SCHEDULE~--CONSTRAINED JOB SCHEDULING IN A-

MULTIPROGRAMMED COMPUTER SYSTEM

. Thomas Murra';r Cook

. The University of Tulsa

ABSTRACT

THie schedule-constrained job scheduling problem is defined as the problem of deciding what jobs should co-
exist in the memory of a multiprogrammed computer to insure satisfactory schedule performance and adequate
resource utilization. At the present time, the job scheduling function in many multiprogrammed computer,
systems is being accomplished in a suboptimal manner. In computer installations that must pay strict at-
tention to schedule performance, the scheduling module of the operating system, because it does not con-
sider schedule constraints, cannot be allowed to schedule jobs as they beome available for processing. In-
stead, human judgment must override the operating system by deciding which jobs should be input to the com-
puter. To solve the schedule-constrained job scheduling problem, the author has developed and tested seven
scheduling algorithms using a digital simulation model.

INTRODUCTION

Current methods used for scheduling jobs into a multiprogrammed computer are yielding suboptimal results
with respect to schedule performance and résource utilization. This paper addresses this problem and of-
fers a solution which significantly improves current methods of job scheduling.

As depicted in Figure 1, the improvement of computer performance has been approached in two basic ways,
better hardware and better software. With each generation of computers, performance has been dramatically
increased. Due to new technological advances this trend will likely continue. In addition to design
changes, it is possible, given the modular construction of today's computer handware, to mold a hardware
configuration to the special needs of individual organizations and, thus, increase efficiency.

There are three fundamental ways in which software can be utilized to attempt to optimize system perfor-
mance. Firstly, programs written by individual users, i.e., application programs, can be designed more
efficiently. Secondly, the operating system can be improved. Finally, improved scheduling of thé computer
system and its different components can affect performance favorably.

Scheduling can .be broken into three classes: 1) CPU Scheduling, 2) Other Resource Scheduling, and 3) Job
Scheduling., CPU scheduling, sometimes referred to as dispatching, is defined as the function of the super-
visor program of an operating system that decides which job, of those resident in core, will receive CPU
time. Scheduling of resources other than the CPU, such as mass storage and peripheral devices, is another
area where resource utilization can be enhanced. Job scheduling simply means deciding which jobs should be
loaded into memory to contend for CPU time. This research is limited to promoting performsnce through the
betterment of the job scheduling functiom. ‘ :

The scheduling function has received a considerable amount of attention from both computer scientists and
operations researchers. The great majority of the work which has been done has sought to optimize one of
several goals, such as maximizing the number of jobs processed per period, maximizing resource utilization,
or minimizing the expected turnaround time. Techniques, such as classical queueing theory, integer pro-
gramming, chance-constrained linear programming, dynamic programmiﬁg, and simulation, have been reported-in
the literature. (2) Most attempts have been concerned with finding the optimal CPU scheduling algorithm.
Several researchers have worked on the job scheduling problem, but few have considered the problem to be
schedule-constrained.

The schedule-constrained problem is concerned with maximizing some functionm, such as resource utilization,
subject to due-in and due-out times for individual jobs. At present, all attempts at job scheduling use
the operating system to load jobs into memory from the jobs available in the queue. Jobs are queued as
they are read into the system; thus, jobs due into the system but not yet queued cannot be considered by
the operating system job scheduler. Therefore, scheduling personnel must supplement the job scheduling
function of the operating system by exercising a considerable amount of discretion when placing jobs into
the system. In other words, since the operating system at present does not consider schedule constraiﬁts,

Winter Simulation Conference

675

676

JOB SCHEDULING ... Continued
FIGURE 1
Improvement of Computer Performance
IMPROVEMENT
OF COMPUTER
PERFORMANCE
]
HARDWARE SOFTWARE
IMPROVEMENTS IMPROVEMENTS
]] | i
IMPROVED
FASTER FASTER LARGER putipdnd IMPROVED OPERATING
SECONDARY v APPLICATION SCHEDULING
MEMORY STORAGE MEMO PROGRAMS SYSTEM
] i
CcPU 'gESOURCE JOB
SCHEDULING SCHEDUL ING SCHEDULING
EMPHASIS

people must. Even the most experienced of these schedulers cannot be expected to accomplish a high degree
of efficiency in scheduling a multiprogrammed computer. There are simply too many variables, such as re-
source requirements and due-out times, with which to contend. Therefore, the best job scheduling algorithm
might be one that can forecast jobs due into the system. The due-in time and job characteristics for re-
curring production jobs then can be read into the system prior to arrival of the job.

