COMPUTER SYSTEM MODELLING: A TEST BED

FOR NEW SOFTWARE TECHNOLOGIES

ABSTRACT

This paper discusses a technique in computer system
simulation that uses models as effective tools for the
study of new software technologies. This model
development technique, called representative model-
ling, and its relationship with real-time program
development are surveyed. The significant correla-
tion between these two development processes in
addition to reduced costs substantiate the effectiveness
of using simulation models for the evaluation of new
techniques in software development. An experiment
to verify this hypothesis was conducted in whicha
model was developed using the methods of Top Down
Development. This experiment not only indicated
that models could be effective development analysis
tools, but that computer system simulation is a
natural environment for the use of these new software
technologies. '

INTRODUCTION

This paper proposes an alternmative to expensive
experimentation in the analysis of new software
technologies. New procedures such as top down
program development, structured programming, and
process construction ~ even though evidently powerful -
require experience to be used effectively and exper-
ience means dollars to software managers.

The alternative discussed here is the computer
system simulation model. Simulation languages are
powerful enough to guarantee development costs for
‘models factors less than the systems they are used
to simulate. Therefore, if in the development of a
simulation model we can gain experience in the use
of new software technologies, then we can guarantee
factors less in cost for that experience.

Since the technologies we seek to investigate are
generally procedural in nature, we must abandon our
old concepts in the use of modelling only as a statis-
tical analysis tool. In order for the computer system
simulation model to provide useful evaluations in the
design techniques of program development. For
example, the model must be thought of as a develop-
ment analysis tool; i. e., the important product is not
at the conclusion of model development, but the
development process itself. By changing the emphasis

Ronald R. Willis

Hughes Aircraft Company

of computer system modelling in this way, we can then
consider how model development relates to program
development and, thereby, its effectiveness in the
evaluation of new software development procedures.

This paper introduces a model development'technique
called representative modelling which satisfies the
required relationship between the two development
processes. The most important aspect of this model-
ling methodology is its inherent ability to preserve the
actual sequence of events that occur in the interaction
of modelled computer system elements.

The consistent one-to-one translation of program
module, data structure, and hardware device not only
forces a one-to-one representation of the interaction
between these elements, but also forces the modeller
to encounter the same problems he would encounter in
the development of the actual system. The result of
these correspondences between system and model is
an understanding of the processes involved in the
development of the actual system.

With this tool, then, we are in a position to measure
the effectiveness of using simulation models for the
evaluation of new software technologies. An experi-
ment was conducted for this purpose and showed that
significant insight into the processes of top down
development could be obtained through the development
of a model. Furthermore, the application of this
software technology to model development led to
significantly increased model quality and credibility.

TERMINOLOGY

In this paper we confine the topic to real-time
computer systems (because of the author's experience
in this subset of computer simulation studies and not
because the techniques discussed are applicable only
in this area).

Real-time systems are defined as systems which are
comprised of computers, peripheral equipment and
operational programs together performing tasks that
have critical response requirements. The system may
be for aircraft control, time share services, radar
early warning, or production control; there are no
restrictions implied in the application. In particular,
we are interested in the development of real-time
programs, that is, the processes that occur between

Winter Simulation Conference 427

428

~

COMPUTER SYSTEM MODELLING ... Continued

the definition of system requirements and the result-
ant operational program.

A real-time computer system is assumed to be
comprised of "elements" which interact with each
other through "events.” Elements are defined to be
hardware devices (CPU, disk, channel, memory
module, etc.) and data structures (executable pro-
gram module, file, system data table, etc.). An
event is defined to be a communication between any
two elements. For example, a disk read-complete
interrupt is a disk-CPU event; system data table
accesses by program modules are data-program
events; tape rewind commands executed in a program
module aré program-tape events,

Events may occur at various “"levels” of detail. For
example, on a micro-level a program module is
executed by a sequence of individual events in which
the CPU accesses an instruction in memory,
accesses a data element in memory, stores a result,
and transfers control to the next instruction address
(ADD X1, X2).

On a macro-level, we may consider only the inputs,
the outputs and the time consumed in the execution
of a program module and hence, only CPU-program
events (execution) and program-data events
(accesses) (CALL CORRELATION WITH INDATA,
OUTDATA).

We may abstract the level even further by consider-
ing entire sequences of macro-level events as one
super-~level event (EXEC FORTRAN), Correspond-
ing to each level there is a set of required elements
which are necessary for proper event sequence
control. For example, at the micro-level individual
instruction data elements are necessary in order
that the proper CPU~-instruction event sequence can
occur, whereas, at the macro-level, only the input
and output message data elements may be necessary.

