A GR'ADI.ENT——REGRES'SION SEARCH PROCEDURE

POR SIMULATION EXPERIMENTATION

ABSTRACT

This paper examines a gradient search procedure
for simulation experimentation with constrained
systems. This procedure combines gradient
search with curvilinear regression in moving to-
ward a constrained optimal solution for a system
jnvolving n controllable variables. In a direction-
determining block, at least n+l simulation trials
are performed around a current base point to es-
tablish an improving direction. Then in a step de-
termining block, t simulation trials are perform-
ed along the improving direction to establish the
most favorable step in moving to the next base
point. This sequential block process, in which

. each block is executed in one input to the com-~
puter, is repeated until an approximate solution
is found which satisfies all system constraints. ,

I. INTRODUCTION

Although simulation is most often used as a de-
scriptive technique, much attention has been
given to the problem of using optimization in con-
junction with computer simulation. This entails
performing experiments with a simulation model
of the system under study to determine the opti-
mum response y* for some probabilistic function
of unknown form,

y=F(X)+e, ] (1)

where y is some measure of system effectiveness,
X is an n-dimensional vector of controllable vari-
ables (xj, i=l,***, n), and € is an error compo-
nent usually assumed to be normally distributed
with mean zero and standard deviation Og. Simu-
lation experimentation is typically conducted by
controlling the levels of the system variables X
at p distinct sets of values (XX, k=l;***,p), ob-
serving the p simulated responses (y*, k=1, «° +P
and selecting X# so as to achieve the most bene-
ficial expected response y*.

Mihram [8, 9], Schmidt and Taylor [13], and
Smith [15] have presented excellent treatments of
multivariable optimization with a single simulated
response. Most realistic systems, however, re-
quire simultaneous consideration of several re-
sponses (yj, j=0, lye+¢,m). For instance, in a
simple inventory system one might have to con~
sider safety stock level as well as total system
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cost. An expedient approach to multiple-response
simulation experimentation is that of constrained
optimizafion. In this approach one response, Vo,
is designated a primary or objective response,
while the remaining responses (yj, j=l,*** , M)
become constraints by placing restrictions on the
values they may assume. The mathematical state-~
ment of this problem is as follows:

Maximize (or minimize) y_ = F,(X),+'€:o (2)
Sl]:bject to

aisxiSCi,i=1,-;-,n (3)

Yj = Gj(X) + ej {S, =:2} dj: j=lyceem (4)
where

X

n~dimensional vector of controllable vari-
ables (xi, i=1l,***, n);

value of the i-th controllable variable;

lower bound on the value of the i~th control-
lable variable x;;

=‘upper bound on the value of the i-th control~
lable variable xi; .

objective function, a probabilistic function of
unknown form; :

: objective response variable;

error component in the objective system
response;

j-th system response function, often a proba-
bilistic function of unknown form;

j~th system response variable;

error component in the j-th system response;

j specification level or bound on the j-th

system. response yj;

= number of controllablle variables for the
system;

number of system responses treated as con-
straining conditions. .
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Biles [1] has examined the multiple-response
problem in connection with discrete-event simu-
lation and demonstrated several techniques that
can be applied to solyve the problem in a succes-
sion of sequential experimental blocks. Sequen-
tial-block experimentation consists of performing
sequential sets or ''blocks' of experiments with
the simulation model of the system under study.
Each "block" consists of several "trials' per-
formed in a single computer run. A 'trial' is an
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GRADIENT~REGRESSION SEARCH PROCEDURE ... Continued

execution of the simulation model at a specified
set of values for the controllable variables

(xi, i=1l,--+, n). After each block, the experi-
menter examines available results and decides
where to place the next block of experiments;
hence, sequential~block search is an interactive
technique in that it permits the experimenter to
use his judgment in determining the sequence of
experiments and when to terminate the search.