METHODOLOGY

In order to improve the job scheduling function, the following methodology has been used. Firstly, a num-
of job scheduling algorithms have been developed and coded. Secondly, a digital simulation model has been
designed and implemented. Thirdly, to determine which algorithm performs most efficiently under various
conditions, simulation experiments have been rum.

In designing the experiments, it is necessary to limit the scheduleconstrained job scheduling problem. It
is assumed that the general environment of the computer system is one in which strict attention must be
paid to schedule performance. Scheduling methods which neglect to consider deadlines are unrealistic, It
is further assumed that the computer system is operated in a batch mode; that is, no on-line systems are
active during the scheduling period. This assumption permits the treatment of resource availability as a
deterministic variable. In addition, a non-paged environment is assumed. Consequently, the data used in
the experiments has been gathered from a large facilities management firm., Because on-line systems are
active during the prime shift, only data from the last two shifts has been used.

JOB SCHEDULING ALGORITHMS

Algorithms for scheduling jobs in a multiprogrammed computer can be classified as either "static or dynamic.
Static algorithms utilize the job due-infdue-out schedule and the characteristics of each job, such as ex-
pected run time and resource requirements, to gemerate schedules which are based on these expected values.
The static algorithm has the disadvantage of treating the stochastic variables involved, such as run time
and due-in time, as deterministic. Therefore, if a job, whose expected run time is thirty minutes, aborts
after thirty seconds of residence in memory, a serious degradation in resource utilization could occur if
the schedule remains unchanged. It is for this reason that the overhead (i.e., computer system resources)
involved in generating a static schedule is crucial to the success or failure of such an algorithm. If a
job scheduling algorithm requires a large amount of resources, including CPU time, it would be infeasible
to use that algorithm often without defeating its very purpose. As the variance in the relevant stochastic
variables decreases, the allowable amount of overhead connected with generating a static schedule increases.
Therefore, if a computer installation has a job mix that varies only slightly from week to week, and the

January 14-16, 1974

characteristics of each job can be accurately estimated, a static algorithm might yield the best results.

The algorithms classified as dynamic in this research are dynamic for the following reason. In lieu of a
static schedule, every time a new job arrives in the queue or a job in execution is completed, the dynamic
algorithm must decide which job of the queued jobs can and should be loaded.

Two static job scheduling algorithms have been developed. Both are inspired by rather unsophisticated tech-
niques that, given sufficient amount of time, will yield an optimal schedule. One way of optimizing the job
scheduling function is to gemerate all feasible job loading combinations and simply choose the best. Un-
fortunately, given a facility of even modest size, this solution is not feasible due to the number of possi-
ble combinations that would have to be generated and evaluated, Therefore, instead of generating all combi-
nations, the first static algorithm which has been developed and tested is onme that takes a sample of the
possible combinations and chooses the best job mix. This algorithm has been named Random. The second
static algorithm (Backward) is based on a dynamic programming type model which minimizes resource waste
subject to due-in and due-out schedule constraints.

The literature concerned with job scheduling or job shop scheduling provides an almost inexhaustible set of
dynamic scheduling algorithms. For this research, however, only three dynamic algorithms have been investi-
gated. ALl three of these algorithms have been used to schedule both critical (jobs that have a definite
schedule) and non-critical (unscheduled jobs) jobs, and two have been used in conjunction with the two
static algorithms. The static algorithms load critical jobs and the dynamic algorithms schedule non-

critical jobs. The first dynamic algorithm has been advocated by Baskett. (2) This algorithm assigns load-

ing priorities according to a job's space-time product. Jobs with low kilobyte second requirements are
loaded first., The second algorithm seeks to maximize the degree of multiprogramming. The third dynamic
algorithm orders jobs according to slack time.

Baskett has contended that giving higher priorities to jobs with small space-time requirements tends to
maximize resource utilization. (2) Therefore, a priority index defined in the following manner has been
calculated:

Py =yt my W
where p; = priority index of job i

t; = estimated run time of job 1

m = memory requirement of job i

The algorithm sorts the input queue in ascending order using pj. After the input queue has been sorted,
the algorithm attempts to load the first job in the queue. If successful, the next job is examined to see
if it can be loaded. If a job cannot be loaded, the algorithm merely looks at the next job in the queue
for possible loading. The process is continues until all jobs have been examined. Whenever a new job ar-
rives, or an old job leaves the system, the input queue is again sorted on pj, and the loading process is
repeated.,

Penny has shown that if an algorithm maximizes the degree of multiprogramming, it tends to maximize re-
source utilization. (41) Therefore, an algorithm designed to give priority to jobs with small resource
requirements should be investigated, The priority index is defined in the following manner:

p; = P Ik (2)
k=1 R

where p; = priority index of job i
ri} = requirement of job i for resource k
Ry = available amount of resource k
N = number of resources contended for

With the exception of how the priority index is computed, this algorithm is identical to the previously
described Space-Time Algorithm.