A computer system simulation model is a computer
program written in a simulation language which
contains representations for the computer system
elements and which, when executed, simulates the
events of the actual system. We restrict our atten-
tion to models written in discrete event simulation
languages such as GASP, GPSS, SIMSCRIPT, CSS,
ECSS, and Hughes' Product Line Simulator (PLS).

These languages are felt to have equal applicability
to the topic of this paper. The development of a
computer system model is the process of translating
real-time computer system descriptions into simu-
lation language terms and the subsequent verifica-
tion of model execution.

REPRESENTATIVE MODELLING
CONCEPTS

In translating a real-time program description into
simulation language terms, the modeller has a
choice as to how the elements will be represented.

January 14-16, 1974

This choice can be characterized by the detail into
which the modeller translates individual elements and
therefore, the corresponding detail into which event
occurrences are translated. One such choice is
"representative modelling" which is defined in a
strict sense as:

"A straightforward translation from system
description to model language so that for
every real-world element and event there is
a corresponding model element and event. "

If the events of a computer system were considered

as operations (interactions) on the elements,
representative modelling could be described mathe-
matically as a homomorphism; that is, we seek to
preserve.in the model, sequences of events in the real
system such as processor control between program
modules. A one-to-one correspondence between the
system elements and model elements is also implied
in the definition.

In general, then, this model development method seeks
to make the diagram below commute, The transiation
process, f, is a one-to-one mapping, and the operations
hr’ on the real-world elements, are preserved as
operations, h_, on the modelled elements ; therefore,
if x is a real-world element, then f o hr(x) = hmo £(x).

real-world £ modelled
element element
1 1
h h
Yr ‘ “m
real-world f modelled
element 5 element 9

The purpose of developing a model will generally

limit the level (detail) to which the system is
represented in this one-to-one fashion. If the role

of the model is only to generate statistical information
about the performance of a system, a mathematical
queuing model would probably suffice (here the system
is represented on a one-to-one basis only to a queue

. or.potential bottleneck level). However, if the model

is used to identify program module interface problems
(aspects of development procedures) in addition to
system performance data, the system must be repre-
sented in a one-to~one manner at least to the program
module level before problems of this nature can be
quantified. On the other hand, it would be absurd to
translate detailed system descriptions of every
element and event (even if they were available) for
models are useful only when they are much cheaper
than the real system. If every element and event
were modelled we would only be transferring the
system to another host machine.

Since simulation at Hughes is used primarily as a
tool for reducing software development costs, the
level of detail for our computer system simulation
models is such that a model satisfies the following
three purposes which are discussed in more detail

in (1).

1. It serves as a learning tool for the program
being developed.

2. It provides useful development information
for the software manager.

3. It predicts and aids in the solution of devel-
opment problems which cause costly overruns.

The structures that accomplish these purposes are
what is referred to in this paper as "representative.”
This level of representation is generally at least tothe
level of translating available documentation one-for-one
into simulation language terms. In cases where speci-
fication of critical software control elements has not
yet been completed, the representative model will
usually have greater detail than the available documen-
tation (design extensions).

Because the purposes are generally software in
pature, the model usually does not go into painstaking
detail for representing hardware operations within an
element; however, for each hardware element in the
real system there is always a corresponding element
in the model which accomplishes the same function.
On the other hand, hardware functions are represented
in a very detailed manner in cases of critical event
control such as dual processor synchronization and
processor interruption.

A model is representative because it is not functional;

ARCHITECTURE

that is, elements and events are not grouped together
into a function which accomplishes the cumulative
result of the individual elements and events (again, a
question of the structure of representation).

In Figure 1, a software architecture and three sequen-
ces of software events are shown to illuminate the fine
line between representative and functional. Sequence A
is that of the real system being modelled; B, a repre-
sentative translation into simulation language terms;
and C, the author's (unfortunate) functional translation.
Sequence C is a grouping of events - a scheduler pro-
cessing and machine environment restoration - which
was specified in this functional manner because;

a. A-priori assumptions for the particular application
were that BMOD service requests were always
highest priority and hence, scheduled first.

b. The model execution overhead would be very high
because of such frequent BMOD service requests.

