COMMENTS ON MODELS OF MULTI-PROCESSOR

MULTI-MEMORY

BANK COMPUTER SYSTEMS

ABSTRACT

This paper is concerned with processor degrada-
tion produced by access conflicts in multi-~
processor, multi-memory bank computer systems.
Hardware and software parameters which influence
performance are outlined and discussed. The in~
corporation of these parameters in analytic and
simulation models is discussed with a view to the
predictive merit of the model. Finally a general
simulation model of a multi-processor is present-
ed, and results based on its use are analyzed and
compared with those of other models.

INTRODUCTION

In this paper we discuss various topics concern-—
ing the development of models (analytic and sim-
ulation) of multi-processor multi-memory bank
computer systems. In all instances we are inter-
ested in the degradation in processor performance
as a result of memory bank contention. To that
end we are interested in various bank configura-
tions including interleaved (partial and com—
plete), separate banks for processor programs and
shared data across a collection of banks, shared
program banks and separate data banks, etc. The
above considerations affect the manner in which
references are generated by the processors in

the configuration. Since the queuing discipline
employed by the banks also affects system (pro-
cessor) performance we will be interested in
studying the effects of several. For example,
the first come first served discipline as as-
sumed by the queuing model of the next section
(as well as by several other models) is examined.
Since many systems employ priority schemes (see,
for example, [7]), especially when input—output
controllers are included, we shall also be in—-
terested in strict priority as well as round-
robin service disciplines as memory port disci-~
plines for the banks. Many systems also provide
separate access ports for data and instructiomn
references and on contention give priority to the
data reference access port. Finally the distri-
bution of processor inter-request times is impor-
tant, especially on machines for which a variable
number of instructions may be held in a machine
word.

As a point of departure we next briefly review
the literature. Of particular interest are the
models discussed in references [5]-[9]. The
study in [5] considers the contention in a system

W. R. Franta and Philip A. Houle

University of Minnesota

consisting of a processor and input~output control-
ler, to be a function of the number of instruction
"look-aheads".
as a parameter, the expected value of processor
waiting time due to input—output controller memory
requests is derived. The model further assumes
that instruction fetches are completely sequential.
The model in [7] and [8] calculate the expected
memory bandwidth (defined as the average number of
requests serviced per memory cycle by a collection
of interleaved memory banks). Instruction and data
requests are modeled separately and overall band-
width is calculated as the average of the two in-
dividual bandwidths. No interrelationship between
data and instruction references is assumed. The
implication of this assumption is that the instruc-
tion requests can race ahead of the data requests,
resulting in an overly optimistic model. This
latter deficiency is considered in the model re-
ported in [6].

Unlike the previous models, that of [6] is based
upon the theory of Markov chains and in some sense
emends the deficiency previously mentioned. More
specifically the following assumptions are made

. Each memory bank operates continuously,
and cyclically. .

. The operation of all memory banks is
synchronized.

. No distinction is made between instruction
and date references.

. Each processor makes only one memory
request per synchronized memory cycle.

This implies that under optimal conditions
of no conflict two memory cycles are
required to fetch an instruction and its
associated operand.

. The request pattern of the processors is
a sequence of Bernoulli trials. This
implies that instructions are not executed
sequentially or alternately that inter-—
leaving is not modeled.

. If a processor fails to access a bank on
a given cycle due to contention, it auto= ’
mdtically returns on the ensuing cycle
(hence the use of Markov chains}.

. Request contentions are decided on a pro-—
babilistic basis. By appropriately setting
the associated probabilities a partial
priority discipline can be modeled.

The steady state probabilities generated allow a
processor degradation factor to be computed.
Since statistically non-homogeneous processors are

Winter Simulation Conference

Imploying the degree of “look-ahead"

87

BANK COMPUTER SYSTEMS ... Continued

modeled, establishing the transition matrix pro-
babilities is extremely difficult for systems
consisting of as few as four processors and two
memory modules. The model is not, therefore,
amenable to the manipulation of its parameters.