The Slack-Time Priority Algorithm orders jobs in the job queue in ascending sequence according to slack
time. (33) Slack-time is defined in' the following manner:

p; =d; - (t +s5) (3)
where p; = priority index for job i = slack time
t = present time
s; = expected service time for job i
d; = due-out time for job i

Again, the loading.logic for this algorithm is the same as for the other two dynamic algorithms.

‘Winter Simulation Conference 677

JOB SCHEDULING ... Continued

Iwo static and three dynamic job scheduling algorithms have been defined. The experiments use seven algor-
ithms, four of which are a combination of the two static algorithms and two dynamic loading algorithms.

The remaining three experimental algorithms are the three dynamic algorithms used independently of the
static algorithms.

By combining the static and dynamic algorithms, the followlng interaction occurs. At the beginning of the
simulation run and at specified periods, a static schedule is generated for all critical, schedule-
constrained jobs. Non-critical jobs are scheduled by a dynamic algorithm. These non-critical jobs act as
filler jobs to use resources not being used by critical jobs. When a critical job is scheduled in at a
specific time, and the necessary resources are being used by a non-critical job, this less important job
is rolled out (returned to the queue), and the critical job 1s loaded. However, if the preempting of non-
critical jobs would still not produce the adequate resources, then the critical job is forced to wait until
another critical job is completed and releases the necessary resources. Critical jobs are not allowed to
be preempted. Figure 2 summarizes the experimental algorithms used in this research.

FIGURE 2

Summary of Experimental Algorithms

EXPERIMENTAL
ALGORITEN
STATIC/DYNANIC PURR DYNAMIC
ALGORITHMS ALGORITHMS
BACKWARD BACKWARD MULTI- | |RANDOM SPACE- RANDOM MULTZ~ SPACE-TIME DEGREE oF MULTI-| |sLAck-TINE
SPACE~TIME PROGRAMMING TIME ALGORTTHM | | PROCRAMMING ALGORITHM PROGRAMMING ALGORITHM
ALGORITHM ALGORITEM ALGORTTHN ALGORITHK

678

SIMULATION MODEL

As depicted in Figure 3, the simulation model is highly parameterized and allows such exogeneous variables
as the hardware configuration, the job scheduling algorithm, and the job mix profiles to be input by the
researcher. Given these controllable variables, the model simulates the operation of a multiprogrammed/
multiprocessor computer system. At the end of the simulation, two types of reports are printed: a sched-
ule performance report and a resource utilization report.

As shown in Figure 4, the logic of the simulation model can be broken into four major categories. Firstly,
run parameters and job profiles must be input to the model. Secondly, if the job scheduling algorithm in-
cludes a static algorithm, the appropriate subroutine is called to generate a static schedule. A static

job scheduling algorithm utilizes the job due-in/due-out schedule and the characteristics of each Job, such

TJanuary 14-16, 1974

FIGURE 3

_Simulation Model Schematic

INPUT

1. HARDWARE CONFIGURATION

* DISK STORAGE

- CORE STORAGE FOR EACH CPU

- MAGNETIC TAPE DRIVES

- . NUMBER OF CPUS

» NUMBER OF JOBS THAT CAN COEXIST IN MEMORY
OF EACH CPU

2. JOB SCHEDULING ALGORITHM TO BE USED
3. JOB MIX

4., APPLICATION PROCESSING TIMES DISTRIBUTION

L

SIMULATOR

THE MODEL IS DESIGNED TO SIMULATE THE OPERATION OF A
MULTIPROGRAMMED COMPUTER GIVEN THE ABOVE INPUT PARA-
METERS AND PROBABILITY DISTRIBUTIONS., THE COMPUIER 1S
SCHEDULED ACCORDING TO THE ALGORITHM SPECIFIED, AND
RESOURCE UTILIZATION IS RECORDED AS ARE SCHEDULE PER-
FORMANCE STATISTICS.

OUTPUT REPORTS

1. SCHEDULE PERFORMANCE REPORT

2. RESOURCE UTILIZATION REPORT

as expected run time and resource requirements, to generate a loading schedule. If only a dynamic algorithm
is to be used, the necessity to generate a static schedule is deleted. Thirdly, the simulation model is run
with a next most imminent event logic. Events, such as job departures and arrivals, are generated and hand-
led by the model. Fourthly, after the last job has departed the modeled system, two reports are generated
and printed, and the simulation is terminated.