It is easy to see why Sequence C is functional; the
execution of (at least) three program modules was

lumped together as one program module execution.
This sequence is also functional in that it is not
representative to a level great enough to satisfy the
purpose of the model. In particular, the purposes

that are not satisfied are:

1. The model does not serve as a learning tool -
it serves to obscure (at best) the actual

: P!
o Moﬁ' . ﬁong_éculon
SUBROUTINES HEDULER
(BMOD) SCHEDUL

(ccr)

AR

CLASS 5
INTERRUPT
HANDLER
{cLs)

APPLICATION
PROGRAM 1 esee |PROGRAMK
{AP1)

APPLICATION
(APK)

[seauence o events |

A. ACTUAL SYSTEM

[T\ [\ [\ [T\ [e\
L6G REQUEST -
REQUEST oN CoP SohEDULE con PROCESS RESTORE TO AP1
SERVICES CLASS § QUEYE, SAVE REQUESTS WHEN AP1 REQUEST ENVIRONMENT
ENVIRONMENT : REQUEST
N HIGHEST
A
EXCEPTION) PRIORITY

8. REPRESENTATIVE MODEL

/ BMOD \ . / [N\
DELAY NMS DELAY M M5 DELAY L M§ DELAY MMS
LOG REQUEST FOR EACH eee PROCESS RESTORE TO APY
ON QUEUE SENEDULED REQUEST ENVIRONMENT

C. FUNCTIONAL MODEL

8MOD

DELAY

> K*M + L +MMS
PROCESS
REQUEST

Figure 1. TWO DIFFERENT MODELLING APPROACHES.
The functional model lumps together separate processes.

DELAY N MS
BRANCH TO
TYPE OF

REQUEST

» TO AP1

Winter Simulation Conference 429

430

-

COMPUTER SYSTEM MODELLING ... Continued

sequence of events and contains hidden a-priori
assumptions.

2. The model cannot provide development informa-
tion in important areas such as the interface
between an application and the operating system.

3. The model cannot predict or aid in the solution
of cost overrun problems because such design
inconsistencies as erroneous module interface
assumptions and priority of request scheduling
are not identified. -

IMPLEMENTATION

The representative model is constructed directly from
a system description. A hardware diagram is normal-
ly constructed summarizing all external equipment
elements and their characteristics; this diagram not
only serves as model documentation of the one-to-one
translation of hardware elements, but also is a
common language between the modeller and model
user.

Next, the system software specifications are trans-
lated directly into simulation language code; there is
no prior analysis required for the interactions of
program modules since inconsistent system specifica-
tions will be uncovered during the simulation of the
model. However, since the modeller must translate
one knowledge to another and is, therefore, familiar
with the specifications, many inconsistencies are
uncovered during the one-to-one translation process.

The most important element of a representative model
is the data element. For software models to maintain
proper sequences of events, the data necessary to
effect required decision branching must be translated
in a one-to-one fashion into the model; otherwise, the
model becomes functional (e.g., branch to A if
RANDOM (1, 100) > 60) and requires analysis for
interpretation of its results.

The modeller usually has liberties in how data is
represented in the model, since often in systems
under development the location, size, and access-
ibility of the data are yet unspecified. It is important,
however, that each required data element is repre-
sented one-for-one in model data elements.

As an example, Figure 2 shows the differences
between functional and representative data element
modelling. We could use a GPSS SAVEVALUE to
indicate a yes/no status bit for program residence
rather than statistically analyzing the operation and
branching according to some functional value. In
this case, the SAVEVALUE represents an actual
program residency table data element and can be set
or reset during model execution when it is deter -
mined that the modelled program is resident or not.

In parallel with data element modelling, the loading
enviromment is considered; the parallelism is
necessary in order to be able to define the input load

January 14-16, 1974

parameters required in the data elements (e.g., branch
to B if track report range > 100 miles). A useful
technique in defining the input load is to determine the
value at time of generation; the path of the load element
through the system is then deterministic.

The loading environment, if not scenario-driven, is
usually stochastic in nature and cannot, therefore,
satisfy the representative modelling definition com-
pletely. What is important is that if there are load
data elements in the real system containing X, Y, Z
information necessary for software control, then there
are similar data elements in the model with informa-
tion X', Y', Z'.

The implementation of a model is therefore in four
parts: hardware, software, data structure and load
environment. As in the actual system, none can be
developed separately; but, instead, all are closely

tied together in function and, hence, must be developed
in parallel. It is difficult to explain in detail the actual
one-to-one translation occurring in each of these areas.
because the representation is iﬁtimately associated
with the simulation language into which they are trans-
lated.

