AN APPLiCATION OF. PARAMETRIC TIME SERIES

IN SIMULATION MODELING

ABSTRACT

A parametric time series model is employed
to simulate the number of aircraft present
in an air traffic control sector. Borrow-
ing from the work of Box and Jenkins, the
identification, parameter estimation and
associated tests of adequacy are illustr-
ated using data from a low altitude con-
trol sector. - The fitted model provides

a useful algorithm and reflects the time
dependency which exists between the number
of aircraft measured in consecutive time
periods., The simulation is part of a
larger air communications system simu-
lation which is under development.

I. INTRODUCTION

The air-ground-air verbal communications
system over which information is relayed
between pilots and air traffic controllers
is currently threatening to restrict the
level of air traffic over large metropoli-
tan areas. A fast—-time computer simu-
lation model of the communications system
is being developed for the Federal Avi-
ation Administration as a tool for study-
ing system responses to changes in vari-
ables which relate to the kinds and
amounts of information relayed.

While the primary object of this study is
not to describe general patterns of traf-—
fic flow, some method of modeling the
number of aircraft is required. This
"airceraft loading" is directly related to
the proportion of a controller's time
spent ‘in verbal communication. For the
purposes of the computer simulatiom, air-
craft loading is treated as an exogeneous
variable to be represented by a time de-
pendent stochastic model.

This paper discusses the identification
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and estimation of a parametric time series
model descriptive of the aircraft loading
experienced by a particular enroute con-
troller handling traffic over New York
during a four-hour period in April of 1969.-

The procedures discussed for modeling the
response of a continuous variable over time
have been presented by George E.B. Box and
Gwilym M. Jenkins in their text-Time Series
Analysis Forecasting and Control (1970).
They discuss the identification and esti-.
mation of a particular family of "para-
metric" time series models called the
Autoregressive Integrated Moving Average
(ARIMA) models. A brief introduction to
ARIMA processes is included for those
readers who are unfamiliar with the method-
ology.

II. GENERAL DISCUSSION OF PARAMETRIC
TIME SERIES MODELS

In many experimental situations, where the
variability of some quantity over time is
of interest, sequential observations are
taken at equally spaced intervals of -time.
Such a set of n observations is called a
"discrete time series"™ and can be simply
expressed by

Ve = Mg + e, t = 0,1,2,...n
where y, is the observed value of the
variablé at time t, n_ is the unknown
value of the underlying response at time
t, and e, is a "shoek" or "error" at time
t. In many cases, n, can be assumed to be
a constant and all tﬁe variability ex-

plained in terms of disturbances z_. The

- estimate of n is given by the avetdge

y = (Zy)/n

and the estimated disturbancés by
Zy SV "V "

The parametric time series form a family
of stochastic models appropriate for des-
cribing the non-independence of the suc-
cessive quantities z,. The models are
described as autoregfessive of order p,
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movin%haverage of order g, operating on
the d difference of the z,'s. In pract-
ice, p, d, and q are usually less than or
equal to 2. ’

BACKWARDS OPERATOR:

To elucidate the parametric models we enm-
Ploy a convenient notational operator B,
called the "backwards operator™. It is
used to identify the z_ takey earlier in

time. Thus th =z, and B Z, S Z. o

Two useful expressions involving the back-
wards operator are the first difference

(1-B)z, =z, - z and the second differ-~
t 2t t~1 2

ence (1-B) z, = (1-2B+B )zt =z, - 22t_1

+ zt—2'

WHITE NOISE:

The basic idea behind paramétric time
series models is that a stochastic process
can be described as a dynamic system sub-
ject to independent "shocks" a,_. These
shocks are assumed to be Normafly and in-
dependently distributed with zero mean and
constant variance. The parametric model
is a "linear filter" which”transforms this
"white noise" into the observed quantities
Z. The general model is thus

z, = ¢(B)at

where §(B) is the parametric model or
transfer function of the linear filter.