A gradient approach to sequential-block simula-
tion experimentation would consist of several
iterations, with each iteration consisting of a gra~-
dient-determining block followed by a step-deter-

mining block. Biles [1] illustrated this procedure .

in a rather informal fashion with a GASP-II simu~
lation model of a periodic review inventory sys-
tem. The present paper develops a more formal
algorithm for handling constrained problems.
This algorithm employs a gradient direction when
the search is interior to the feasible region given
by (3) and (4), and a gradient projection direction
when the search has progressed to a point XK
which lies at a boundary of the feasible region.
This gradient projection direction is the same as
that developed by Rosen [12, 13] for solving non-
linear programming problems., Rosen's gradient
projection method, however, was developed for
optimization problems involving functions of
known algebraic form without statistical variation
and is a computational procedure rather than an
experimental one. Although neither of these as~-
sumptions is applicable to computer simulation;
it is possible to develop modifications to Rosen's
method that enable it to be used with simulation
optimization. This paper examines these modi-~
fications.

II. GRADIENT SEARGH

Given the problem of finding the maximum of a
known function F(X), which has no statistical
variation, gradient search proceeds from a cur-
rent point XK to a new point XK+l according to
the relation

xF o R ARy (5)

where
'vF(Xk) = [3F /3%, 3F/3x,,*+, 3F/ax, ]  (6)

That. is, VF(Xk) is the n-component vector of
first partial derivatives of the function F(X),
evaluated at the point X*. This "gradient vector'
describes the optimal improving direction away
from the point Xk, Since the gradient direction
is a local property of the function F(X), there is
some point along this direction for which the
function F(X) obtains its maximum; that is, there
is a step Ak for which

F(Xk+xk[vF(Xk)])=m§.xF(Xk+}.[VF )] (7)

Hence, gradient search consists of alternately
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determining a gradient direction vF(XK) and an op-:
timal step Ak along this gradient direction. This

process is repeated until an optimal or near-opti-
mal solution is found. '

Box and Wilson [3] developed an experimentation
procedure which invokes the principles of gradient
search. Called "response surface methodology'!,
or RSM for short, their procedure employs a
first-order designed experiment around a current
base point xK to develop an estimate of the gra-
dient direction. Using a 2™ factorial désign or an
n~dimensional simplex design [2], both illustrated
below, it is possible to estimate the linear equa~
tion ’

n
¥ =b, #Z b (8)

where 3} = an estimate of the system response
under study;
value of the i-th controllable variable;

X,
i s sox
bi regression coefficient.

Xz

2% FACTORIAL DESIGN
X2

t X

TWO-DIMENSIONAL SIMPLEX

THREE-DIMENSIONAL SIMPLEX

Figure 1, First-Oxder Exp'erimenta»l Designs

Multiple linear regression is used to determine
the nt+l estimates (b;j, i=0, 1,*+*, n), Therefore,
any experimental design employed for this pur-
pose must have at least n+l design points. In
terms of computer simulation, this block of n+l
or more design points is performed in a single
computer run consisting of a simulation trial at
each design point. The regression coefficients
by, +++, by provide the estimate of the gradient
direction vF(XK),

RSM then proceeds by experimentally determining
the optimum step AX away from the current base
point X*, In effect, this is a univariable search
with a new controllable variable A. 'This search !
can be performed in a single experimental block

by employing t simulation trials in a single com~
puter run. These t trials are performed at points

51,‘ Az, ¢+, At along the gradient direction. The



values of the controllable variables Xj correspond~
ing to these points (\j, j=l,+++, t) are given by

. .-
X = X5 M VFET )
which for each variaiole (xij, i=l,*++, n)is
£ = x5+ Ab, (10)
ij i ji

Now the univariate search points (Aj, j=l, ***, t)
must be chosen so that the t simulation trials -
span the region of interest. The t responses
(y-j, j=l, ««e, t) are recorded and curvilinear
régression is used to fit'the most statistically’
significant polynomial equation of the form
.r k ) -
y=a,i& 2y A (11)
. k=l

where r = t-1. For instance, if a second degree
equation best fits the data, the polynomial is