Many of these deficiencies are overcome in the
model reported in [9]. The price to be payed, is
that the set of processors modeled must be con-
sidered statistically identical (except as noted
below). This reduces the enormous number of
states in the transition matrix of the model of
[6] to a manageable number. Several memory bank
configurations are studied including interleaved,
separate program banks and interleaved shared
data banks. Among the assumptions made (some for
analytic tractibility) the following are perti-
nent. .) '
« Overlap is modeled. That is requests for
current operand and néxt instruction are
issued simultaneously.

. The memory banks operate cyclically and
synchronously as indicated above for the
model of [6]. This essentially implies
that all instructions require ome cycle
for execution.

. Bank contentions are resolved by a random
selection. This implies that if a pro~
cessor has a single outstgnding request,
it is with equal probability an instruction
or data reference.

. Each instruction requires one machine word.

. Data references are independent and are
made from the allowable banks on an equi-
probable basis.

. An instruction requires an operand with a
probability b, (Bernoulli trials).

. Program jumps are made with a probability
o, (Bernoulli trials). The next bank is
selected on an equi-probable basis from
among the allowable banks.

For the complement of models reviewed that of [9]
most faithfully reproduces the general character—
istics of existing systems. We shall comment
more on this in a later section.

The models discussed above all view the set of
memory banks and processors as a unified system.
In some instances it is convenient to consider
the delay encountered by a single processor at a
given bank. Then given information on the number
of references made by that processor, the expec-
ted program execution time -can be calculated.
This approach views each memory request as a re-—
quest for service from a single server with con-
stant service time. A queuing phenomenon results
owing to the generation of similar requests by
the remaining processors. 8ince for many actual
systems it is possible for several requests (at
least two) to arrive simultaneously, queuing mo-
dels with batch arrivals are appropriate. We can
then consider that during a memory cycle a batch
of requests arrives at the memory bank and is
allowed to enter a "service buffer" associated
with the memory bank at the end (beginning) of
each memory cycle. For simplicity the queuing
discipline of the buffer may be taken as first-
come-first-served. Let E(w) denote the expected

88 January 14-16, 1974

walt time per request.

In [6] an upper bound on E(w) is given for the
GI/G/1 queue as

A(céz + ¢ _2)
B < 5t

where A = arrival rate, oaz = variance of inter-
arrival time distribution, ¢.2 = variance of ser—
vice time distribution. For our purposes 6,2 = 0
and 0,2 is calculated as follows. Let k be = the
batch™size, and t the cycle time. Then the expec-
ted batch service time is E[k]t, and ¢ 2 = 0k2t2
and A = 1/E(k). In [1] the Laplace—St%eljes
transform of the waiting time distribution is com~-
puted for a batch input general service time model,
for which the batch inter-arrival times are assumed
to follow the exponential distribution. The trans-
form is given in terms of the transform of the ser-
vice time distribution and the generating function
of batch sizes. Differentiation of the expression
and repeated use of L'Hogital's rule produces E(w)
in terms of A, E(k), E(k*), etc, Other pertinent
remarks on batch queues may be found in [3,11,12].
For our purposes, a more convenient and somewhat
simpler model can be developed, (which does not
require Polsson input assumptions) by considering
that batches of size j arrive at the memory bank
with probability C;, j=0,1,...,n during each mem—
ory cycle. An anaiysis of such a system is pre~
sented next.

QUEUING !MODEL

Consider a memory bank with cycle time t. During
each service period, batches of requests arrive
from the remaining processors. The batch of re-
quests 1s allowed to join the memory bank queue at
the end of each memory cycle. Let C4 equal the
probability that j requests arrive during a ser-
vice period, with j=0, 1,..., Z, 7 < 2p, the num—
ber of processors. The situation is described by
the model depicted in figure 0.

Jiog Iy Jiv1 Ji2
Yir P | U R | Y R
i-1 ' i I i+l
memory }¢t unitS—Ap:
cycle i l

Figure O.

In the figure

= The number of requests generated

during the (i-l)st service period.

Y, = Number of requests in the system (in

service and pending) at the beginning

of the i-th service period.

X, = Number of requests in the system fol-
lowing completion of the i~th service
period but preceding acknowledgement
of the arrivals Jy.

We now describe the system as a queuing model. In
statistical equilibrium, the distributions associ-
ated with the designated random variables are
independent of the memory cycle period.