The first report is concerned with schedule performance and reflects the following measurements: 1) The
number of late jobs reflects only critical jobs whose departure time is later than its due-out time.
2) Mean lateness is computed in the following manner:

N
x = 3 Xi (4)
i=]
N
where x = mean lateness
x; = lateness in minutes of job i
N - number of late jobs.

3) Mean turnaround time refers to the average time necessary for a non-critical job to be processed by the
computer system. A job's ‘turnaround time is the time it is resident in memory plus the time it is forced
to wait in the input queue. 4) Variance in turnaround time is calculated such that an analysis of variance
concerning the mean turnaround time can be performed. 35) Standard deviation for turnaround time gives a
~good indication of the dispersion in the distribution of turnaround times. 6) Mean wait time reflects the
average amount of time (in minutes) that a non-critical job spends in the queue waiting to be loaded. *

7) Variance in wait time allows the analysis of variance to be performed on the mean wait time. 8) Stand-
ard deviation for wait time indicates the degree of variability in the distribution of the wait times.

The second report produced by the simulation model is concerned with resource utilization. Since the job

Winter Simulation Conference 679

680

JOB _SCHEDULING ... Continued

FIGURE 4

Simulation Model Overview

START

PARAMETERS
& JOB
PROFILES

GENERAIE A
STATIC
SCHEDULE

RUN THE
SIMULATION

COMPUTE &
PRINT
OUTPUT

| STATISTICS

= 1

mix remains constant among the different experiments, resource utilization can be measured by one statistic
namely, the amount of time required to process completely the given amount of work, Other statistics, such
as the percentage of core utilization, tape drive utilization, and disk pack utilization, are calculated to
indicate which resources appear to be the most constraining.

MODEL VERIFICATION AND VALIDATION

Simulation model verification and validation is perhaps the most difficult and frequently overlooked task
involved in accomplishing research using a digital simulator. Unless a researcher has some degree of con-
fidence that his model accurately represents the "real world" system, he cannot advocate its use in making
decisions concerning the actual system.

In order to verify the simulation model used in this research, three types of tests have been made. First-
ly, the logic of the driver program and all the subroutines have been thoroughly tested to insure that the
model is performing as designed. A set of ten jobs and over one hundred individual print statements have
revealed numerous errors which subsequently have been corrected.

After verification of the simulator's logic, two types of statistical tests have been run. The first test
is a non-parametric goodness of fit test which determines if the run time generating subroutine is func-
tioning properly. A job's run time is generated by the following function:

ty =¥1 + x¥y - (5)

January 14-16, 1974

generated run time for job i

generated deviation of the run time from the expected value
of the run time for job i (generated using an empirical
probability dlstrlbutlon)

x =y - ¥ /i

the expected run time for job i.

where tj

»
"

<
I
1l

Yik = actual run time for job i the kth rum.

A random variable, x, has been defined as the amount of déviation between a job's expected run time and its
actual run time. In order to generate this random variable, a subroutine, which uses an empirical cumula-

tive probability distribution to generate x, has been coded. To test this function, 100,000 x's have been

generated and grouped into a frequency distribution. This distribution has been compared to the empirical

distribution using the Kolmogorov~Smirnov goodness of fit test. The generating function easily passed the

test.

The final test in the verification procedure has required the replication of the experiments and one way
analysis of variance. The simulation model has been run nine times with all controllable variables, except
the random number seed, held constant. Before each run, the random number seed has been replaced by another
random number. Two of the statistics, mean turnaround time and mean wait time, have been chosen for one way
analysis of variance tests. The null hypotheses are that all nine runs have produced mean turnaround times
and mean wait times which have been taken from the same population. Using an o of .05 these null hypothe-
ses must be accepted.

It is recognized that the verification procedures described above do not provide absolute model validation.
To further test the valldlty of the model, simulation results will be compared to results produced by an
actual computer system. '

i

DESIGN OF SIMULATION EXPERIMENTS

The purpose of the experiments is to evaluate the performance of several job scheduling algorithms operat-
ing in an environment where schedule constraints exist. To accomplish this goal, a somewhat constant envi-
ronment is necessary. As seen in Figure 5, the hardware configuration and job set are held constant for
each simulation. The only variables which are allowed to vary are the scheduling algorithms and the
schedule constraints.

Two basic sets of experiments have been run. The first set treats run time as a deterministic variable
which can be estimated perfectly. , The reason for this is to establish an upper bound on the performance of
the static-dynamic combination algorithms. If these combination algorithms perform poorly with perfect in-
formation, their use cannot be advocated. The second set of simulations treats run time as a stochastic
variable which is generated in accordance with an empirical distribution.