MOVING AVERAGE MODELS:

The general moving average model of order
q expresses the current z,_ as a linear
function of a current shock a, and q
previous shocks., The expressfon for an
MA(q) process is given by

zt = at—Olat_l—Ozat_z—...—Qq t-q
2 q
B ...—OqB )at

(l-QlB-—G2

which may also be written

z, = Oq(B)at
where © (B) indicates a polynomial of de-
gree q In the backwards operator B. Fitt-
ing such a model to an observed time
series requires estimating q+2 parameters
from the data: the mean level of the
series n_, the q pgrameters O .. Gq’

and the variance o° of the inééﬁenaent

o .
shocks a,

AUTOREGRESSIVE MODELS:

The general autoregressive model of order

P expresses the current zt as a linear
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function of a current shock a, and the p
previous values =z 12%p_grce - The ex~-
pression for an AR(§) $Técess is

Zp " $p%ply T $pZp_pm e - $pZr-p” 3¢

or

(1—¢1B—¢233...-¢po)zt= ag

which may also be written

¢p(B)zt = a,

where ¢ (B) indicates a polynomial of degree
P in the backwards operator B. Fitting
such a model to an observed time series re-
quires estimating p+2 parameters from the
d%ta: n, ¢1,¢Z,s..,¢ » and the variance

o0~ of the 1ndependeng shocks a .
INTERCHANGEABILITY, MIXED MODELS AND
STATIONARITY

The AR and MA models are interchangeable.
For example, the AR(1) model (l-¢lB)zt=at

can be written as EEe infinite order MA
model z_ = (1-¢,B) ~a_. Similarly a .
finite ﬁA model”can bg re-expressed as an
infinite order AR model. Since models with
the fewest parameters are almost always of
greatest value, mixed AR-MA models are
often used to minimize the total number of
parameters. For example, the mixed
AR(2)~MA(L) model is: (1—¢lB-¢2B )zt =

(1-¢.,B)a_. To estimate the parameters in
a parameEric time series model, the series
must be statiomary, that is, the para-
meters in the model must remain invarient
to the location of the time origin. Non-
stationarity in the z_ can be induced by
movement in n_. It i§ oftenm possible to
acquire the aEtributes of stationarity
through the simple device of using either
the first or second differences of the z.
in place of the original z_. A complete
family of parametric time Series mggels’of
order p, d, q, exist; that is, a pth order
autoregressive, operating on Ege [«
difference, combined with a q order
moving average. For example, the 1,1,1
model is written: (l—¢B)(l—B)zt=(l—eB)at.

BOX~-JENKINS MODELING PROCEDURE

Step 1 - Model Identification:

The first step in employing the method-
ology of parametric time series models, as
proposed by Box and Jenkins, is to identi-
fy the model. The most useful tool is the
sample autocorrelation function (acf) of
the z_ . In practice, the estimated lagged
autocorrelation coefficients up to lag k
are plotted where k is equal to about one-



fourthhof the number of observations.
The Kt lagged autocorrelation ooeffic-
ient ;k is

r, = nfk (zt—E)(zt+k—§)/ E

(z,-%)°
t=1 ) t

1

with variance approximately

1 k-1 :
Varlance(rk) = _E—(l+2 b r.Z)
i=1"1

where n is the number of observations in
the original data trace. ’

Figure 1 shows the theoretical autocorrel-
ation functions for moving average pro-
cesses amd autoregressive pmeesses of order
1 and order 2 respectively. In general,

a moving average process of order ¢ will
show non-zero autocorrelation coefficients
for the first q lags. The autocorrelation
coefficients for a first order autore-
gressive process decay exponentially. The
signs of the lagged autocorrelations may
or may not alternate in sign. Auto-
correlation functions for second order
autoregressive processes take the form of
a sum of two decaying exponentials or of
an exponentially decaying cosine function,
as illustrated in Figure 1.

