A MODEL HIERARCHY FOR VIRTUAL MEMORY

SYSTEM INVESTIGATION

ABSTRACT

A hierarchy of simple models is presented
for an idealized version of an IBM VS/370
computer system. The idealized system con-
sists of a main memory, an auxiliary memo-
ry, and a processor. Demand paging is em-
ployed with an LRU replacement algorithm.
A hierarchy of simulation and analytic
models is developed which represents the
system at several levels of detail. These
models are compared and their suitability
for representing the system for various
purposes is discussed. Several interest-
ing observations concerning the perform-
ance of the LRU page replacement algorithm
are presented.

INTRODUCTION

During the course of research into the
range of possible effects of non-local
process referencing behavior on the thru-
put of a batch processing virtual meniory
computer system such as the IBM VS/370,

it became necessary to develop performance
models of such systems. This- paper pre-
gents two simulation models which repre-

- sent the system at different levels of de-
tail. The results of these models are
compared and related to a simple analytic
model of virtual memory system processor
utilization.

The computer system modeled here is an
idealized version of the IBM/370 with a
virtual storage operating system (1,2).
The modeled system has a single processor
and a two level memory. The main memory is
divided into fixed size page frames. De-
mand paging is used; i.e., a page is not
brought from auxiliary memory until a
process attempts to reference it. A ref-
erence to a page which is not in main mem-
ory is termed a page fault. When there is
a page fault and all of the page frames in
memory are being used, one of the pages in
memory must be replaced. The page replace-
ment algorithm used for this modeled sys-
tem is global least recently used (LRU)
which is a good approximation to the algo-
rithm extant in 0S/vVSl (2). A global LRU
replacement algorithm removes the page
This work was supported by NSF
Grant GJ-33764X.

Emily C. Placy and Jon C. Strauss

Wa shingfon University

from main memory which has not been refer-
enced for the longest time regardless of
which process owns the page.

Several analytic models of virtual memory
computer systems have been developed. Gaver
(3) presents a probabilistic model for a
multiprogramming system which.relates I/O
speed, core size, and processor speed to
the processor and system performance. Coff-
man and Ryan (4) model the storage require-
ments of programs in a multiprogramming
system for both fixed and dynamic storage
partitioning. Oden and Shedler (5) develop
a detailed mathematical model of the memo-
ry contention in a multiprogramming en-
vironment with the LRU replacement algo-
rithm. The analytic model developed in this
paper draws on the work of Williams (6).

This paper is organized as follows: a
description and comparison of the two
simulation models is given first. Next,
an analytic model is developed and then
compared to one of the simulation models.
Finally, some results from the simulation
model are presented and discussed.

SIMULATION MODELS

Two simulation models are described. The
first model simulates the system at the
individual memory reference level, while
the second simulates the system at the
active '‘process level,

MEMORY REFERENCE LEVEL MODEL (MRLM)

For MRLM, a process LRU stack model, as
described by Mattson et.al. (7), is employ-—
ed to generate the time sequence of page
references of each process (process refer-
ence string). The stack is an ordering of
the pages of a process according to the
time they were last referenced. The top
position of the stack represents the page
which was referenced most recently, and
the bottom position represents the least
recently used page. The process LRU stack
model assumes that at each refereﬁce the
probability of referencing the 3R previ-
ously referenced page is pj. This py cor-
responds to the j position in the "LRU
stack and pi+pz+...+pp=1, where n is the
number of pages of a program. Thus, if a
process has its m(<n) most recently

Winter Simulation Conference 415




MEMORY SYSTEM INVESTIGATION ... Continued

referenced pages in main memory, then the
probability P of a reference to a page in
memory is

m
P=zpjr
j=1
and the probability of a page fault is
(1~P). The use of a process LRU stack
makes it unnecessary to keep track of the
individual pages of a process.

Spirn and Denning (8) compare working set
size and missing page probability for sev-
eral models of programs with intrinsic lo-
cality; one of these models is the LRU
stack model. They show that the LRU stack
model produces good approximations to the
behavior of actual programs. One problem
Of the LRU stack model, however, is that
the stack probabilities are fixed, whereas
in practice these probabilities tend to
change. Also, processes seem to slowly
change localities instead of jumping to a
new locality. A second set of probabili-
ties could be introduced to account for
the periods when a process is changing
localities. .

MRLM uses a uniform random number genera-
tor to produce the page references of a
process. At each reference, the random
variate corresponds to the cumulative
probability of reference in the process
LRU stack. This determines the particular
position in the stack of the process cur-
rently using the processor and given the
number of pages of the process currently
in memory, indicates a successful refer-
ence or & fault. The use of the stack
model eliminates the need to keep track of
the specific pages of a process. It is
sufficient to know only how many pages

a process hds in memory.

