SIMULATION OF THE HMS 5050 COMPUTER SYSTEM

Abgtract

The HMS 5050 Computer System was designed to
allow Computer Science students at Michigan State
University access to a computer which has an
interrupt system and programmable data channels.
The HMS 5050 simulator, which runs on MSU's CDC
6500, enables the students to implement a major
component of an operating system, and has been
used successfully there since fall term 1972. 1In
this paper we present the design goals of the HMS
5050, discuss its architecture and the structure
of its simulator, and summarize classroom
experience with the simulator.

Introduction

Undergraduate students in the Department of
Computer Science at Michigan State University are
required to take a systems programming course dur-
ing their jumior year. As part of a comprehensive
study of computer operating systems, each student
writes a simple but realistic monitor. In order
to do this, the students must have access to a
computer which has, among other features, program-—

mable data channels (I/0 processors) and an
interrupt system. Unfortunately, the academic
computers at MSU (a CDC 6500 and a CDC 3600) are

operated on an around-the-clock closed shop basis,
and the required student access is just not avail-
able.

The first attempt to solve this problem, as
reported by Forsyth [2], led to the design of the
MSU 6507, a modification of the CDC 6500, and the
implementation of a simulator (an interpreter)
that gave the students the needed machine access.
This machine was, essentially, a CDC 6000~series
computer with seven additional instructions.
These instructions allowed student-written monitor
programs to process interrupts, set a time slice,
move block storage, and get the simulated time of
execution. In giving I1/0 commands, the monitors
communicated with the MSU 6507 in the same manner
(through RA+L requests) as the students would have
communicated with SCOPE, the standard CDC 6500
operating system [l]. The similarity between the
MSU 6507 and the CDC 6500 caused considerable con-
fusion among the students; they were never quite
sure whether their monitor or the SCOPE monitor
was in control of the MSU 6507 user's jobs.

Leonard H. Weiner; Steven L. Huyser;

and Bernhard Weinberg

Michigan State University

The MSU 6507, although a limited machine, did
simulate the fundamental characteristics of a
programmable interrupt system and demonstrated
that the great majority of undergraduate Computer
Science students are capable of writing a simple
monitor system.

Because of the shortcomings of the MSU 6507,
a new and complete computing system, the HMS 5050,
was designed. An HMS 5050 simulator was imple-
mented in time for use during Fall term, 1972,1

Design Goals of the HMS 5050

The first objective was to make the HMS 5050
simulator appear to the students to be a
gelf-contained computer system; the host computer
(CDC 6500) was to be completely transparent. Some
other design goals of the HMS 5050 were:

1. The architecture of the main £frame and the
machine language instruction set were to be
similar to those of the CDC 6400. Since MSU
CPS students have extensive experience with
CDC 6000-series assembly language programming
prior to the junior year, it was felt that
they should be allowed to use this experience
rather than learn a new assembly language for
this course,

2. The input-output instructions were to be rea-
listic; this implied that the HMS 5050 would
have programmable data chanmels, Although
the CDC 6500 input/output system does mnot
have such channels, the CDC 3600 and many
medium—~ and large-scale computer systems do.
Familiarity with, and availability of, the
CDC 3600 determined its selection as a model
for the HMS 5050 input/output system.

3. The interrupt system was to be representative
and have detectable interrupt conditions in
the main frame and the data channels.
Because the input/output and interrupt
systems are intimately related, the model for
the HMS 5050 interrupt system was again that
of the CDC 3600.

4, The peripheral devices were to be modeled on
devices currently in use. As a minimum, the
HMS 5050 was to include high speed card
readers (1000 cpm), line printers (1000 lpm),
and an operator's console; a medium size disk

Winter Simulation Conference

77

78

SIMULATION OF THE HMS 5050 ... Continued

storage device and tape drives were to be
provided when convenient., CDC 3000
peripheral devices were chosen as models for
all but the digk.

5. A realistic software support system was to be
available to the HMS 5050 systems programmer.
This was to include an assembler, various
library and editing routines and a bootstrap
loader, so that the programmer might create
and load an HMS 5050 deadstart program con-—

taining his monitor. CDC 6000-series
standard software system was chosen as the
model.

From this 1list of design decisions came the
name of the HMS 5050: the designating number
represents the arithmetic mean of the machine
designations 6500 and 3600, while HMS is a some-
what immodest initialism for Huyser's Magnificent
Simulator, ?