Remembering that estimated autocorrelation
functions will not match the theoretical
functions exactly, one infers from the
shape of the estimated function which
model, or models, should be initially
entertained and tested.

Autocorrelation functions which do not
die out as k increases indicate non~
stationarity of the series z_. In such
an event, the first or second differences
of the z_'s are taken and their auto-
correlations estimated in the hope of
identifying a stationary model.

Step 2 — Parameter Estimation:

After the form of time series model has
been selected, the parameters must be
estimated., Autoregressive parameters can
be estimated using ordinary least squares
techniques. Moving average parameters
require iterative least squares. Com-
puter programs exist which will plot the
estimated autocorrelation function and,
given a postulated model, will estimate
the parameters. (1)

Step 3 - Diagnostics:

Once the parameters of the model have
been estimated, various checks of the
adeqyacy of the fitted model must be made.
Let #_.bethe disturbance predicted by the
mode], "at time t. Then the discrepancies,
Z, "%, between observed and predicted
values should be independent and Normally

distributed. A test for Normality involv~
ing standardized skewness and standardized
kurtosis can be used to test the hypothes-
is that the residuals are Gaussian noise
(see pages 86~88 of (2)). Further, the
estimated autocorrelation function for the
residuals should show no statistically sig-
nificant non-zero coefficients.

Step 4 - Forecasting and Updating:

The fitted model may be used to forecast.
For example, consider the fitted AR(2)
model .

z, = l.22t_1—0.32t_2fat

and suppose that at time position t it is
necessary to forecast the event at time
position t+l. The model may then be
written

z = 1.22t ~ 0.3z

t+1 e-1" 241

Since the oncoming random Normal shock

a is unknown at time position t, it is
replaced by its expected value (zero) to
give the equation )

zt(l) = _1.2zt - 0'3zt—l

where z_ (1) is read "the predicted wvalue
of z, one unit ahead in time, made at time
t." Predicting two units ahead in time
would give

zt(2) = l.2zt(l) - 0.3zt

The extengion to predictions £ units ahead
in time, 2 _(£), is obvious. When a moving
average model is employed, the shocks a_,
a__, etc. are estimated using the dis-
crepancies between the previous observed
and predicted values, thus

a = 2

t=1 = Zg-1"%¢g-1"

The one ahead forecasts, z_ _(l), are used

"to obtain a predicted valué for each ob-

served value in the time series. The dis-
crepancies Zoy —zt(l) are then used to
check on the adequacy of the fitted model.
These discrepancies should have all the
attributes of Normally distributed, zexo
mean, homogeneous variance, independent
events.,

Step 5 ~- Simulating a Time Series-

Once the steps of model identification,
parameter estimation, and tests of ade-
quacy have been completed, the fitted
model may be used as an algorithm for
generating simulated events z,_, To ex-
plain, consider the fitted AREZ) model
given above where the a_ are Normally and
independently distributéd with zero masan
with a known standard deviation. As ach
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random Normal shock a_ occurs; the model
generates a corresponﬁing value z_ depen-
dent on that shock plus the lineaf combin-
ation of the previous two z_. The z_ so
generated from an AR(2) modE1l can belused
to simulate the time series originally
employed in determining the fitted model.

III. MODELING AIRCRAFT LOADING

The attempt to model the number of air-
craft which a controller is required to
handle presented an initial problem since
data on the number of aircraft present

was recorded every second. It was decided
that aircraft loading indices computed on
a sixty-second basis would be more useful
in the context of the communication simu-
lation being developed. The number of
transactions (conversations) between
pilots and controllers, the length of such
conversations, and the gaps between con-
secutive communications could all be tied
to these loading indices. Also, averages
based on sixty one-second observations
would eliminate the discreteness and per-
sistence of integer numbers in the raw
second-by-sedond data., Figure 2 is a plot
of the sixty~second averages which were
computed for a particular low-altitude
sector within the New York Air Traffic
Control Center.