The model has queues for each sector of
the paging device. In a real system, read
and write requests are placed into the
sector queues according to the location of
the respective pages in auxiliary memory.
However, since the model’'does not simulate
the individual pages of a process some
other means must be used to place requests
in the sector gueues. The model uses the
time of the page fault modulo the number
of sectors to determine in which queue the
read request is placed. Since the model
employs LRU replacement it is necessary to
know the- time when the pages were last
referenced. These times are stored in the
process LRU stacks. These stored reference
times are also used to determine in which
queue to plate a write request. This tech-
nique distributes read and write requests
somewhat evenly among the sector queues.

In the current models all replaced pages
are written to the auxiliary memory. In
VS/370 (2), and most other virtual stor-
age operating systems, care is taken to
only write pages that have been altered
during their residence in primary memory.

416  January 14-16, 1974

The statistical effect of this feature
could be easily added to the models to
validate their predictions to actual
measured behavior.

When a process has a page fault, a request
to read a page from auxiliary memory is
placed in the appropriate sector queue.
When a page fault occurs and if no free
page frames are in memory, a request to

"write the least recently used page of all

processes in main memory is issued. Read
requests within a queue are serviced first-
come-first-served. A write request is serv-
iced only if there are no read requests in
the queuwe or if the number of free page
frames in main memory is less than a
threshold value. The threshold is used to
help minimize waiting due to sparsely
filled sector queues. The service disci-
pline used for the sector queues is round
robin.

ACTIVE PROCESS LEVEL MODEL (APLM)

APLM is also based on the process LRU stack
and employs most of the page replacement
structure of MRLM. However, instead of
generating a process reference string, APLM
coniputes the average number of references
to pages in memory followed by one refer-
ence to a page not in memory, using the
stack probabilities. This quantity is

given in equation (1) for a process that
runs to a page fault without interruption:

(o]

= _ n-1,._
ng = ] np (1 P;)

1
= 55y (1)
n=0 = Pi

where P, is the sum of the stack
probabiiities for the pages process
i has in memory.

For the case of the pre~emptive priority
CPU scheduling characteristic of IBM 0OS
Systems, equation (1) is only valid for
the highest priority process since all
other processes might not run until a
fault.

COMPARISON OF MRLM AND APLM

Since both MRLM and the APLM have the same
theoretical basis, the two simulation
models should on the average have the same
number of memory references before a fault
for the highest priority process. It is
desirable that the two models compare fa-
vorably since the second simulator runs
much faster than the first. Illustration 1
compares the average number of references
before a fault for the highest priority
process of the two models. Each time the
process- faults, the number of references
it made before the fault is added to the
total number of references of the process.
This number is divided by the total num-—
ber of times the process has used the
processor and is the average plotted in
Illustration 1. Due to different starting
conditions, the initial number of refer-
ences to pages-in memory:is much higher



for MRIM than for APLM.

ILLUSTRATION 1

* Average Number of References

®
T
P

I
T T 4
JEREPRRIPRP o

]
L]

hundreds of references
A ) © =
1) L] ) 1]

N
™

o000 100,000 150,000 200,000

simulation time units

250,008

The probabilistic bases .for the two models
would suggest that their instantaneous
number of successful references could be
very much different. However, the aver-
age of the number of references should be
close as is shown in Illustration 1.

ANALYTIC MODEL

A simple analytic model of the expected
processor utilization of the system is
employed to verify the behavior of the
simulation models for simple cases.

A system with two processes which have
the same .successful reference probability
P is investigated. 1-P is the probaba-
bility of a fault and nf is the time to
transfer a page between the ‘two memories,
where n-is the number of times the main
memory is accessed while a page is being
transferred from auxiliary memory and B
is the cycle time of the computer.
Williams (8) establishes that the expect-
ed procesgor utilization for this system
is given by

E(U) = S (2)

PM4+n (1-P)

It can similarly be shown that if the two
processes have different successful
reference probabilities, P, and P,
the expected processor utilization is

then

P; (1-P2)+P2 (1-P})
2N (1-P1) (1-P,)+P N (1-P,)+P,"1 (1-P,)

E(U) =

For P, = P this equatioﬁ reduces to egua-
tion (2).

There are three differences between the
analytic model of Williams and the APLM.
First, Williams assumes that the read and
write requests which result from a page
fault may be serviced in parallel. The
simulation model services all requests
serially.
n is redefined as the time required to

For comparison of the two models

write a page from main memory and to read a

page from auxiliary memory. Second, a

process uses the CPU for P/(l-P) references

in the analytic model and 1/(1l-P) refer-
ences. in the simulation .model. Upon adding
this modification, E(U) becomes

E(U) = — %+ .