Each set of experiments consists of twenty-one separate simulations. The seven algorithms have been tested
under loose, moderate, and heavy schedule constraints. In oxder to simulate the various degrees of tight-
ness in the schedule constraints, the due-in and due-out times of the jobs have been set arbitrarily.
Figure 6 identifies the simulations which have been run. ’

SUMMARY AND RESULTS

A comprehensive literature search reveals that the great majority of research concerning the scheduling of
multiprogrammed computers concentrates on the scheduling of the CPU and not on job scheduling. The exist-
ing job scheduling research has sought to maximize efficient use of computer resources without regard to
schedule performance. If one relies solely upon the literature, he will find it difficult even to perceive
the schedule-constrained problem. If, however, one ventures into the 'real world" and communicates with
executives responsible for computer installation performance, the problem is transformed f£rom an obscure
one to one of paramount importance. All installations questioned have emphasized that algorithms currently
being used perform efficiently with regard to computer resource utilization. However, these installations
have also indicated that it is impossible to use these algorithms without manually overriding them to in-
sure schedule performance. There is a need for a job scheduling algorithm which seeks to insure schedule
performance and, at the same time, efficiently utilize computer resources.

To resolve the schedule-constrained job scheduling problem, seven experimental algorithms have been devel-
oped and tested. The experimental results as summarized in Figure 6 indicate two major conclusions.

1) Due to excessive overhead required and the stochastic nature of job rum times, static job scheduling
algorithms do not provide an adequate solution to the job scheduling problem. 2) A simple Slack-Time
scheduling algorithm promises to perform quite well with respect to schedule performance and resource util-
ization. See Figures 7 and 8. Based upon the results of this research, this author advises that implemen-
tation of the Slack-Time algorithm into the operating systems of installations which have a job scheduling
problem with schedule constraints, It is believed that, in addition to performing in a manner superior to
methods now being utilized, the Slack-Time algorithm will provide automatic job scheduling. No longer will

Winter Simulation Conference 681

JOB SCHEDULING ... Continued

scheduling personnel have to interfere with the job scheduling function of the operating system in order to
insure satisfactory schedule performance.

FIGURE 5

Hardware Configuration

HIGH SPEED
LINE PRINTERS |-
MAIN FRAME
IBM/360/653
36
9 TRACK
TAPE
DRIVES .
IBM/360/653
IBM/360/75%
1 MILLION OF LOW SPEED
3 CORE STORAGE
HIGH SPEED
RJE TERMINALS

