks and
the time required to complete a set of tasks are
meaningful measures of accuracy and will be pre-~
sented here to support claims of good accuracy. In
particular the differences between the observed and
the simulated in-core times for each of the simu-
lated tasks are tabulated and used to assist in
determining the accuracy of the technique.

TABLE 2

Comparison of Actual and Simulated
System Performance Data

Monoprogrammed, Multiprogrammed
Rumber. of Jobs 20 20
Number of Systems Tasks 3 3
Actual
658,329

Simulated Actual
658.290 388.658

Simulatéd
388,667

Elapséed Time (seconds)
Total CPU Time (seconds) 496.031 472,698 501.279 481.415
Ruuber of CPU Assignments 17126 31588 25994 32151
Average CPU Burst (seconds) .029 .04 .019 .015

Total PPU Time (seconds) 4B8.061 487.641 443,909 443.909
. Number of PPU Assignments 18862 18862 13186 13186
Average PPU Burst (seconds) .026 .026 034 .03

Table 3 presents the results of a test-run
consisting of twenty benchmark jobs executed in a
monoprogrammed environment. The results of this
test suggest that trace-driven modeling can accu-
rately simulate the behavior of programs in a
monoprogrammed environment. Table 4 summarizes
the relative errors for the simulated in-core times
for the same twenty jobs executed in a multipro-
grammed environment., In the simulated multipro-
grammed environment it is much more difficult to
control the conditions in which each task is exe-
cuted. In particular, the simulated and actual
systems do not use the same scheduling strategy for

selecting the tasks for occupancy in memory. For

example, some tasks executed in situations in
which the number of simultaneously executing

tasks in the simulated system was not the same as

in the actual system. In an attempt to fairly
summarize the error data, the simulator was run
using three different task scheduling strategies
and the lowest value for the relative error for
each task is presented as the last column of
data in Table 4.

TABLE 3
Summary of Data
Simulated In-Core Times for Monoprogrammed Environment
In-Core Time Relative
Job Name Actual Simulated Exror
1 MW75715 9.615 sec, 8.410 sec. 12.5%
. 2 MH31811 3.387 3.523 ~4.,0
3 MH75816 66.999 76.735 -14.5
4 MR90218 55.232 47.276 14.4
5 MS47419 41,763 36.464 12.7
6 MM86424 33.603 31.178 7.2
7 MB74426 5.983 5.955 5
8 MD52829 2,144 . 2,149 - -2
9 MD52930 2,058 2,051 .3
10 MS47031 43.045 39.176 9,0
11 ME21619 20.766 20.596 .8
12 MJI59624 1.516 1.467 3.2
13 MB94429 73.328 77.532 -5.7
14 MH20428 34.562 36.234 ~-4,8
15 Mu06122 20.710 20.208 2.4
16 MB11933 2.017 2,038 ~1.0
17 MU58229 2,864 3.058 -6.8
18 MK30051 20.051 19.294 3.8
19 MW82792 63.272 . 63.324 -1
20 MY25417 111.069 110.805 .2
TOTALS 613.984 sec. 607:473 sec. 1.1%
Average of Absolute Value of Relative Errors 5.2%
Maximum Relative Error ~14,5%
Minimum Relative Error A%
TABLE 4

Sunmary of Relative Erxors
Sinulated In-Core Times for Multiprogrammed Environment
Relative Errors

Actual Latgest Smallest
In-Core First Come Priority Priority
Job _Name = _Time First Served _First First = Best
1 MW75715. 13.769 scec. 9.9% 9.2% 9.9% 9.22
2 MH31811 8.242 b ~1.2 ~h -4
3 MH75816 65.537 -8,2 ~8,2 ~8.2 -8.2
4 MR90218 60.234 16.7 12.7 14,2 12.7
5 MS47419 44.970 16.3 16.3 16.3 16.3
6 MMB6424 38.507 -39.3 ~77.9 -31.3 =31.3
7 MB74426 9.215 .77 .1 -3.6 .
8 Mn52829 2.250 1.6 -6.3 2 o2
9 MD52930 1.999 -1.7 -10.7 -4.7 -1,7
10 MSA7031 43,807 -68.3 2.9 ~44,1 2.9
11 ME21619 21.682 -37.4 ~41.9 -50.0 ~37.4
12 MI¥59624 1.346 -15.5 3.9 -3.7 ~3.7
13 nmB94429 111,173 11.2 ~26.6 24,8 1.2
14 MM20428 79,315 -14.7 =-27.4 ~5.7 -5.7
15 Muoel22 22,987 -87.9 ~79.3 ~37.7 =37.7
16 ¥MB11933 2,318 5.5 -21.3, 3.7 3.7
17 MU58229 9.386 2.5 -2.8 -2.5 -2.5
18 MK3005L 24,486 10.9 12,5 6.9 6.9
19 MW82792 100,630 -16.8 ~28.6 1.9 1.9
20 MY25417 134.708 ~29.9 ~34.9 ~-18.9 -18.9
TOTAL 796.561
Average of Absolute Values of Best Relative Errors 10.6%
Maximum Best Relative Error ~37.7%