Consider

G, (2) = c,z3
3@ = 1o

as given. Let P =P {Y=n} be the steady state
probabilities for Y, and t equal the memory
cycle time. The random variables Y form a Markov
chain, and the values can be related across mem—
ory cycle periods by

Y = max [(Yi—l),O] + Ji+1 (D)

with ry = max [Y,-1),0].
generating function, E[]

i+l

or as Yypq = ry + J,
Let Gi(Z) denote a

an expected value, and V(+) a variance. In sta-
tistical equilibrium eqn(l) implies
Gy(a) = Gr(Z)-Gj(Z) (2
It is.easily seen that
P
6,(2) = 564(2) - >+ 2 3)

so that substitution of (3) into (2) yields

1
6,(2) = [5(6y(2) - B) + Po]Gj(Z)

solving for GY(Z) yields

PO(Z—l)

GY(Z) = .Z_E_TET G. (Z) (4)

Since it is required that G,(l)=1, a single appli-

cation of L'Hopital's rule shows that
P, = 1-E(3)

which further indicates that 0<E(J)<1l is a nec~

essary and sufficient condition for statistical

stability. For reasons analogous to those given
for (1) and (2) it is seen that

Yi = Xi—l + Ji

so that GY(Z) = GX(Z)Gj(Z) or by (4) that

PO(Z—l)

Gy(2) = 76, (%)

with P,=1-E[j]. Since E[X]=Gy(1l) a single dif-
ferentiation and two applications of L'Hopital's
rule yields

- EQ@?) - EQ)
2[1-E(3)]

and since V(J) = E(J2)-E2(J)

V() + E2(3) - E()
TA-E(1)) ()

Let w,* denote the delay experienced by the nth
request for service. During the period w_+1 we
expect E(k) (wy+l) requests to be generateg Fol~
lowing service of the nth request we expect

E(Y) = E(x) + E(k) requests to be in the system.
Therefore in the mean

E[v

E(X) =

E(k) [E(w)+1] = E(x) + E(k)
Solving for E(w) yields
. EX
B = E®

*wn is measured in memory cycles.

which after algebraic manipulation, use of eqn(5),
and multiplication by t yields

V(k) 1

E(W) = 1/2 [E(k) TR)

-1] t 6)
time units.

By considering the steady state equations of de-
tailed balance the probabilities P can be calcula-

ted giving
l—C0
Pl =T Po
o)
and
n-2
Pn ='%_ [Pn-1~cn~l(Po + Pl) V CJPn—']
o ’ J=1 J

for n > 2.

Since P_ is given above, the process is easily
mechanized. It must be noted that although C.=
for J > 1, the same is not necessarily true fgr
P.. 1If we let

E(¥) = [PN

n

and 63 = Cj-J/E(J)*
then it is also true that

EW) = [I Iz, c (n-1 +-———) +
=1 g=1 "

t (J-1)
JZ]_CJ 3] t

which reduces to
21y
E(W) = {ﬁ(Y)—1+po+1/z[V(J)+EEEj§ L }
»n

Eqns (6) and (7) are numerically equivalent. The
value of V(W) is easily computed using the values
of P, as, for example,

J-1 '
VW) = (n-1 + == - Ean}2r_c.
(nzl jZl[" 2 } nj

1 1
+P == - E(W)} 2¢
° [le]
8 12 16
number 1{-14 .07 .06
processors 2{.30 .11 .13
31.33 .25 .18
E(J)

EXPERIMENTAL DATA

To investigate the behavior of programs as re-
gards bank references, data was collected on pro-
gram behavior for several widely differing systems.
Using a simulator designed for research purposes-
(see [2]) data was collected on the behavior of
programs running on the CDC 6600. In particular

%
E(J) is the arrival intensity and thus cs
represents the intensity for batches of size "J.