682 January 14-16, 1974

FIGURE 6

Summary of Experimental Results

EXPERIMENT | NATURE SCREDULE OUTFUT STATISTICS
NUMBER OF RUN JOB SCHEDULING ALGORITHM .
- . CONSTRAINTS
o nlwrwju iy o wn (o [%] t = IR g1 ~ R ARV A. Hown o oH o e (-2] (=3 E:P'l
Bgluples s B s EE e s B (SEE | BB OEESE|CE|EEE| SR HE 48|28 aE
m oljlaxjoulag|av 0 | m O 7] m mofmw = zZilg®w =z Zpmm 2 = 2] O oo |rEa
il HEimX |maQ |®@o |®O mijom | = 5] = - m 3 k<3 2% o = >0 el o o Sl R)
= [A B] E: | |2 ot - o Hp|l Haldgesl damjan>]| =R REBEE N BRI
- LR EE R) ~ L] - ‘ 3 (=3 = > o w o 2o oo Q™ > H = rl » v >
= R = =xiE= H§O fad ™ = O g M -8 1~ R -] - ox =] » 5] R
Lad H X~ = lH o x jrtm b 4 w [R LR H o = oo - Q o - Oz
« [Nl 0y Z = mo= 2 [mp SO ™ Il “w o (=] o > o - =B]
r3 aniorr R (L] [2] M| wHlR D o w R Z Zwm iz 2
H Ll Ll o ~ w0 ~wOimZE S ~ o D [y} 1] ke o
(21 1 1 I [=3 (e o 2l W
* " = | >] ot
End T 4 ¥ (] =
[} [~ w
1 [M) 5. 8916, 14lan 04t10.90 56 selng a5135.98,23 2418753
2 0} o 26,100 88, 49014 10 898,321066.751 87,211057 13121, 77 180,87
K * * * * *) * * * * ®
e * * * X A * 4 * X * A
<, L1 21 77lin6 521107 34] 8A, 60101, 15508 72] 77.08150.13 0. 87 {78,587
2l 7.27h4a0. 240015, 211230,4d114.70]a93. 03[79.31151 63 f21.50 §81.23
vl 01 0 |34 67 £0.90h2s & 90.950432.8 | %0, 52158 .93 |24.53]92:71
8 | | -* * * % » * Iy = *
9 * * * * * * * * * * »
10 * * * * * * * »* * X A
11 >< * * * * * * * * 4 X
12 2 0 Gl 9255 81 07| B2 A3 O1.011495,59] 70,9251, 3k 1,35 | BV HL
13 7.88[77.031100,33[167.09113,31]484, 221 a0 ag|32.65}21.62 § 82.83
14 5.03P57,95008. 27748, 03114 .591449.72]87.2656,81 .65 | 89.37
15 * * * * * * * *
16 > > * > 4 * * % - * *) ®
12 * * * * * & * * x ® x
18 * * # * * * * * * & *
19 L0105 25192 55| 93.07| 82.6% 93 911496.42)78.92151, 38 P1.39 | 80,83
[} - 510 93.12k77.010120.33067 0411 ¥, a1jasa 42180 AR{52-85P1.92 F a2, 83
L o< - 1569065 . ABILL5.7/lhse 4A17) .B0]448, 65[87.3256.85 PI.h7 | BY.44]
2 * * * % IR % " A *
* * * % * X * * * * *
* * * L3 * * * * * * *
* X X %, X '3 X £l * *
2 | 24.20105.67hoa. 60l 95.69101.85{505 .41 70,86(48.93119 21 27,28
2 Lsn. acP23.250135.33p12,.89115.04l574,27] 67.26)39.51117.89 ¢9,92 |
2 ol o 1120.30] 82.42[310,49 91.04[467.93] 82.39[48.43 121,911 54,55
29 * * * * % * * *
30 * * * * * * * ® * *
31 * * X * * * X * * *
2 * * * 1. * * * * T A *
L33 201 73.76] 94,17] 7.79].83.7] 88.22566,25| 68,09/ 40.00]18.11} 69.567
4 201 53.55/163.870102, 781153, 41107.19, 566,42 68,07} 19,99[18.10] €9.35
41 56.42|232,04] 96.741221,64104,72/ 565,98 68.11]40.02118.12] 69,8¢
* * * * * * * * * A *
—— * * * X * * [] £ * *]
* * * * * * ® * * % *
39 x| * [* * & * [l * X *
40 k) 218, 98,17 B7 .70 83,77 R8,24 58625 gp 09 40.00]14,11) 69.87
41 e 471 84 .05}163. 7|1202.78l153.41107,19 566,44 68.067] 39.99}18.10 39‘.85
42 A 810235, 471108.49)225 . 0f115.0q 556.09 43,13t 40.02118.22
*Indicates the slgorithm hua proved infeasible due to
exceagive overhead requirements,
FIGURE 7 .
Resource Utilization Statistics
Time
Job Period Per Cent Per Cent Per Cent Initiatoxr/
Schedule Scheduling in Core Tape Disk Terminator
Constraints Algorithm Minutes Utilization Utilization Utilization Utilization
LOOSE SPACE-TIME 508.77 77.01 50.13 20.87 78.87
MULTIPRO- .
LOOSE 493.97 79.31 51.63 21.50 81.23
GRAMMING * *
LOOSE SLACK~TIME 432.8 90.52 58.93 24,53 92,71
MODERATE SPACE-TIME 496.42 78.92 51.38 21,39 80.83
MULTIPRO- ¢
MODERATE GRAMMING 484,42 80.88 52,65 21.92 82.83
MODERATE SLACK-TIME 449,72 87.26 . 56.81 23.65 89.37
TIGHT SPACE-TIME 496,42 78.92 51.38 21.39 80.83
MULTIPRO-
TIGHT CRAMMING 484,42 80.88 52.65 21,92 82.83
TIGHT SLACK-TIME 448,65 87.32 56.85 - 23.67 89.44

Winter Simulation Conference 683

JOB SCHEDULING ... Continued

FIGURE 8

Schedule Performance Statistics

Mean Standard

Job Lateness Mean Deviatioh
Scheduling Number of in Turnaround Turnaround Schedule
JAlgorithm Late Jobs Minutes in Minutes in Minutes Constraints
SPACE-TIME 2 24,20 105.67 108.60 . LOOSE
MULTIPROGRAMMING 2 50.95 223.25 " 115.3L LOOSE
SLACK-TIME 0 0 320.80 82.42 LOOSE
SPACE-TIME 20 73.76 94.17 87.79° MODERATE
MULTIPROGRAMMING 29 53.55 163.87 102.78 MODERATE
SLACK~TIME 4 56,42 232.04 96.74 MODERATE
SPACE-TIME. 33 89.18 - 94,17 87.79 TIGHT
MULTIPROGRAMMING 47 84.05 163.87 102.78 TIGHT
SLACK -TIME 4 56.83 235.47 108.49 TIGHT

BIBLIOGRAPHY

1. Baskett, Forest, III; Browne, J. C.; and Raike, W. M. 'The Management of a Multi-Level Non-Paged
Memory System,” in Proceed__gs of the AFIPS 1970 Spring Joint Computer Conference, Vol. 36.