This is the reason that this paper and the definition of
representative modelling do not discuss actual

., "o equivalent

- //’ data element

/7t

RANDOM
NUMBER
1 to 100

40%

A, Functional Test ~ Result dependent on independent
Random number generator and a-priort analysis

SAVE-
VALUES

B. Representative Test ~ Result dependent on whether
or not program status indicates in core

PROGRAM
RESIDENCY
TABLE

C. Actual Test « Result dependent.on whether or not
program is In core

Figure 2. REPRESENTATION OF DATA ELEMENTS.
Representative data elements preserve operation
sequence.

implementation - the methodology is independent of
the particular simulation language used.

EXPERIENCE

This representative modelling methodology has been
used in computer systems models at Hughes for the
past four years using PLS. The technique was first
employed to serve as a learning tool for our ground
systems real-time programmers; it has evolved
through use as system design change verification tool,
system design tool, a software development manage-
ment tool (1), and now as tool for evaluation of new
software technologies. Experience with representa-
tive modelling has shown that the following are
generally true:

e The Modeller does not have to apply analytic
techniques during the translation process from
system to model terms - the translation is a
straightforward process that does not neces-
sitate an a-priori understanding of system
operation. In addition, system design varia-
tions are more easily implemented because -

_no review of assumptions made in generating
the model is required.

e Representation should generally be to the level
of system documentation available (and, at
times, to greater detail) in order to be useful
to the particular area requiring analysis. In
particular, the control elements of a computer
system (scheduler, interrupt handlers, etc.)
are elements that should be represented to a
great level of detail - possibly to bit setting
and testing - in order to have confidence in
the correct sequence of model events. How-
ever, since often the level of documentation is
not consistent; the model in this case will
yield resilts commensurate with the documen-
tation level.

e Model documentation often serves as a signifi-
cant part of the system documentation since
both correspond in logical description (and
labelling conventions). In addition, the model
and model documentation serve as communi-
cation tools between the modeller and system
designer/manager and, as a consequence of
this communication, the modeller learns the
system he is modelling.

e Representative models generally use more
core and execute longer than analytically
translated models. However, a technique
used at Hughes is to investigate a system's
behavior for a short interval of time at peak
loading conditions. This technique not only
satisfies the purpose of the model to charac-
terize the system elements and identify
bottlenecks, but also reduces the effect of a
longer running model.

e It has been found that the development of
models using a one-to-one translation process
leads to understanding about the development

of the system being modelled (and consequently
the purpose of this paper). An outcome of this
phenomenon is that testing and validation pro-
cedures used in model development serve as
guidelines for testing and validation for the
actual system. This outcome is significant
when considéring the effort normally applied
to proving program correctness and also opens
a new area of investigation for future uses of
computer system modelling.

Limitations of representative modelling generally
result from increased model development costs and
execution rates. These limitations are far out-
weighed by such benefits as: (1) the use described

in this paper - a test bed for new software tech-
nologies; (2) in-program development models are
used primarily for design verification and hence are
generally being changed often - representative models
are easily changed and re-verified because there are
no re-analysis steps to go through as in functional
models; (3) representative models serve the purposes
stated previously of reduced software development
costs; (4) representative models have long develop-
ment times but are easily verified because their
operation "looks like" the actual system.

A DEVELOPMENT ANALYSIS TOOL
CHARACTERISTICS

To be able to say that a particular development
analysis tool is good or bad, we must first identify
what it is that is to be evaluated by the tool. For
this purpose we seek to understand what it is about
a particular development procedure that makes it
better or worse than other procedures (i.e., the
characteristics of the development process which
lead to a better or worse product).

We evaluate a new software development procedure
by investigating answers to the following questions:

1. Are development costs reduced?

2. Is software performance improved?

3. Is the software more reliable?

4, Is software maintainability and reusability
improved?

5. Is the procedure applicable?

The characteristics, then, seem to fall into two
categories: reduced software development costs
and improved software quality. Therefore, a tool
for development analysis must be able to compara-
tively establish values for these two categories.

REQUIREMENTS

What is needed by a development analysis tool to be
able to characterize software cost and software
quality?

A significant portion of cost seems to be intimately
related to the completeness of design in inter-

element interactions. It is the integration phase of
development (the first phase in which software ele-

ments must interact with each other and with actual
hardware) in which schedules are normally not met,

Winter Simulation Conference

431

432

~

COMPUTER SYSTEM MODELLING ... Continued

manpower is inefficiently increased, and software
changes or hardware add-ons become necessary (2).
If we seek to evaluate the cost of a new software
development procedure we must therefore investigate,
in detail, the processes involved in the integration of
software elements. ‘

Although software quality is dependent on many
factors, those to which modelling can contribute
directly are generally dependent on performance
characteristics such as reliability, reusability, and
sensitivity to changes. The latter two are often
degraded because intimate knowledge of the particular
system is built into program operation; i.e., there
are a-priori conditions "understood" between com-
municating elements. Software reliability is improved
by consistent, organized procedures of testing both at
element level and element interface level, and so must
also be dependent on the interaction of elements.