It is clear from this plot of aircraft
loading versus time that consecutive ob-
servations are highly correlated and that

a parametric time series model might be an’

effective way of modeling the time depen-
dency. To determine which type of para-
metric time series model should be con-
sidered, the estimated autocorrelation
function of the observed z_ about the
mean level of the data was plotted and is
shown in Figure 3. The plot of the esti-
mated acf is similar to that of a second
order autoregressive model with complex
roots (see Figure 1f).

The model proposed has the form
(Yt—n) = ¢1(Yt_1"n) + ¢2(Yt_2"n)+ at-

Estimates of four parameters, n, ¢,, ¢,
and the variance o of the a_'s, w&re %hus
required., An initial estimafe of n was
given by the average of the y_'s. Esti-
mates of ¢, and ¢, were compuEed from the
first and Second éstimated lagged auto-
correlation coefficients using the Yule-
Walker equations (see p. 60 of (1)).
Iterative computer algorithms were used to
search for better parameter estimates, but
in this case only one iteration was per-
formed on the initial estimates and the
change was not significant. The fitted
model is

z, = 1.24 Zo_1 ~ .34 zt—Z +.at

where

2
2, = ¥, - 3.78 and o, = 0.57.

Tests of the adequacy of the fitted model
were then performed. If the model fits
well, the residuals (i.e., observed dist-
urbances z, minus the predicted values
determined from z and z ) should be
Normally and independently dfstributed.
The histogram of thé residuals, shown in
Figure 4, has the general shape associated
with the Normal density function. Tests
based on the estimated skewness and esti-
mated kurtosis do not contradict the hy-
pothesis that the residuals are Normally
distributed at the 99% and 95% confidence
levels, respectively. Figure 5 is a plot
of the estimated autocorrelation function
for the residuals. At all lags, the esti-
mated autocorrelation coefficients £fall
within two standard deviations of zero. A
Chi-Square test performed on the estimated
autocorrelations was also not significant
at the 95% confidence level. The hypothe-
sis that the residuals are independent is
not contradicted. It was thus felt that
the fitted model adequately described the
stochastic nature of 'the data.

An illustration of how this model is used
to forecast ahead in time is given in
Figure 6. The original time series is
shown along with the forecasts one unit
ahead in time. That is, at each time t
an estimate is made of y, given the
previous values of y__ and y__,- The
forecasts for time t are superimposed omn
the observed series as plus signs (+). It
should be noted how closely the forecasts
follow the general pattern of the series.

The next step was to use the fitted model
to gimulate aircraft loading as required.
in the model for the verbal communications
system., Figure 7 is a simulated time
series employing the fitted model, based
on a set of Normally distrxibuted random
shocks. The general shape of the simu~
lated response does conform well to that
of the original series. One additiomnal
restriction on the simulated series was
necessary, since actual aircraft loading
is elearly bounded at zero. Since the
probability of the simulated series ex-
tending below zero did exist, any random
shock which would have sent the series
below zero was replaced.

A stochastic model was thus developed
which simulated the general aircraft
loading pattern exhibited by the particu-
iar air traffic control sector under con-’
sideration. This model is now being
integrated into a larger computer simu-
lation of the communications problem.

IV. GENERAL APPLICABILITY

The use of parametric time series models
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in describing the response of comntinuous’
variables over time is no longer an un-
common technique, yet its general applica-
bility in various simulation problems is
often overlooked. The modeling of exo~
geneous variables in many studies might
often be more easily accomplished by £itt-
ing a parametric time series -model rather
than by trying to simulate the complex '
operations which give rise to those vari-
‘ables. The time series approach allowed
us; in this instance, to ignore relation-
ships which were not of interest in the
context of our larger problem, and pro-
vided an acceptable and parsimonious
stochastic model for the relevant exo-
geneous variable. In this way, we have
been able to concentrate our efforts on
studying the efficiency of the verbal
communications system rather than on the
detailed mechanisms of air traffic flow.
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