Design of the HMS 5050

The HMS 5050, as stated previously, evolved
from a marrying of concepts and features of
Control Data 6000 and 3000 series computers.
Basically, the central processor instruction set
and operating registérs of the CDC 6400 - were
integrated with the interrupt and input/output
features of the CDC 3600, To facilitate such a
scheme, additional operating registers had to be
implemented. These allow for interrupt processing
and include an interrupt mode register, interrupt
(condition) register, main product register (which
contains the ingtantaneous logical product of the
contents of the interrupt mode and interrupt
registers), a time limit register, and a free
running clock register, The complete assemblage
of HMS 5050 registers is shown in Table 1.

Instructions not found in the CDC 6400
instruction set were devised to manipulate these
added registers, to process interrupt conditioms,
and to interface with the data channels. The new
ingtruction set includes interrupt~protected
"monitor only" instructions to clear channels,
connect equipment to data channels, obtain channel
status, transmit function codes to channels,
initiate read or write activities, wand clear
interrupt conditions. Non-protected instructions
allow register-to-register transfer or swap,
gensing of dinterrupt conditions, copying the CPU
register package to and from central memory,
jumping to instructions not located in the first
instruction parcel of a word (this allows
interrupting the central processor at other than
word boundries), and direct core-to-core data
transfer.

The data channels, being programmable’
entities, have direct, unrestricted access to
central memory, where both their instructions and
the data they process are located. The operation
of each of the fifteen data channels is
asynchronous and independent of the central
processor and other channels, although activity on
a channel may be initiated only by the CPU.

- The interrupt scheme of the HMS 5050 allows
interrupts on conditions signalled by either a
data channel or the central processor, These in—
clude interrupts on memory bounds, time limit,
illegal instruction, dillegal register reference,
and illegal floating point operands. Three inter-
rupt conditions are available for each channel:
normal terminationm, abnormal termination and
storage reference fault. When the interrupt sys—

.tem is activated, trapping to location 000001
occurs automatically; i.,e., the CPU retains the
position of the last dinstruction executed by

TABLE 1
Hardware Registers of the HMS 5050
Register Name Mnemonic Length (bits)
Index BO to B7 18
Address AQ to A7 18
Operand X0 to X7 60
Reference Address® RA 18
Lower (Memory) Bounds#* LB 18
Upper (Memory) Bounds#* UB . 18
Mode Selection® MS 18
Time Limit* TL 18
Lower Read-only Bounds* LR 18
Upper Read—-only Bounds* UR 18
Interrupt Mask¥ M 60
Interrupt (Condition)*t IR 60
Main Product*t MP - 60
Program Address*t P 18
Instruction Position*t IP 18
Clock*+t CcK ‘ 60 -
Last Jump Address#it LI ' 18

*Protected registers. When not in monitor mode, any attempt to alter their contents will cause an illegal

register interrupt condition.
tRead=-only registers.

January 14-16, 1974

planting a (return) jump instruction in location
000000, and takes its mnext instruction from
location 000001, After the dinterrupt condition
has been processed, exit is made by jumping to
location 000000; execution of the program that was
in effect when the interrupt occurred is resumed.

HMS 5050 peripheral equipment may be
connected to any of ' the fifteen programmable data
channels through use of an equipment/unit designa-—
tion unique to that channel, Up to eight equip-
ments per channel and thirty-two units per

equipment are permitted. An "equipment" is
usually a peripheral controller; the "units" are
devices connected to the controller. (The

configuration of the HMS 5050 model currently in
use includes three card readers, four line
printers, one magnetic tape drive, and omne disk
system,)

Simulating the HMS 5050

The simulator for the HMS 5050 is a modular,
table~driven processor written for execution on a
Control Data 6500 under the standard SCOPE 3.2
operating system. The simulator, coded in COMPASS
(the CDC 6000 assembly language), has three pri-
mary sections: the initialization or "deadstart"
procedure, the central processor simulator and the

input/output equipment simulator (including simu—-

lators for each type of 1/0 equipment).

The initialization procedure causes the abso~
lute binary file of the deadstart program to be
loaded into the HMS 5050 central memory, beginning
at location 000000, All registers are cleared and
all chamnels are deactivated. This section of
code also produces a termination dump of the
register package and the current channel status
words when the HMS 5050 ig halted (see Appendix).