It is the author's hypothesis that the fundamental
requirement of a development analysis tool is its
ab'ility to characterize inter-element interactions.
Indeed, the most interesting problems in software
development (deadlock, communicating parallel
processes, program schemata) and new software
technologies (top down development, structured
programming, process construction) deal with
inter-element interactions in some way.

We should, therefore, seek to characterize an entire
system operation as a sequence of individual element
interaction events where we understand "element” to
{be program module, data structure, or hardware
device. If these events occur "correctly" once, then
the software will be said to be error free; if in all
cases, then reliable.

If the number of incorrect event occurrences is reduced
(during integration), then software development costs
will be reduced; and if event occurrences are independent
then the software will be reusable. In this way, we can
then approach a method by which a particular develop-
ment procedure can be comparatively analyzed.

THE TOOL

We recall from the discussion on representative model-
ling that models developed by this method preserve the
actual sequence of events that occur in the interaction of
modelled computer system elements. Therefore, if we
agree that a particular development procedure is char-
acterized fundamentally by the mamner in which the
elements interact, then models developed in this one-to-
one fashion have the potertial to analyze new develop-
ment procedures.

What is missing is that we are dealing with models and
not the actual system. However, we recall from the
discussion on experience i using representative model-
ling that the modeller becomes knowledgeable about the
system being developed while developing a model of that
system; i.e., the modeller is forced to encounter the
same problenis that he would encounter in the develop-
ment of the actual system.

Let's consider a simplified example of this "forcing”
nature (this occurred recently at Hughes on a program
development project in which computer simulation was
being used for design verification). The two program
modules shown in Figure 3, a scheduler and a scheduled
application program (PROGRAM j), interact with each
other through common data elements that are used as
indicators for schéeduling requests. The data elements
are decremented in one module and tested for a "less-
than" condition in the other.

INDEX
SCHEDULER . MANIPULATION

PROGRAM 1

ENTER
PROGRAM
!

PROGRAM J

3

(' reTurn)

u I
:_/_A LUE:' ARRQ'Y

-, . o v s s g

[]
|
]
!
1
1
1
'
!
-

T BRoGRAM T
.._..-_.....4' REQUEST ! r-a
: LYY
| SR S |

Figure 3. INTER-ELEMENT INTERACTION PROBLEM.
Unassumed negative values caused processor control errors,

January 14-16, 1974

A-priori assumptions led the designer to dismiss the
possibility of negative values. I negative values
occurred, an undesirable sequence of scheduling
events would result. These elements were trans-
lated one-for-one into the model along with an
independent design change which negated the designer's
a-priori agsumptions. When simulated, negative
values occurred and resulted in the same undesirable
sequence of events.

The modeller, faced with these undesirable statistics,
was then forced to determine the problem and help in
the design of a solution. Even though simple, this
example points out how interaction problems in program
development can be uncovered when using this straight-
forward modelling approach.

We can now appreciate the inherent ability of repre-
sentative modelling to analyze a new development
procedure - the consistent one-to-one translation of
program module, data structure, and hardware
device not only forces a characterization of the inter-
action between these elements, but also forces the
modeller to encounter the same problems he would
encounter in the development of the actual system.

In this manner, significant insight into the merits of
a new development procedure can be gained from
experience with its application to the development of '
a model. Even more, recalling that design variations
are easily implemented in a one-to-one model,
refinements to the negative aspects of a development
procedure can be tested in the modelling environment.

AN EXPERIMENT WITH TOP DOWN DEVELOPMENT

Recently, there has been interest at Hughes to inves-
tigate new software technologies such as structured
programming, top down development and process
construction, in order to increase the quality of our
real-time programs and reduce software development
costs. Even though these methodologies may evidently
be worthwhile, their evaluation in use on real-time
programs and even more importantly, how they are
implemented, are risky experimentations on mile-
stone-oriented projects.

Hughes, however, has been experimenting with com-
puter system simulation as a management tool for
software development (1). Models are developed as
management tools for real-time programs to provide
insight into areas such as concept feasibility, design
viability, integration problem analysis, and design
change performance analysis. These areas of analy-
sis by simulation are seen to overlap with the areas
of interest in the evaluation of new software develop-
ment procedures. Perhaps by only shifting the
emphasis of the modelling activity, simulation could
become a development analysis tool.