2. Baskett, Forest, III. '"Mathematical Models of Multiprogrammed Computer Systems," Unpublished Ph.D.
dissertation, The University of Texas at Austin, December, 1970.

3. Block, Andrew F. '"Automated Computer Scheduling," in Share XXXI Gu1de 27 Proceedings, Vol. 2, Sec. 5,
October-November, 1968.

4. Codd, E. F. "Multiprogram Scheduling," in Communications of the Agﬁ, Parts I and II, Vol. 3, No. 6,
June, 1960. ' i

5. . "Multiprogram Scheduling," in Communications of the ACM, Perts III and IV, Vol. 3, No. 7,
July, 1960.
6. Coffman, E. F., Jr. "Analysis of Two Time-Sharing Algorithms Designed for Limited Swapping," in
Journal of the ACM, Vol. 15, No. 3, July, 1968.

7. . "A Simple Probability Model Yielding Performance Bounds," in Institute of Electrical and
Electronic Engineers Transactions, C-17, No. 1, January, 1968, | ‘

8. > and Kleinrock, L, "Computer Scheduling Methods and Their Countermeasures," in Proceedings of
the AFIPS 1968 Spring Joint Computer Conference.

9. Conway, R. W, and Maxwell, W. L., '"Network Scheduling by the Shortest Operation Discipline," in
Operations Research, Vol. 10, No. 1, 1962,

10. Denning, Peter J. "Effects of Scheduling on File Memory Operatlons," in Proceedings of the AFIPS 1967
Spring Joint Computer Conference.

11. Denning, Peter J. "Resource Allocation in Multiprocess Computer Systems Unpublished Ph.D. disser-
tation at Massachusetts Institute of Technology, 1968.

12. Edelman, Paul R. "Scheduling the Computer in a Manufacturing Environment " in Data Processing,

Vol. XIII, 1968. ‘

13. Estrin, G. and Kleinrock, L. '"Measures, Models, and Measurements for Time-Shared Computer Utilities,"
in Proceedings of the ACM 22nd National Conference.

14, Fenichel, Robert R. and Grossman, Adrian J. "An Analytic Model of Multiprogrammed Computing,” i
Proceedings of the AFIPS 1969 Spring Joint Computer Conference.

15. Fife, Dennis W. "An Optimization Model for Time-Sharing," in Proceedlngs of the AFIPS 1966 Sprlng
Joint Computer Conference.

16. and Rosenberg, R. '"Queueing in a Memory-Shared Computer,” in Proceedings of the ACM 19th
National Conference. '

17. Fine, Gerald H. and McIssac, Paul V. "Simulation of a Time-Sharing System,” in Management Science,
Vol. 12, No. 6, February, 1966.

18. 5 s and Jackson, C. W. "Dynamic Program Behavior Under Paging,” in Proceedings of the AGM
21st National Conference, Washington, D. C., 1966.

19, Fineberg, M. S. and Serlin, Omri. "Multiprogramming for Hybrid Computatlon,” in Proceedings of the
AFIPS 1967 Fall Joint Computer Conference.

20, Gabor, D. '"Associative Holographic Memories,” in IBM Journal ef Research and Development, Vol. 13,
No. 2, March, 1969.

21. Gaver, D, P., Jr. "Probability Models for Multiprogramming Computer Systems,” in Journal of the ACM,
Vol. 14, No. 3, July, 1967.

684 January 14-16, 1974

22. Giblin, Tom. "Techniques for Optimizing 0S/360 Multiprogramming Installation Performance,” in Share
XXXI Guide 21, November 1, 1968. '

23. Habermann, A. N. "Prevention of System Deadlocks," in Communications of the ACM, Vol. 12, No. 7, July,
1969. .

24, Howarth, D. J., Jones, P, D., and Wyld, M. T. "The Atlas Scheduling Systems,” in Proceedings of the
AFIPS 1963 Spring Joint Computer Conference.

25, Hume, J. N. P. and Rolfson, C. B. "Scheduling for Fast Turnaround in Job-at-a-Time Processing,” in
Proceedings of the IFIP Congress, 1968, Hardware 2, Booklet E.
26, Hutchinson, I. G. K. "A Computer Center Simulation Project," in Communlcatlons of the ACM, Vol. 8§,

No. 9, 1965.