The central processor simulator is composed
of three units. The first unit forms the logical
product of the contents of the interrupt mode and
interrupt registers and puts it into the main pro-
duct register, If the result is non-zero, an in-
terrupt condition is present and the interrupt
system is activated as described above. The code
then checks for other possible interrupt condi-
tions, such as the instruction address being out
of bounds, and when one is found, sets the
appropriate bit in the interrupt register. Other-
wise an attempt is made to fetch the next instruc-
tion to be simulated.

The second unit parses the instruction. The
code used for the parsing is selected according to
an entry in a jump table. The actual simulation
code for the instruction is then executed., Again,
this code is selected by means of a jump table.
The dindividual pieces of code used to simulate
instructions are, for the most part, composed of
macro calls, The use of macros here allows flexi-
bility and modularity in adding or modifying
instruction simulation. . The instruction simula-
tion code contains these basic elements:

1. incrementing the free-running simulated clock
by the number of machine cycles required to
execute the simulated instruction,

2, checking for interrupt conditions in the in-
struction operands and, if indicated, setting
the appropriate interrupt condition bit,

3. simulating the instruction,

4, checking for interrupt conditions caused by
the execution of the instruction and setting
the appropriate interrupt condition bit.

Once the above steps have been completed, the CPU
simulator loops back for the next instruction.

The third unit is the I/0 simulator, of which
the section that simulates data channel activity
is the most complex. The main components are:
device drivers, channel tables, equipment tables,
unit tables and the action 1list. Macro
constructed tables configure the sgystem at
assembly time. There is a device driver for each
type of device available (e.g., card reader,
printer, tape drive).

The configuration and current activity of all
equipment is maintained in a tree whose depth is
three levels: The root of the tree' represents the
HMS 5050 CPU; the nodes of the first level are the
data channel tables, which branch to the equipment
tables (the nodes of the second level). These, in
turn, lead to the unit tables, the leaves. The
availability of a certain device or channel is
determined by the dinformation found on the tree.
See Illustration 1 for a typically structured
tree,

A two-way linked-list (the action list) is
used to simulate asynchronous 1/0 activity. This
list contains the simulated time at which a speci-
fied device, assigned to a specific channel/equip-
ment/unit, is to continue its activity. For
example, assume that a read is in progress om a
card reader. Since each card takes a certain
amount of £ime to move through the card reader,
the simulated time (the time at which the next
card image is to be transferred from the card
reader buffer to central memory) is placed on the
action list, along with information linking that
action list entry with the specific unit., The
entry is linked in time—order so that the first
entry on the action 1list contains the time the
next I/0 activity is to take place. At the end of
simulation of each CPU instruction, the current
simulated time is checked against the top entry in
the action list, When it is greater than or equal
to the time of the next I/0 activity, the required
action, associated with the device driver on the
channel/equipment/unit specified in the list, is
simulated and control is returned to the CPU simu-—
lator. ’

Each device driver is composed of seven sec-
tions:)

1. Function list and associated simulation code,

2. Read simulation code,

3. Write simulation code,

4, Clear channel simulation code,

5. Code to return the simulated channel/equip~
ment/unit status,

6. Connect equipment simulation code,

7. Disconnect equipment simulation code.

‘Winter Simulation Conference

79

SIMULATION OF THE HMS 5050 ... Continued

ILLUSTRATION 1

Hypothetical Configuration of Channels, Equipments and Units for the HMS 5050.

Channel

Tables

Equipment

Tables @ EQ 0 EQ 2
»

Unit

© @ © @

80

The function list and associated simulation
codé is used to didentify and simulate functiomns
transmitted to the device by the CPU. A line
printer, for example, might have a function code
to cause the paper to eject to the top of the next

page.

The read and write simulation codes initial-~
ize information in the unit tables, such as read-
ing up the next channel instruction, calculating
the next action time, and creating a linked entry
in the action list. This simulation might con~
sist, in the case of a printer, of accumulating a
buffer of data and then transmitting it to the
SCOPE operating system to be written on a file for
later print disposition. A printer, of course,
would not have any actual read simulation code;
the code provided for reading would simply simu-

January 14-16, 1974

late a channel reject.

are more immediate, the
other four sections of simulation code in each
device driver do mnot wutilize the action table,
They clear a connected channel/equipment/unit,
transmit the current status back to the CPU for
any unit, connect an equipment/unit to a channel,
and disconnect an equipment/unit from a channel,
respectively,

As their functions

In order to present a clearer picture of how
these sections work together, we will follow an -
example through each of its I/0 simulation steps.
Assume that we are reading a set of cards from the
card reader connected to channel® 2 as equipment 3,
unit 0. (See Table 2.)