A study contract for an air operations computer sys-
tem became the first experiment in using computer
system simulation as a tool for development procedure
analysis. The first stages of software design were
carried out using the concepts of Top Down Develop-
ment (3, 4) which is concisely defined by the

following: W ok ok % K ok % k ok ok & ok ok %

A program is a tree structure whose leaves are unique
modules which implement the design requirements.
The program is developed in a top down manuner by
designing, testing and integrating each level from the
top-most element in such a way that design decisions
as to how the requirements are implemented are post-
poned to as low a level as possible.

The postponing of design decisions is aided with the use
of module stubs which serve only as a point of control
acceptance, possible time consumption, and control
return; these stubs become the topmost elements when
the current level has been verified correct.

% % % %k % k %k % %k k k %k k¥ %

The significant results from this experiment are
summarized by the following:

1. Computer system simulation models employing
the concepts of representative modelling have
the ability to evaluate new software development
technologies.

2. Models developed in a top down manner share
in the same benefits that resuit from top down
development of real-time programs.

THE SYSTEM MODELLED

The system being studied is a multi-node network of
communicating devices employed as an air operations
facility (Figure 4). There are two processor nodes,
air operations control and air operations control
support, which receive and process messages origi-
nating from external hardware devices, operator
entry equipment, and other air operations processors.

The purpose of the system is to monitor, coordinate
and control the various flight patterns by receiving
and processing tracking and status information
messages in response. Since the system is in the
design concept phase of development, the modelling
activity is employed to quantify system characteris-
tics such as numbers and types of aircraft that can be
controlled successfully, response requirements,
processor capabilities, file storage requirements,
inter-node data link capacities, degradation effects
in system operations, and other typical system
attributes.

The hardware portion of the model is translated into
the simulation language directly from Figure 4. For
each operator entry node, the model contains a
"Processor'*which can generate messages automati-
cally by any distribution, route message through its
node along legal paths, and has logic to model
operator responses. Likewise, each aircraft node
is a processor which generates track and status
information messages, routes messages, and can
have logic which models hardware responses (e.g.,
"bank left"). The two air control operations pro-
cessors are models of actual CPUs and memory
systems which execute the software logic being

*A device which executes programmed simulation
language logic.

Winter Simulation Conference 433

434

COMPUTER SYSTEM MODELLING ... Continued

AIRBORNE OPERATIONS

%

DISPLAYS
(OPERATOR
ACTIONS)

SOURCES AND
COORDINATION
POINTS

DISPLAYS
(OPERATOR
ACTIONS)

~

N\

AIR OPERATIONS
CONTROL SUPPORT

DISPLAYS

TELECOMM
(OPERATOR. |
ACTIONS)

AIR OPERATIONS
CONTROL
PROCESSOR

GROUND OPERATIONS 'I EXTERNAL |
|
|
|
|

PROCESSOR

GROUND
FACILITY

AIRCRAFT
Ay

7 — — "l | "|(OTHER PROC)

-

AIRCRAFT

AIRCRAFT AIRCRAFT
By | B2

developed as part of this study. Finally, the nodes
are interconnected with channels and communication
links which act as queuing devices (when busy) and -
transmission delays.

To drive the model, messages are defined by specify-
ing message type, length, priority, originating node
and inter-node routing information. Messages can be
generated automatically by giving a message gener-
ation rate and inter-arrival modifier, or message
generation can result from a system action (e.g.,
receipt of a message).

The routing of messages through the system is part

of the model logic and is performed automatically as

a result of the message routing definition. By defining
sets of message definitions in this manner, the various
system configurations can be characterized by mes-
sage priority, by the rates of message generation at
each node, and by the routing of messages through the
system.

For example, the loss of the air operations control
support processor can be modelled by "turning off"

all message generation from within it and by rerouting
messages that it should process to the second control

January 14-16, 1974

AIRCRAFT
B

AK\ E
|

n

Figure 4. AIR-OPERATIONS CONTROL SYSTEM CONFIGURATION.,

processor.
IMPLEMENTATION

The software subsystem was designed using the above
definition of top down development and translated into
the model using the techniques of representative
modelling., Because the system being studied was in
the design concept phase, no particular language or
operating system had been chosen - instead, a large
subset of each was to be studied independently after
questions on configuration and capability had first been
solved. This was significant in the study, for this
allowed the software stibsystem design to proceed
without a~-priori restrictions which might influence the
objectivity of the results. By definition, we sought
first to de{relop ILevel One.