Hinimum Best Relative Ervor W%

The results-of these. tests show that the cur-
rent model is not capable of exactly reproducing
task behavior. However, the tests do show that the
trace-driven model can provide a level of accuracy
sufficient to permit the model to be used as an aid
to system design.

SUMMARY

Some simulation projects require accurate
modeling of the behavior of specified tasks which
are executed by the simulated system. Trace-driven
modeling is a technique which should be capable of
achieving such accuracy. In order to test this

. assertion, a trace-driven model of the CDC 6500 in

use at the Purdue University Computing Center was
implemented. In addition to demonstrating the ease-
of-use which can be achieved by the automatic task-
script generator, the test also produced data which
permitted the accuracy of the model to be deter-
mined. The data does suggest that the in-core

times for jobs executing in a monoprogrammed envi-
ronment can be accurately modeled. The results for
the multiprogrammed environment were less conclu-
sive,) :

The technique is not applicable in all situa-
tions in which computer systems are simulated. For
example, the job stream and/or the system which are
to be modeled may not be available. Also, many
systems are not equipped with a system event-trace
facility from which sultable task scripts can be
generated. .

The model implemented at Purdue is not com-
plete. There are several items which can be modi-
fied or added which should improve the accuracy of
the model. The goal of this effort has been the
production of a tool which will allow system de-
signers to "try out" features using the simulator
before such features are actually implemented. . It
appears that automatically generated system loads
as described in this paper offer the two advantages
of ease-of-use and accuracy and will be used in

.subsequent system simulation projects.

REFERENCES

1. Seaman, P. H. and R. C. Soucy, "Simulating
Operating Systems", IBM System Journal (8, 4),
1969, pp. 264-279,.

2. MacDougall, M. H., "Computer System Simulation:
An Introduction'", Computing Surveys (2, 3),
September, 1970, pp. 191-242.

3. Katonak, P, R., "Use of Performance Analysis
Statisties in Computer System Simulation',
Proceedings Winter Simulation Conference, 1971,
pp. 317-326.

4. Stanley, W. I. and H. F, Hertel, "Statistics
Gathering and Simulation for the Apollo Real-
Time Operating System', IBM Systems Journal
(7, 2), 1968, pp. 85-102. .

5. Neilsen, N. R., "An Analysis of Some Time-

Sharing Techniques", Communications of the ACM
(14, 2), February, 1971, pp. 79-90.

Winter Simulation Conference 703

704

LOAD DESCRIPTIONS ... Continued

6.

10.

11.

Cheng, P. 8., "Trace-Driven System Modeling",
IBM Systems Journal (8, 4), 1968, pp. 280-289.

Sherman, S., Baskett, F. and J. C. Browne,
"Prace-Driven Modeling and Analysis of CPU
Scheduling in a Multiprogramming System",
Communications of the ACM (15, 12), December,
1972, pp. 1063-1069.

Drummond, M, E., Jr., Evaluation and Measure-
ment Techniques for Digital Computer Systems,
Prentice-Ha}l, Inc., 1973, pp. 122-188.

Schwetman, H. D. and J. C. Browne, "An Exper-—
imental Study of Computer System Performance",
Proceedings 25th ACM National Conference,
1972, pp. 693-703. ’

Abell, V. A., S. Rosen, and R. E. Wagner,
"Scheduling in a General Purpose Operating
System", Proceedings FJCC, 1970, pp. 89-96.

Thornton, J. E., Design of a Computer System:
The Control Data 6600, Scott-Foresman and
Company, 1970.

January 14-16, 1974