A 2
y—-a°+all+az>~

The appropriate polynomial expression is solved
for the value A¥ which maximizes y. Then the
new base point in the exploration is given by

L ] | (12)

Hence, two -experimental blocks, each consisting
of a single cti{mputer run, are used in moving
from point X* to an improved point X +l, This
process is iterated in moving from a starting
point X° to a solution XP.- Termination at XP
usually takes place according to a criterion such
as

|PP) - PP~y =6 (13)
where 8§ is an arbitrarily small increment. A

hypothetical gradient search performed in sequen~
tial blocks is illustrated below.

X2

X

Figure 2. Unconstrained Search

There is little thus far to distinguish the proposed
procedure from the RSM method by Box and Wilson
[3], except that the simulation trials are executed
in experimental blocks with each block requiring a
single computer run. However, we have not yet
considered the constrained problem in any formal
fashion. )

II. GRADIENT PROJECTION METHOD

Given the constrained 6ptimization problem rep-
resented by relations (2)-(4), but without the error

. components (€5, j=0, 1,°+*, m), Rosen's gradient

projection method {12, 13] is one of gradient s
search coupled with orthogonal projection of the
negative gradient onto a linear sub-manifold of any
binding constraints. The algorithm begins at a
feasible point XK, A feasible direction SK is de-
fined, and a step of length Ak is taken in this fea-
sible direction that maximizes F(X) and yields a
new point ‘

NOIRIFD ORS L (14)
that is still feasible. As long as %K is in the in-
terior of the feasible region enclosed within (3)
and (4), the direction sK'is the gradient direction
given by (6). As with gradient search, a stei Ak
is-sought so as to maximize the function F (X
+A SK). If AK causes one or more of the con- -
straints (3) and (4) to be yviolated, it is necessary
to determine a quantity X, 0< Df< < 1, such that

L i gl kR (15)

where Xk"'1 lies on a boundary of the feasible re-~
gion. That is, at least one of the constraints (3)
and (4) is satisfied at the equality and is said to
be "active''." '

At point XKt the gradient direction vF (xktly is
determined. If this direction points back into the
feasible region, the standard gradient search pro-
cedure is again invoked. If the gradient direction
points away from the feasible region, however, it
is necessary to proceed in a direction which lies
along the intersection of the linearized forms of
the '"active'' constraints. An appropriate search
direction S is "projected' onto this intersec-
tion of linearized constraints, which is called the
"linear sub-manifold",

Suppose that at point xktl, q constraints are sat-
isfied as equalities. Let Bq be the q x n matrix
of first partial derivatives of these q active con-
straints (Gj(X), j=1,--", q) evaluated at XXxtl,
That is, Bg consists of the q gradient vectors
(VGj(Xk+1): =Ly e, q), or

[ 3G1/2x1, 0> an/axf
aGl/a,Xz, trt, an/aXZ

By = : (16)

3G /3%y, "0, 83Gq/dxy)
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Note that we have arbitrarily designated the active
constraints as being the first q constraints. We
can reorder the constraints (3) and (4) as we like.
There are 2n constraints in (3) and m constraints
in (4). At most n of the 2n constraints in (3) can
be active; hence, q < m+n.

I VF(Xk+1) is the gradient direction for the objec-~
tive function given by (2), then the gradient pro~
jection direction from point XK+l ig

5 gy L

- ’ -1_, k+1

- 1
Ji Bq(Bqﬁq) Bq[vF(X )] (17)
where By is the transpose of By, and (B,;'qu)"l is
the inverse of the product of Bqand Bq. Hence,
skl is an n-component vector. The search con-
tinues until the termination criterion given by (13)
is satisfied. .