‘Winter Simulation Conference

89

90

BANK COMPUTER SYSTEMS ... Continued

the behavior of an operational APL* processor, a
heavily used FORTRAN* compiler and several appli-
cation programs were investigated. In all cases
complete address traces were collected as program
execution was simulated.** The traces included
all program code executed including input-output
and file manipulation subroutines. In all cases
the program behavior was in no way altered due to
the simulation process. The trace information
provided several statistics. First operation
code use distributions were established. Such
data 1s pertinent to the simulation of models
providing for asynchronous program, memory module
behavior. Secondly it provided for the construc—
tion of certain transition matrices relating the
banks from which successive instruction words and
operands are fetched. A summary of instruction
use is given by Figure (4). Two types of transi~
tion matrices were constructed, one for data, one
for instruction fetches. Each is a matrix of the
form Ty = tXK. ,i, j=1,...,16, K=D(Data), I(in-
struction), where t%. equals the probability
that if the last referdnce of type k came from
bank i, that the next reference comes from bank
3. A similar but less comprehensive study was
made on operational code for the machine described
in [4]. Each trace accounted for well over
500000 memory references. .

Several points of information can be gleaned
from the data. In summary:

. The probability of a jump ranged from
.15-.35 with Fortran and APL near the
upper mark.

. The assumption that the next reference
(following a jump) can be selected at
random from among all the banks (for
interleaved banking) is statistically
reasonable.

. No single model on data references
faithfully reproduces program behavior.
For example on MMNF

t = {.48,.36,.42,.40,.45,
St 2mods16)s. 40, .47, .44, .52, . 32}

with the remaining entries quite uniform in na-
ture. This predominant behavior can be attribu~
ted to symbol table manipulation. It can be
argued that the above pattern is obvious and to
be expected. It was also expected that a similar
pattern would emerge for APL, as it too does con—
giderable table manipulation. In fact no domi-
nant pattern was observed for APL, i.e., its

data reference matrix most nearly indicated a
uniformly distributed reference pattern. Many
application programs demonstrated the same type
of behavior. Several produced main diagonal dom-
inant matrices, while several others produced
uniform like matrices much as for APL. In sever-—
al cases, the a priori prediction of behavior was

%)
See reference [13] for a description of APL and
reference [15] for a description of the FORTRAN.

*%he applications programs were FORTRAN programs.
They included an analysis of the program used to
analyze the address traces collected in the
other cases.

January 14-16, 1974

in error. The collected data did allow certain
parameters to be established. In particular we
find that:

. The probability that an instruction
requires an operand can be estimated on
the basis of operation code utilization.

. The distribution of the number of instruc-
tions per word can be established.

THE SIMULATION MODEL

Let M; for i=1,2,...m represent the m memory mod-
ules of the model. Addresses for memory references
consist of integer values j such that 1 < j < m.
Memory references are denoted Ry for memory module
M; from the Kth PE. A set Qi associated with Mj
contains outstanding memory requests to be proc-:
essed by M;. After request Ryj is executed by Mj,
the kth PE is notified.

The addressing modes from the PEs to the M; are de-
termined by the transitions within individual PEs.
Each PE generates memory requests based on its par-—
ticular characteristics. For example, if imstruc-—
tion words are stored in consecutive addresses
which are from interleaved memory modules, then the
kth PE would generate memory references Riy, R2k,
..-&n,le,- coy etc.

The structure of the processing elements is based
on the concept of an instruction cycle. Within the
cycle, various transitions may occur which affect
the result in memory requests. An individual PE
has an associated program state s. This state is
an integer value 1 < s < m and can be considered a
memory module location Mg of the current instruc-
tion word. ' -

The transitions within the instruction cycle of a
PE are described by a function

F(T,s)

where s is a state number and T is a transition

matrix, T is defined as
T={A, .}
1,3
where
A,, = % P,
ij kel ik

and P;; is the probability of a tramsition from
state i to state k. For example, if PEy is in
state S5k, a jump instruction is given by

St = F(Tu’ Sk)
where T, is the matrix representing memory transi-

tions during jumps. If an instruction word is re-
quired, the memory request results for

Y, 80

If an operand referencé occurs, the resulting
memory request is for

) .

"r(Tgs 5
Note that T, and Tg represent the matrix of tran-
sitions for instructions and operands respectively.

With the definition of a transition matrix T as

the controlling factor in memory requests pro-

duced by PEs, a completely general simulation

program can be constructed. For example, a model
with three interleaved memory models would employ
.0 1.
1.
1

0
0
1

oK
coo

.0 .0
as the transition matrix for the retrieval of the
next instruction word. If all instructions come
from the same module with a probability of .9
then

.9 .95 1.0
.05 .95 1.0
05 .1 1.0

might be an appropriate transition matrix.