P41 (1-P)

Third, the analytic model assumes that the
service of a page request may begin at any
unit of time while in the simulation model
service must begin at a unit of time which
is a multiple of N/2. Because of this
difference E(U), for the analytic model is
slightly- higher than what it should be.

Illustration 2 shows E(U) for the analytic
model and the APLM. One reason that the
results for the APLM are higher than those
for the analytic model is that the number
of references for the APLM is constant
rather than varying with an average of ==

1-P
ILLUSTRATION 2
E(U) for the Active Process Level
Model and for the Analytic Model
n ‘P=.99 |P=.999 |P=9999
: . 4949 .9900 }].9999 APIM
200
Analytic
.4639 .9807 1.9997 Model
L0495 .4995 1.9900 APLM
2000 .
Analytic
.0495 .4679 1.9815 Model
.0050 .0500 |.4996 APLM
20,000 Analytic
.0050 .0500 }.4682 Model
‘Winter Simulation Conference 417



MEMORY SYSTEM INVESTIGATIONS ... Continued

EXPERIMENTAL RESULTS

It is demonstrated that a global LRU
replacement algorithm is a good replace~
ment algorithm .for programs of different
locality.

The successful use of virtual memory

memory systems implies that only a frac-

tion of a program need be :resident in
main memory at any one time. This
property of programs has been .termed the
principle of locality by Denning (9).
Intuitively, a local program -referehces a
subset of its pages for a period of time
moving slowly to new subsets of pages.

‘All available experlmental evidence cor-

roborates that it is an exception for a
program not to satisfy the principle of
locality.

It has been established using APIM that
when one process is replaced by a process
which is relatively less local than the
others, the performance .of the other
processes generally improves. When the
process LRU .stack model is used, the
locality of a pro¢ess can in some sense be
measured by computing the second moment
of the stack probabilities. Two sets of
processes are used in the experimental
study, and the results are presented in
Illustration 3. Set A consists of five
equally local processes (n for three
pages of the process LRU stack = 1490).
Set B consists of four processes from
Set A plus one less local process (n for

three pages of the process LRU stack = 59).

ILLUSTRATION 3

&

o

Ll 8 Set B

R (non-local)

-:: S /"' \\ ,'h‘\.‘/

= |

5

0 T Set A

w  1of (local)
s I = <k

main memory size
(number of page frames)

418

January 14-16, 1974

Pre-emptive priority scheduling is used and
the less local process has the highest
priority. The curves in Illustration 3 are
the CPU utilizations of the four lowest
priority processes of both process sets as
a function of the number of page frames in
main memory. The solid curve corresponds
to Set A and the dashed curve to Set B.
The points on Illustration 3 were obtained
by running the simulations for an equal
number of references. Due to the proba-
bilistic basis of the model, the individual
points are from a range of p0551ble values
and cannot be compared directly on the
sketched curves for Set A and Set B.
Rather, the individual points are charac-
teristic of general behavior of CPU utili-
zation as a function of memory size. The
curves are however, indicative of general
trends and Illustration 3 does indicate
improved performance for the four local
processes when run with a higher priority,
less local process. One might suspect
that the less local process would take an
unfair share of the page frames in memory
and degrade. the performance of the other
processes. However, Illustration 3 indi-
cates that the less local process causes
more memory to be available for the other
processes and their performance improves
as a result. This is because when using
global LRU page replacement .if a process
does. not reference all of its pages when
it is active, the unreferenced pages be-
come prime candidates for paging out
while other processes are active or when
it again becomes active. Hence, the less
local process is taking pages from itself
rather than from the other processes.

These models can also be employed to
demonstrate thrashing. Thrashing is
defined as system performance degradation
or collapse due to too much paging and is
discussed by Denning (10). Thrashlng is
related to program behavior, paging algo-
rlthms, and the mismatch of access times
for main memory and auxiliary memory.

The principle of locality leads to the
concept of a working set of a program (11).
A.working set is defined intuitively as
the smallest subset of pages whic¢h a pro-
gram must have in main memory in order to
run efficiently; i.e., execute with few
page faults. Hence, if the main memory of
a multiprogrammed virtual memory computer
is large enough to accommodate the working
sets of the programs being run, the systenm
performance, as measured possibly by
processor utilization, will be high.
Denning (10) has shown that when the size
of the working sets of the programs being
run equals the size of memory, the addi-
tion of just one more program will induce
thrashing. The main cause of thrashing

is the small ratio of main memory access
time t6 the time required to copy a page
from auxiliary memory to main memory.



For third generation computers this ratio '

is typically in the range 10~? to 107%.