The extension of Rosen's gradient projection meth-
od to the experimental realm is accomplished in
much the same fashion as that for unconstrained
gradient search. At an interior point XK, a de-
signed experiment consisting of n+l or more sim-
ulation trails is conducted to develop the estimate
of the gradient direction for the objective function,
given by

n .
¥o = bog + &, bo; % (18)
The 2" factorial and n~dimensional simpléx de-
signs are also used here. The coefficients bgl,
++«, bgp provide the estimate of the gradient di-
rection, but now all m+l curvilinear regressions
are computed to yield

n. .
¥; = 240 +§;1ajk’*k, j=0,L ", m (19

These m+l equations need not be of the same de-
gree. The polynomial function for the objective
system response,

o k
Yo =200 +k2;-_~f0k AT, . (20)

is solved for A™ which maximizes yo. Then this
A* is used to check the remaining m functions
given in (19) to ascertain whether constraint viola~
tion has occurred. If not, (12) holds and the gra-
dient search procedure is again invoked. If con-
straint violation occurs, then Pk is determined so
that (3) and (4) hold; hence, the new base point
xk+l is determined from (15). A gradient pro-
jection direction is then found by performing a de~
signed experiment about the new base point xk+l,
employing multilinear regression to find the m+
expressions given by :

n
YJ = bjO +.Elbjixi’ =041, c¢*y, m, (21)
1=

and solving for Sk+1 in equation (17) where

‘

TRE) = (bgys +ees By )’ (22)
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and

4

bid, 5=1,.00im  (23)

+1

vc;j(xk )= By eens by
Once this gradient projection direction is estab=~
lished, t simulation trials are executed along this.
direction just as with the gradient search pro-
cedure. Ilustrated below is a hypothetical gradi-
ent projection seaxch for a constrained system in-
volving two controllable variables and two nonline-
ar constraints. The progress of this search is
described in the following example. .

G (x)=25

4
Xa
3
’ Experimental
) Solution

2

f

o] |
o] | 2 3 4 5 6

Xy

Figure 3. Constrained Search

Iv. EXAMPLE PROBLEM

Consider a simple two-variable problem in which
the objective system response yq is restricted by
two other system responses y] and yp. Suppose
the problem is one in which these system re~ -
sponses follow the equations

Yo =F(X) =332 22 +e (0, 0.5) ©  (24)
] 2,20

yp = Gy (X) =x2 +x% +€, (0, 0.5) (25)

¥, = Gp(X) = 9%y - x5 +¢, (0, 0.5) (26)

The term €j (0, 0.5) indicates that the experi~
mental error is normally distributed with mean
zero and standard deviation 0.5. This constrained
optimization problem is as follows:

max y = F(X) (27)

subject to X0 Xy 20 (28)



y; = Gy (X) =25 S (29)
¥, = Gp(X) =27 . (30)

Suppose that the search is initiated at the point .
Xo = (1, 1).

The first step in solving this problem is to per-
form a designed experiment about the point X° to
- estimate the search direction away from X°.
Table 1 below gives the design points and re-
sponses for a 24 factorial experiment about the
point X°. .

TABLE.1

First Direction-Determining Experimental Block

Design

Point "1 *2 Yo Y1 2
1 0.8 0.8 3.73 1.03 5.56
2 0.8 1.2 4,58 2.67 5.19
3 1.2 0.8 7.00 3.09 9.50
4 1.2 1.2 5.71 2.19 10. 30

The values of the responses yj and y, clearly in-
dicate that we are in the interior of the feasible
region given by (28) - (30). Therefore, multiple
linear regression will be used to estimate the
gradient direction VF(X°) away from X°. The
regression equation, statistically significant at a
95 per cent confidence level, is

Vo = =2 92 +5.5x) +2.675x, (31)

Hence, the estimated graéiént direction is
YF(X°) = (5.5, 2.675)"

Thus, the first direction-determining block is
completed. '

The first step~-determining block involves per-
forming several trials, in this case four, along
the estimated gradient direction. Since we could
reasonably ascertain from the first block results
that constraint violation would occur if xj goes
much beyond 5 and x, beyond 3, the range for X is
chosen to be 0 <A < 1,2, Table 2 below gives the
design points and responses for the four trials .
along the gradient direction, as computed by
equation (10).