Because the function F(T,s) and the transition
matrix T control the behavior of PEs towards the
memory modules of the system, it is necessary
that individual PEs have unique characteristics.
In terms of a simulation program, it must be
possible for differing PEs to have differing ma-
trices T. The approach taken was to define
groups of PEs denoted Gp. Each G, contains N PEs
all identical in behavior. This structure enab-
les the simulation model to handle differing
processor types, for example, one type of PE may
be for compute while another might process I/0
requests.

To describe the actions during the instruction
cycle of a PE we need to define the following
probabilities. Let o represent the probability
of a jump instruction. If an instruction is not
a jump, then it issues memory requests for an
instruction word and operand word with probabili-
ties vy and B respectively. The cycle is comple-
ted by an execution delay which overlaps the
memory request processing and may or may not ex-
tend beyond. The execution delay is determined
by a draw from an empirical distribution obtained
from actual machine data.

Individual memory requests provide information
linking them to the PE which generated them. In
addition, each memory request has an associated
attribute called its priority. The linkage to
the generating PE enables the processing of the
request to be synchronized with the PE. The
priority balue is used to order the requests in
the memory module queue to model priority bussing.

The memory module removes memory requests from
the waiting queue and processes them using a unit
of time called a memory cycle. The queue disci-
plines simulated include random selection and
priority. The algorithm for random selection is
obvious. The priority queue is characterized by
an ordered set of memory requests {Rq kj}' Assoc~
iated with each Rg s is a priority = Pps.

The selection discipiine chooses the earliest
smallest Pkj. For the priority bussing studied
here, operand memory references were set to

Pij 1 and instruction memory references to

Pk 2.

Figure 1 shows the flow of the simulation of the
PE. The symbol S, indicates an original state
for the individual PE. The first decision deter-—
mines if the command is a jump instruction. A

nou

jump instruction has no operand other than the add-
ress to which the jump is being made. In the case
of the non~jump instruction, an operand memory B
reference occurs with probability and an instruc-
tion memory reference occurs with probability vy .
The delay E is a random draw from an empirical dis-
tribution supplied as data to the simulation.

Figure 2 shows a modified definition of the PE mod-
el. This model differs from that shown in Figure 1
in its description of multiple instructions in an
individual instruction word. As is evident from
Figure 2, the advance to each next instruction gen-
erates a memory reference. The interaction between
commands and instruction words is controlled by an
empirically supplied distribution of the number of
commands per word. This distribution determines
the value of IPW. '

An additional difference between this model and
that in Figure 1 is the interaction between operand
memory references and the instruction execution
time. An operand memory reference occurs with pro-
bability B, However, if an operand memory refer—
ence does occur, the retrieval of the operand from
the appropriate bank constitutes the execution time
of the imstruction. This model difference implies
that machines exhibiting many accumulators with
simple memory loads and stores are well represent-—
ed.

SIMULATION EXPERIMENTS AND RESULTS

This section discusses the simulation experiments
and summarizes the results of these experiments.
The simulation experiments were based on three
machine descriptions and the two PE models des-
cribed above. The results are displayed as a
series of graphs and tables which we discuss below.

The different PE models were described earlier. 1In
addition, three modes of instruction word memory
referencing were used, two types of memory queue
disciplines were used to explore bussing effects,
and the memory modules were synchronized and
nonsynchronized. The transition matrices used for
jumps and operand references were established as
uniformally random.

The three modes of memory referencing for instruc~—
tion memory requests are uniformally random,
individually banked, and interleaved. For uni-
formally random references, all modules are
equally probable for the next instruction word
reference. In the case where the instruction
references are individually banked, all instruc-
tion memory references are to the same module un-
til a jump occurs. Interleaved references go to
each memory module in sequence.