The first level software design was arrived at by
placing the scheduler at the "root" of the program
tree and dividing the remaining responsibilities into
common programming interests (Figure 5). In order
to conceptualize a real-time program in this manner,
we hypothetically chose a philosophy of operation in
which the occurrence of an interrupt causes a request
to be logged in the scheduler for interrupt processing.

That is, the scheduler conceptually becomes the root
of the tree in that it schedules all task processing ~
including interrupts.

ep-§
DYRAMIC PRIORITY
PROCESSOR

CONTROL .. "
. (SCHEDULER}

1-0-C E-5-F Fri-5 A-C-0
MESSAGE EXECUTIVE FILE AlR
WPUT/DUTPUT SERVKE HANOLING CONTROL
COMMUNICATIONS FUNCTIONS SERVICES OPERATIONS

Figure 5. FIRST LEVEL ONE SOFTWARE DESIGN.
The stubs are 10C, ESE, FHS, and ACO.

The four program modules I0C, ESF, FHS, and ACO
were at this stage, by definition, stubs which, when
called, would consume time and return to the scheduler.

By the definition of top down development, the next step
is to design and test this Level One architecture.

Since no OS had been specified, the resulting scheduler,
DPS, was designed to be a "best case” scheduler of
single-entry task requests - a dynamic priority
scheduling scheme in which the priority of a request is
determined (dynamically) when it is generated (5).

The resulting design was translated directly into the
model in order to be tested. At this point it was
obvious that just defining DPS, itself, would not be
sufficient. The scheduling queue, actual task
requests, a program module entrance scheme, and

at least a gross data structure would be required to
be able to execute the model. Therefore, there had to
be parallel software and model development in the

SCHEDULING QUEUE
(ORDERED BY PRIORITY)

TASK
REQUEST

areas of data structures and programming standards.

Since the hardware and load definitions for the model
were being developed in parallel with the software,
message inputs were processed and used as a task
request generation scheme (Figure 6) - this necessita-
ted a deviation from the strict top down development
process in that the design of message 1/0 handlers
(message processing submodules of I0C) was required.

Finally, the configuration shown in Figure 6 was
exercised until designed properly and validated for
correct control sequencing between the Level One
program modules.

The next step in the development process was, by
definition, to expand each Level One stub into a Level
Two node with submodule stubs., At this point, and
throughout the remaining parallel development of soft-
ware and model, it was recognized that the structured
design of the software and subsequent one~for-one
representation in the model was causing a structured
design of the model:

The software was being designed, translated into the
model, then tested for design completeness - without
having to code the actual system. Even more, the
quality of the design process itself was being evaluated
automatically in the design process of the model - a
natural evaluation tool for development procedures.

The final design of the software subsystem reached
three levels, having a total of 53 program module
stubs. Because of the necessity for a complete design
of a module at stub level, some of these Level Three
modules implemented a system design requirement

(a leaf on the program tree).

The difficult implementation aspects of top down design
seemed to be at Level One. At this level, the philoso-
phy of operation had to be decided; module interfacing,
data structure, and execution sequence were part of
this decision. As stated below, once these problems

N\
\
N\

.

A

GENERATED M
TASK REQUEST\\

F-H-$

b

A J

r
|
1
i
]
!
]
!
L}
|
|
i
!
|
L

¥

MESSAGE i 7 {-l-/;///
%4

/ MESSAGE INTERRUPTS

/2777 DETAILED DESIGN
[T} stuss

ety PROCESSOR CONTROL
== =p DATA POINTER

Figure 6. FINAL LEVEL ONE SOFTWARE DESIGN.
A Level Three module (MIH) was necessary to test DPS design.

Winter Simulation Conference

435

436

COMPUTER SYSTEM MODELLING ... Continued

were resolved, the succeeding levels of development
proceeded with few problems.

RESULTS

Some observations made during the evaluation of the
top down development process were:

The "Root" of a Real-Time Program - Considering
the scheduler, the root of the program tree seemed to
correspond with most functional definitions of struc-
tured programming and fit very well in this real-time
program design effort.

Design Viability - The success of a design seemed to
be dependent on the ability to-predict interface re~
quirements for programs at a lower level. Because

of this, the model employed a message data structure
whose contents were dependent on the varying require-
ments. A pointer to the message was passed to every
successor-level program. As requirements were
uncovered, message parameters were defined.

Design Verification - The verification of each level
design is a testing of the control structure. A similar
level of design for the data structure is therefore
necessary.