a 95 per cent confidence level, are as follows:

§o = 5.5 +41.4h + 106. 7202 (32)
5y =182 +18.29h.+ 35,9412 (33)
§, = 6.95 +46.00A - 7.83\2 (34)

Equation (32) suggests that A° should be made as
large as possible; however, A must be chaosen so
that the constraints (29) and (30) are not violated.
Equating the right side of (33) to the boundary
value 25 and solving for A© yields the solution

A° = 0.588. Equating the right side of (34) to the
boundary value 27 in (30) and solving yields

A0 = 0.472. Hence, the smaller value must be
chosen to prevent constraint violation... Thus,
AO = 0,472 and ;

x! = x° #A°[vF(x°)]

x' = (1, 1)’ +0.472 (5.5, 2.675)’

%! = (3. 60, 2.26)'

The point X1 lies on the estimate of the boundary
G2(X). This does not mean that (3.60, 2.26)
necessarily lies on the actual boundary Gp(X).

Performing a second direction-determining block,
a second 24 factorial experiment is employed
about the point %1 to estimate a search direction.
Table 3 gives the design points and responses for
this block of experiments.

TABLE 3

'Second Direction-Determining Experimental Block

Design

Point -5 *2 Yo 71 T2
1 3.40 2.06 43,79 15,69 27.29
2 3.40 2.46 46,54 16.48 24.80
3 - 3.80 2.06 51.73 18.56 29.06
4

3.80 2.46 55.54 20.41 29.14

TABLE 2

First Step-D etermining Experin:lental Block

Design

Point M 1 % Yo 1 Y2
1 0 1.00 1,00 5.53 1.75 7.00
2 0.4 3.20 2.07 39.07 15.11 23.94
3 0.8 5.40 3,14 107.00 39.23 38.88
4 1.2 7.60 4,21 208.84 75.59 50.81

The curvilinear regression equations computed o

from these results,all statistically significant at

The multiple linear regression equation represent-
ing the objective function F(X) is

Yo = - 45.79 +21.25 %) +8.25 x, (35)
Then the gradient direction is

VF(X]') = (21.25, 8.25)’

As this gradient direction points away from the
feasible region given by (28)-(30), it is neceSSf.ry
to estimate the gradient projection direction S
given by equation (17). As the matrix Bq is
simply the gradient vector sz(Xl) here, the only
additional information needed is the ml;.ltigle line -
ar regression equation representing Ga(X*).
From the data in Table 3, this equation is

¥, = 6.57+7.625x; - 2.875x, (36)
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Therefore,
vcz(xl) = (7.625, -2.875)"
From equation (17),
1_ [ar.28] _
S [8. zs]
7.625 ( 7.625\
-2.875||\-2. 875/

.8
1 _1| 5.35
S = [14. 25]
Then in the second step-determining block, four
design points are conducted along this gradient
projection direction in the range 0.<A = 0.15.

Table 4 gives the design points and responses for
this fourth experimental block.

7.625) -1 7.625)" 21.25
-2.875 -2.875/ || 8.25

TABLE 4

Sécond Step-Determining Experimental Block

Design

Point 1 * Jo Y2 Y2
1 0 3.60 2,26 49.06 18.25 27.66
2 0.05 3.87 2.97 62.10 22.95 26.76
3 0.10 4.14 3.68 78.82 30.03 .23.57
4 0.15 4,41 4,39 97.21 39.48 20.09|

496

The curvilinear regression eguations computed
from these results are as follows:

Fo = 48.96 + 242) + 53512 37)
§, = 18.25 + 703\ + 47502 (38)
¥, =27.76 ~ 13,1\ - 25812 (39)

Equating (38) and (39) to 25 and 27, respectively, -
and solving for Al yields Al = 0.0345 with Gy(X)
as the binding constraint, The estimated solu-
tion at this point is