Recall that the individual memory modules are
modeled as servers of a queue. Each module oper-
ates concurrently with the other memory modules
of the system. With random selection as the
queue discipline, all memory requests have immed-
iate and equal chance at the memory modules. The
priority queue discipline insures that operand
references are served ahead of instruction word
references. In the case of synchronized memory
modules, all modules initiate their service cycles
together. If a memory request enters a queue
during a memory cycle and that particular module
1s inactive, the request must wait for the start
of the next synchronized cycle. If the memory

Winter Simulation Conference

91

26

¥L61 "91-1 Arenue]

=S

i

_ Begin Inst

/. Cycle

_ b Issue
S.-F(Ta,S) ! <::> B) <
Issue Rs,k { F(TB,S)
1-B
<
b4 S % Issueg
§:=F(T ,8) | ———Tt l
¥ 1-y
: y
; Delay E I€
\

, Wait until all
— R, complete,

ik
this k

FIGURE 1. Flow of execution for an
instruction cycle in the PE.

1~-a

N
; : i —3
. S:=F(Ta,S) ! i Determine IPW
' | ' =
Issue Rs k! I S: F(TY’S)
, Issue Rs,k
H
4 =1i
/
!
><operand? B Issue :
RICE
1-8 .
r /‘
i Execution Wait for
Delay request R
4
Wait all
R., done
ik

FIGURE 2. Flow of execution for an
instruction word in the
modified PE.

SIWILSAS ¥ALNAWOD ZNVH

penuIIuoD

modules operate asynchronously, only a small
(5%) delay is assumed. This assumption is arbi-
trary.

The figures and tables discussed below display
the instruction execution rate (IER). This
quantity is the number of instructions executed
in the total configuration per memory cycle.

In Table 1 various IER values are presented for
an idealized machine. All instructions require
one memory cycle. These results compare very
well with those obtained from the analytic study
of Sastry [9]. Figure 3 shows the plot of the
uniform case and some points from the work of
Sastry are plotted for comparison. The favorable
comparison indicates general validity of the be-
havior of the program.

As indicated in earlier sectiomns, this study in-
volves two real machines and their instruction
mixes. Data describing a CDC 6600 program execu—
tion was used to generate the distribution de-
tailed in Figure 4. Figure 5 shows the distribu~
tion of instruction mix for a single address com~
puter, the UYK-7.

In Table 2 we summarize the results obtained us~
ing the UYK-7 instruction mix and memory cycle
(1.5 microseconds) time. The values indicate

the resulting IER. Several observations can be
made from this table. First, the effect of uni-~
form, banked, or interleaved instruction word
references is minor compared to altering the
number of memory modules or processors. Second-
ly, the change from uniform to priority bussing
also has minor effects on the IER. Finally,
Table 2 shows the effect of synchronizing the
memory cycles of the memory modules. In Figure 6
we have applied the symbol "s" for the correspon-
ding points with synchronized memory modules.
Notice that these points remain close the the
asynchronous points for a small number of memory
modules. As the number of processors increases
so does the point at which the synchronous and
asynchronous points significantly differ. This
can be explained in terms of the utilization of
individual memory modules. As the utilization
of a memory module decreases, the probability of
a memory request f£inding the module idle in-
creases. In the synchronous case, an idle memory
module is characterized by a latency of a half a
memoxy cycle. This delay causes a degradation
in the response of the individual modules which,
in turn, 1s displayed by the lower IER.

In Figures 6, 7, and 8 we have plotted the
values for random bussing.

Finally, Figure 9 shows the results of the simu-~
lation using the CDC 6600 data and the modified
PE model. This plot demonstrates the effect of
allowing multiple instructions per instruction -
word. Rather than a probability of instruction
word reference y, the modified PE definition uses
a distribution describing the number of instruc-
tions per word. Figure 9 indicates the values
used. The increase in performance due to the
multiple instruction words is significant.

CONCLUSION

Several of the results given here have been quali-
tatively known. In essence, this study has
attempted to quantify these qualitative results.
Our results relate to the mode of instruction ref-
erencing, to the type of bussing between processors
and memory modules, to the synchronization of mem-
ory modules, to the number of commands per instruc-
tion reference, and to the relationship between
probabilistic and simulation models. Specifically,
for the loadings assumed

. Assuming no dedicated memory module
assignments, the mode of instruction
reference to the memory modules has a
minor effect on the total configuration
performance.