27. Jackson, J. R. "Queues with Dynamic Priority Disciplines," in Management Science, Vol. 7, No. 1, 196l.
28. Katz, J. H. "Simulation of a Multiprocessor Computer System,” in Proceedings of the AFIPS 1966 Spring
Joint Computer Conference.

29. Kleinrock, Leonard. "Tlme—Shared Systems: a Theoretical Treatment," in Journal of the ACM, Vol. 14,
No. 2, April, 1967.

30. and Coffman, E. G. "Distribution of Attained Service in Time-Shared Systems," in Jourral of Com-
puter and System Sciences, Vol. 1, No. 3, October, 1967.
31. Krishnamoorthi, B. and Wood, Roger C. "Time-Shared Computer Operations with Both Interarrival and

Service Times Exponential," in Journal of the ACM, Vol. 13, No. 3, July, 1960.

32. Lan, Jean C. A Study of Job Scheduling and Its Interaction with CPU Scheduling TSN-24. The University
of Texas at Austin Computation Center, Austin, December, 197L.

33. LeGrande, E. "The Development of a Factory Simulation System Using Actual Operating Data,” in Manage-
ment Technology, Vol. 3, No. 1, May, 1963, p. 7.

34. Mamelak, J. S. '"Multiprogram Scheduling," in Proceedings of the 5th National Conference of the Compu-
ter Society of Canada, 1966.

35, Marshall, B, S. ''Dynamic Calculation of Dispatching Priorities Under 08/360 MVL,"” in Datamation, Vol.
15, No. 8, August, 1969.

36, Naylor, Thomas H., Balintfy, Joseph L., and others. Computer Simulation Techniques. John Wiley and
Sons, Inc., New York, 1966.

37. Nielsen, Norman R. "An Analysis of Some Time-Sharing Techniques," in Communications of the ACM,

Vol. 14, No. 2, February, 1971.

38. . "Computer Simulation of Computer System Performance," in Proceedings of the ACM 22nd National
Conference.

39. . "The Simulation of Time-Sharing Systems," in Communications of the ACM, Vol. 10, No. 7, July,
1967,

40. Oppenheimer, G. and Weizer, N. ‘''Resource Management for a Medium Scale Time-sharing Operating System,"
in Communications of the ACM, Vol. 11, No. 5, May, -1968.

41, Penny, J. P. '"An Analysis, Both Theoretical and By Simulation, of a Time-Shared Computer System,' in
Computer Journal, Vol. 9, No. 1, May, 1966.

42, Pirow, P. C. and Kaye, R. L. "Multiprogramming,"” in South African Computer Bulletinm, Vol. 9, No. 1,
September-October, 1967.

43, Ramamoorthy, C. V. "The Analytic Design of a Dynamic Look Ahead and Program Segmenting System for
Multiprogrammed Computers,' in Proceedings 'of the ACM 21st NatLonal Conference.

44, Scherr, Allan L. "An Analysis of Time-share Computer Systems."” Unpublished dissertation, Massachu-
setts Institute of Technology, 'June, 1965.

45, Schmidt, J. W. and Taylor, R. E. Simulation and Analysis of Industrial Systems. Richard D. Irwin,
Inc., Homewood, Illinois, 1970.

46, Shemer, Jack E. ''Some Mathematical Con51derat10ns of Time-sharing Scheduling Algorithms," in Journal
of the ACM, Vol. 14, No. 2, April, 1967.

47. Smith, R. L. "The Determination of a Scheduling Rule for a Computing Center." Unpublished Ph.D.
dissertation, George Washington University, Clearinghouse Document #665687, November, 1967.

48. . ™Multiprogramming Under a Page on Demand Strategy,” in Communications of the ACM, Vol. 10, No.
10, October, 1967,

49, Stevens, David F. '"On Overcoming High-Priority Paralysis in Multiprogramming Systems: A Case History;'
in Communications of the ACM, Vol. 11, No. 8, August, 1968.

50. Thiess, H. E. P"Mathematical Programming Techniques for Optimal Computer Use," in Proceedings of the
ACM 20th National Conference.

51. , and Rosenberg, R. '"Markovian Models ...Analysis of Computer System Behavior," in
Proceedlngs of the AFIPS Spring Joint Computer Conference, Vol. 28.
52, ~—. VA Model for Core Space Allocation in a Time-sharing System," in Broceedings of the AFIPS 1969
Spring Joint Computer Conference.
53. Woellner, D. A. "Scheduling the.Work Flow in a 3rd Generation Environment,'” in Data Processing,
Vol. XIII. . '
CAcm
j/A&V? i

Winter Simulation Conference

685