X% = (3.79, 2.75)"; yo = 58; y, = 21.2; y, = 27

However, if A = 0.066 with G, (X) binding, a
better solution is obtained without violating the
G2(X) constraint. This estimated solution is

X% = (3.95, 3.20); y, = 67.2; y, = 25 y, = 25.8

Performing a third direction-determining block
around point X2 using a 22 factorial experimental
design, the results given in Table 5 are obtained.
Because the search has neared the intersection of
constraints, the design points are placed closer
together.
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TABLE 5

Third Direction-Determining Experimental Block

Design ) ‘

Point 1% Yo Y1 Y2
1 3.85 3.10 64.05 24.26 25.37
2 3.85 3.30 66.10 25.63 23.77
3 4.05 3.10 69.06 26.30 26.31
4 4.05 3.30. 71.17 27.23 24.77

The regressson equation for the objective function
(FX) is

90 =~ 65,2 +25.2 x H10.4x, (40)

The gradient direction (25.2, 10.4)’ points away
from the feasible region. Hence, it is necessary
to compute the gradient projection direction S
with G1(X) as the binding constraint. From the
data in Table 5, the regression equation for Gl(X)
is .

§1=-zs.5+9.1x1+5.75x (41)

2

with the estimate of VGy(X”) as (9.1, 5.75)".
Hence, S2 = (2.6, -3.9} from equation (17).

Performing the third step-determining block along
this gradient projection direction, the results in
Table 6 are obtained.

TABLE 6

Third Step-Determining Experimental Block

Design ‘

Point *1 *2 _ Yo 71 Y2
1 0 3.95 3.20 67.05- 25,71 24.63
2 0.02 4.00 3.12 67.08 24.98 26.99
3 0.04 4.05 3.04 67.23 25.35 26.93
4 0.06 4.10 2.96 68.03 25.85 28.95

The curvilinear regression equations resulting

from these experiments are not significant at a

95 per cent confidence level, owing to the close
spacing of the four design points., Since the sec-
ond design point yields estimated values for yj

and y, that lie approximately at the intersection

of constraints G1(X) and G2(X), this point is taken
as a solution and theé search is terminated. There-
fore, the experimental solution is

x3 = (.00, 3.12)"; Vo = 675 vy = 255 y, = 27

The actual system responses at x3 = (4.00,°3.12)
are

yo = 67.46; y, =25.73; y, =26.26

The known solution to this test problem is



y’f = 25;

y3 =27

Thus, ‘we.have used six experimental blocks of
four trials each to determine a solution which is
within 2. 5% of the known solution for this test
problem. The progress of this search is illus-
trated in Figure 3.

V. CONGCLUSIONS

This paper has demonstrated a novel and efficient
search technique for simulation expe rimentation
with constrained systems. Although the use of
Rosen's gradient projection method [6, 12, 13].
with simulation.experimentation has not been at-
tempted before, it differs only slightly in applica-
tion from the Box and Wilson response surface
method [3] which is widely accepted. It employs
first-order experimental designs which have been
previously shown to be useful in simulation meth-
odology [2, 4, 8, 15]. ‘

This study did not seek to compare the effective-
ness of various experimental designs for use with
multiple ~-response experimentation. Brooks and
Mickey [4] concluded that a design with exactly
n+l design points, such as the simplex design,

is just as effective as factorial designs in esti-
mating the gradient direction in dealing with a
single system response. There needs to be a
study of the effectiveness of various designs in
estimating the gradient projection direction.
Moreover, there needs to be a study which ex-
amines the effect of the magnitude of the random
errors (€j, j=0, 1, ***, m) on the effectiveness
of gradient projection search along binding con-
straints.

Finally, there are other search methods which
could also be studied for use in simulation ex~
perimentation, Zoutendijk's method of feasible
directions [17] is one possibility. Simplex .
methods [11, 16] also hold promise, but it would
he necessary to develop effective strategies to
be employed when the search has progressed to
a binding constraint.
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