. Priority bussing for operand memory
references caused no significant
improvement over random selection.
from all memory requests.

. The effect of synchronous memory
modules is significant degradation
in performance when individual modules
exhibit lower utilizations. Configura-
tions with a large number of processors
will perform significantly better if
individual memory modules can initiate
memory cycles at the arrival of the
request,

. Multiple commands per instruction word
significantly increases performance, _
quantitatively reported in Figure 9.

. Markovian and simulation models produce
results which faithfully predict actual
system performance. Simple queuing
models, such as the one reported, pro-
vide the machinery to develop simple
first estimates of system performance.

In some instances the quantification
of the parameters may be easier for
such models than for more elaborate
models. When properly parameterized,
the presented queuing model yielded
results consistent with those of the
model reported in [91.

REFERENCES

1. Saaty, Thomas L., Elements of Queuing Theory,
McGraw~Hill, 1961.

(see especially pp. 40-42, Chapters 6 and 7,
especially section 7-5.)

2. Olson, Gene H., Implementation of a Machine
Simulator for the CDC 6000 Series Computers, M.S.
Thesis, Dept. of Computer Sciences, Univ. of Minn.,
June 1973.

(Developed as a research tool, the program pro-—
duces among other things, address strings for
program executions. Each is appropriately tagged
for later analysis.)

3. Chan, W.C., "Computer-Controlled Queuing Sys-—
tem with Constant-—Access Cycle and General Service
Times'", Proc. IEEE, 117 May 1970, pp. 927-930.
(This paper develops a queuing model for a Poisson
input constant service time model with various
ancillary considerations.)

4, UNILVAC, AN/UYK~y Military Computer Technical
Description.

(Describes a general purpose 32 bit word, one

‘Winter Simulation Conference

93

94

BANK COMPUTER SYSTEMS

... Continued

¥

Memory 3 Processors 5 Processors
Modules IER IER
Uniform Interleaved Uniform Interleaved
2 1.01 1.12 1.10 1.16
4 1.58 1.61 1.86 1.99
6 1.87 1.91 2.33 2.54
8 1.98 2.10 NA NA
TABLE 1. A comparison of uniformally random and interleaved in-—
struction references for the machine with instruction
times equal to one memory cycle.

Memory Random Bussing Random Bussing Priority Bussing

Modules Asynchronous Memery Synchronous Memory: Asynchronous Memory
Unit 3Bamked Int. Unit ga}_l_k;e‘cl Int. Unit Banked Int.
2 1.11 1.07 1.14 1.10 1.07 1.11 1.10 1.02 .11
4 1.45 1.58 1.56 1.44 1.53 1.52 1.49 1.65 1.58
=3 6 1.60 1.80 1.74 1.41 1.55 1.47 1.59 1.83 1.73
16 1.88 1.95 1.97 1.65 1.62 1.53 1.82 1.95 1.97
32 2.00 2.00 1.97 1.67 1.65 1.83 1.94 2.00 1.97
2 1.26 1.28 1.31 1.23 1.26 1.29 1.21 1.28 1.29
4 2.16 2.31 2.24 2.18 2.27 2.25 2.21 2.33 2.13
P=8 6 2.80 3.03 3.19 2.76 2.94 3.05 2.93 3.05 2.94
16 4.56 4,51 - 4.64 3.83 4.13 3.69 4.35 4,48 4,48
32 5.04 5.07 5.23 4.35 4.61 4,51 5.09 5.13 5.26
2 1.38 1.37 1.38 1.35 1.37 1.35 1.35 1.32 1.32
4 2.27 2.43 2.34 2.25 ' 2.39 2.30 2.36 2.51 2.30
P=12 6 3.06 3.35 3,33 3.03 3.32 3.29 3.09 3.41 3.18
16 5.07 5.29 6.03 5.63 5.19 5.76 5.55 5.54 5.97
32 7.18 6.87 7.21 6.30 6.04 5.99 7.09 6.86 7.17

TABLE 2. A comparison of bussing discipline, instruction reference

discipline, and memory synchronization for differing num~

bers of processors and memory modules.