Thrashing reguires that the memory be
over~committed. Thus, it seems likely
that a program which becomes much less:
local and requires a larger working set
could induce thrashing as well. To in-
crease this program's working set, pages
would have to be taken from the working
sets of other programs. And if no pro-
gram has a working set in main memory,
very little useful computing would be
accomplished.

ILLUSTRATION 4

CPU Utilization for

" Pwo Sets of Processes

2o
g /
o L /
- set A [\ [/
8 oo . (local)| Av/ /
o b Rl
~ L R
D ot N v
.'3 ,I “ /’ Set B
o 3of V' (non-local)
[
O 2
o o}
L. i 1
fo 5 R0 25

main memory size
(number of page frames)

Illustration 4 shows CPU utilization for
two different sets of processes for APLM.
Set A consists of five processes with the
same set of stack probabilities. The
stack probabilities are defined such that
"a process in Set A reguires three pages
of memory to do a useful amount of com-
puting before a fault. Set B has four
processes identical to. those of Set A
along with another less local process
which has the highest priority. Pre-
emptive priority scheduling is used for
both sets of processes. For three pages
resident, the _n for the local process is
1490 and the n for the less local process
is 59. "1 = 1000. For Set A, 15 pages of
memory are required for useful computing
and thrashing occurs for a memory oOf
less +than 15. pages. Since thrashing
occurs with 15 or less pages for Set B as
well, the addition of non-local process
did not cause thrashing to occur any
sooner. However, the CPU utilization ‘is
generally .lower for Set B than for Set A.
For a-memory of 10 to 15 pages, the

processor utilization is the same for
both sets of processes.

As in Illustration 3, the detailed loca-
tion of points in Illustration 4 is not
significant. The lengths of the simula-
tion runs plotted in Illustration 4 were
the same. Since the processor utilization
is influenced by activity at the time it
is measured, the curves should be consid-
ered as points in envelopes of possible
values of the CPU utilization.

CONCLUSIONS

This paper has presented and discussed
several models of a virtual memory system.
The. two .simulation models were shown
through experiments to compare reasonably
well. The analytic model and the active
process -level simulation model also give
similar results. This simple active
process level simulation model can be used
to study the effect of processes and their
stack probabilities on system performance
and to study the effect of one process on
others.

This paper also provides some justifica-
tion for the use of the global LRU page
replacement algorithm and shows experimen-
tally how thrashing can occur.

REFERENCES

1. Scherr, A.L., "The Design of IBM
08/VS2 Release 2", AFIPS Conference
Proceedings, Vol. 42, 1973 NCC, AFIPS
Press, Montvale, New Jersey, 387-394.

2. Wheeler, T.F., Jr., "IBM 0S/VSl -

An -Evolutionaly Growth System", AFIPS
Conference Proceedings, Vol. 42, 1973 NCC,
AFIPS. Press, Montvale, New Jersey, 395-400.

3.. Gaver, D.P., Jr., "Probability Models
for Multiprogramming Computer Systems",
JACM, ‘Vol. 14, No. 3 (July 1967), 423-438.
"4, Coffman, E.G., Jr., and Ryan, T.A.,
Jr., "A Study of Storage Partitioning
Using a Mathematical Medel of Locality",
Communications of the ACM, Vol., 15, No. 3
(March 1972), 185-190.

5. Oden, P.H., and Shedler, G.S., "A
Model of Memory Contention in a Paging
Machine", Communications of the ACM,

Vol. 15, No. 8 (August 1972), 761-771.

6. Williams, J.G., "Asymmetric Memory
Hierarchies", Communications of the ACM,
Vol. 16, No. 4 (April 1973), 213-222.

7. Mattson, R.L., Grecsei, J., Slutz,
D.R., and Traiger, I.W., "Evaluation
Techniques for Storage Hierarchies",

IBM Systems Journal, Vol. 9, No. 2 (1970),
78~117.

8. Spirn, J.R., and Denning, P.J.,
"Experiments with Program Locality",
Conference Proceedings, Vol. 41, 1972
FJCC, AFIPS Press, Montvale, New Jersey,
611-621.

9. Denning, P.J., "Virtual Memory",

AFIPS

‘Winter Simulation Conference

419



MEMORY SYSTEM INVESTIGATIONS ... Continued

Computing..Surveys, Vol. 2, No, 3
(September 1970), 153-190. )

10. Denning, P.J., "Thrashing: Its
Causes and Prevention", AFIPS Conference
Proceedings, Vol. 33, 1968 FJCC, AFIPS
Press, Montvale, New Jersdy, 915-922.

1l. Denning, P.J., and Schwartz, S.C.,
"Properties -of the Working-Set Model",
Communications of the ACM, Vel. 15, No. 3
(March 1972), 191-198.

420 January 14-16, 1974