Programming Standards ~ The top'down design of the
software system caused a top down establishing of
programming standards, restrictions, and assump-
tions. This top down approach caused a uniformity
among the lower-level program modules which
resulted in many fewer violations of individual module
standards. Furthermore, the top down establishing
of standards aided in design by presenting a common
basé of assumptions from which to work.

Design Expansion - As stubs became the current
design level, their expansion (design) was made much
easier knowing that all higher levels were verified.
This knowledge permitted the designer to concentrate
on his individual task as if it were the only program
in the system.

Program Management - The expansion of stubs into
submodules using the criteria of common program-
ming interests established a program of development
management structure (criteria for these expansions
are discussed further in (6, 7, 8)).

Parallel Data Structure Development - In parallel with
the model software design, the hardware, load and
data structure designs were accomplished in a similar
structured manner. Like benefits occurred in these
areas.

Design Feasibility - A recurring problem with this
development process seemed to be that at Level n,
for example, the requirements of a detailed program
design at some level m»n were needed. Time per-
mitted no other solution than to deviate from a
strict structured approach and design the required
module. This is an area that needs further study.

January 14-16, 1974

TOP DOWN MODEL DEVELOPMENT

As stated previously, the top down development of a
real-time ‘program and subsequent one-to-one transla-
tion into simulation language terms causes a top down
development of the model. Though this new development
technology may have been established without regard to
computer system simulation models, there are evident
independent benefits in its use for model design and
development.

After all, models are nothing more than software
programs themselves which, in development, must
face many similar problems as in real-time programs
(indeed, the reason why models can serve as develop-
ment analysis tools). Hence, models can not only be
used to evaluate design procedures but can also share
in the benefits of better software quality by using the
procedures which are being evaluated.

The experience gained from the experiment in top
down development has led this author to now proclaim
a new technique in model construction (in addition to
representative modelling). Of course, if in the design
of the system being modelled top down development
procedures are used, then the model will be developed
in a like manner if one-to-one translation techniques
are used.

But often, models are after-the-fact tools of analysis
(as opposed to the use discussed in-this paper for
design analysis) and, as such, must be constructed
using existing system descriptions. In these latter
cases, top down design of models can result in the same
benefits as those gained in top down design of real-time
programs; i.e., better software quality, reduced costs,
and more credible results.

Is it possible to develop a model in a top down manner
when the system has been completely designed and
specified? In two recent experiences in which models
were being developed from existing system descrip-
tions, the experience gained from the air operations
model was used successfully in specifying a top down
model development procedure.

Recognizing that the levels of development are actually
levels of control structure, one is then able to "step
back" and pull out succeeding levels of control structure
starting, of course, with Level One.

Each level is completely designed (in Model language),
tested, and verified before going to the next level just -
as if the system were being designed again in a top
down manner. But, the expansion into next level nodes
is a translation from the system description into the
model rather than a design.

CONCLUDING REMARKS
In this author's opinion, the most important result
from the use of top down development is the assurance
-of program correctness which results from verification
at each level of design. The author's experience in

several simulation studies and in the development of '
a real-time program has shown that models tend to
be much more difficult to verify for correctness than
the programs which they represent. And yet, simu-
lation results often plan an important role in the
decisions for expensive computer system design
changes.

It then seems to be indicated that the processes of
top down development should be standard procedures
in model design in order to obtain more credible
computer simulation results.

The experiment discussed in this paper, even though
not of significant magnitude, led to significant results
both for real-time program development and for sim-
ulation model development. It would seem likely,
then, that more significant results are forthcoming if
models are used further in this same endeavor.

BIBLIOGRAPHY

1. Camp, John W. and Sullivan, R. L., The Use
of Simulation in Real-Time Program Develop-
ment, Proc. 6th Annual Simulation Symposium
(1973) pg. 127

2. Aviation Week, pg. 31, February 9, 1970

3, Mills, Harlen, Top Down Programming in
Large Systems, IBM Federal Systems Division

4, Liskov, B. H., A Design Methodology for
Reliable Software Systems, Proc. FJCC (1972)
pg. 191-199

5. Liu, C. L. and Layland, James W., Scheduling
Algorithms for Multiprogramming ina Hard-
Real-Time Environment, JACM 1 (1973) pg. 46

6. Parnas, D. L., On the Criteria to be Used in
Decomposing Systems into Modules, Comm.
ACM 12 (1972) pg. 1053-1058

7. Baker, F. T., System Quality Through
Structured Programming, Proc. FJCC (1972)
pg. 339-343

8. Dijkstra, E. W., The Structure of the "THE"
Multiprogramming System, Comm. ACM 11
(1968) pg. 341-346

Winter Simulation Conference

437