January 14-16, 1974

IER

Probability

3.0
=5
2.5
P=3
2.0
1.5
1.0L
SL
A A, A A A
0 2 4 6 8
Memory Modules
FIGURE 3. IER as a function of memory
modules. The + indicates a
theoretical point.
1.0 .
81
61
NN
.2
B H
Q4] L L]
1 2 3 4 5
Microseconds
FIGURE 5. UYK~7 instruction mix with

a=0.2, B=.833, and y=.833.

Probability

IER

1.8
i s
oM
A4
20
0-— r3 A A X Fé A
0.2 0.4 0.6 0.8 1.0 1.2
Microseconds

FIGURE 4. CDC 6600 instruction mix with
0=.195 and B=.247.

7 P=12

Memory Modules

FIGURE 6. IER for UYK-7 loading with all
references uniform, The dash-
ed curves represent the IER
for synchronized memory
modules.

Winter Simulation Conference

BANK COMPUTER SYSTEMS ... Continued

‘ P=12
70 7
6 6
51 5,
o] [
H g
4 - 4
30 3
20 2
l 1 3 ¥) r3 4 4 1 . .
4 8 12 16 20 24 4 8 12 16 20 24
Memory Modules Hemory Modules
FIGURE 7. TIER for UYR~7“loading with FIGURE 8. IER for UYR-7 loading with
dedicated bank instruction interleaved instruction refer-
references, and uniform ences, and uniform operand and
operand and jump references. jump references.
N QN
6 fe 1 0.0
- P=3
5 _. ———— —® 2 0.076
a/vf
3 0.447
41
=2 4 “0.477
& ©
2 3 e -
pr P=3
" — —H
2 B -
20 P=1
% m— =2 1 TABLE 3. Probability of Il in-
1 . P=2 structions per word
b e = 5 a in CDC 6679 loading.
=1
0 . A L A A 3 i 4

12 16 20 24 28 32
Memory Modules

FIGURE 9. IER for CDC 6600 loading with inter-—
leayed instruction references and
uniform operand and jump references.
0 indicates points using N instruc-
tions per word using P(N) of Table
3 while 4 indicates points for
single word instructions.

96 January 14-16, 1974

instruction per word machine.)

5. Shemer, J.E. and S.C. Gupta, "A Simplified
Analysis of Processor 'Look-Ahead' and Simultan—
eous Operation of a Multimodule Main Memory,"
IEEE trans. on Computers, C-18, 1, Jan. 1969,
pp. 64~71.

6. Skinner, C.E. and J.R. Asher, "Effects of
Storage Contention on System Performance,”

IBM Systems Journal 8, 4, 1969, pp. 319-333.

7. Burnett,G.J. and E.C. Coffman, "A Study of
Interleaved Memory Systems," Proc. AFIPS 1970
sJCC, Vol. 36, pp. 467~474.

8. Burnett, G.J. and E.G. Coffman, Jr., "A
Combinatorial Problem Related to Interleaved
Memory Systems," JACM, 20, 1, Jan. 1973, pp. 39-
45.

9. Sastry, Kuchibhotla, "Markovian Models for
Performance Evaluation of Multiprocessor, Multi-
memory Computer Systems," Ph.D. thesis, Univ. of
Minn., June 1973.

(Presented at the Computer Science Conference,
Columbus, Ohio, 20~-21 February 1973.)

10. Marhsall, K.T.,, "Some Inequalities in
Queuing," Oper. Res. 16, 1968, pp. 651-655.

11. Soriano, A., "On the Problem of Batch Arriv-
als and Its Application to a Scheduling System,"
Oper. Res. 13, 1965, pp. 398-407.

12. Foster, F.G., "Batched Queuing Processes,"
Oper. Res. 12, 1964, pp. 441-449.

13. Franta, W.R. and G.R. Mansfield, APL/KRONOS
an Abridged Description, Tech. Report UCC No. 3,
Univ. Computer Center, Oct. 1972.

14. Dahl, 0., and Myhrhoug, Bjorn and Kristen
Nygaard, Simula Common Base Language, Norwegian
Computing Center, Oslo, 3, Norway.

15, ————, MNF Reference Manual, Univ. Computer
Center, Univ., of Minn., 1971.

Winter Simulation Conference

97