) User Steps
1. Clear channel 2 of any a)
connected units and
interrupts, b)
c)
2. Connect equipment 3, a)
unit 0 on channel 2.
b)
c)
3. Request the status of a)
that unit,
4, Initiate a read action a)
on channel 2,
b)
c)
d)
e)
)
8)
h)
i)

TABLE 2

Card Reading

Simulation Steps

All branches of the channel 2 equipment/unit
tree are scanned for any connected equipment.
If any is found, it is disconnected

and the associated link in the action

table is removed.

Interrupt bits for chamnel 2 are cleared.

All branches of the channel 2 equipment/unit
tree are scanned for any connected equipment,
If any connected unit is busy, the connection
1s rejected.

Connect equipment 3, unit O by making
appropriate table entries.

The current status word of the unit is
updated and returned.

Check to see if unit is connected; reject
if not.

Get a copy of the data .channel instruction
(channel control word) from central memory (CM).
Enter the control word in the unit table,
Calculate time when card image is to be
transmitted to CM.

Form action list entry.

I1/0 activity on that unit subsides until
the CPU simulator returms control, the
time of the requested action having come
to pass.

Characters are read from a file simulating
a card reader and transferred to a CM word
specified by the control word copy; the
copy is updated.

Loop back to d) until the activity
requested by the current control word

has been processed.

Read new control word; if end,

select normal termination interrupt

and end processing, else loop back to d).

Simulator Size and Operating Cost

The assembly language source deck for the HMS
5050 simulator contains 4000 cards which, after
macro expansion, represent about 12,000 CDC 6500
machine language instructions. The simulator uses
about 12,800 memory locations of which 8,192 are
for the HMS 5050 simulated memory.

Because the simulator checks for a number of
possible interrupt and error conditions before it
interpretively executes each HMS 5050 instruction,
it executes an average of thirty CDC 6500 CPU in~

structions for each simulated HMS 5050 CPU
instruction. This 30:1 performance degradation,
however, does not show up in the job cost.

Because the HMS 5050 assembler is a stripped down
version of the CDC 6500 assembler, HMS 5050 source

programs require less assembly time than do
equivalent CDC 6500 programs; for short running
programs, assembly and I/0 costs far outweigh

execution costs.

which do not execute

instructions or do

Test progranms,
put/output

lator and the CDC 6500, Job
the CDC 6500 programs.
It is difficult to estimate the

cost of running student monitors

simulator, but regular CDC 6500 programs

similar size and complexity incur costs of no less

than half those incurred by the monitors.

Classroom Use of the Simulator

The students are introduced to the HMS 5050

simulator by means of two documents:

interrupt pro-~
cessing, have been run on both the HMS 5050 simu-~
costs for these HMS
5050 programs average only about 207 more than for

increased
under the

1. The HMS 5050 Computer System Reference Manual
describes the machine architecture which in-
cludes operating and special purpose
registers, the interrupt system and
conditions, HMS 5050 machine instructions not
included in the CDC 6500 instruction set, and

Winter Simulation Conference

81

SIMULATION OF THE HMS 5050 ... Continued

channel control word imstructions for
input/output processing, along with other HMS
5050 features.,

2. The HMS 5050 User's Manual describes the in-
terface between the host computer and the HMS
5050 simulator, the special features of the
HMS 5050 assembler, the deadstart procedure
for initiating execution of the HMS 5050,
interrupt processing, and input/output
processing (data channel programming).

Early in the term, the students are given a
preliminary HMS 5050 programming assignment
designed to familiarize them with the machine.
This 4is a simple program to read and echo-print,
alternately, a deck of data cards using the simu-
lated HMS 5050 card reader and line printer on
channel 1, (An HMS 5050 program that does this is
shown in the Appendix.)

The monitor assignment, the largest program-~
ming assignment the students have encountered thus
far in the computer science curriculum, is given
to them in two parts at the end of the second week
of the term.

1. Monitor 1.0 is a simple batch monitor to load
and execute user Jjobs from a single job
queue, one job at a time, Although the jobs
prepared for Monitor 1.0 do not perform input
or output, they cause a variety of interrupt
conditions that the monitor must recognize
and process. Depending on the nature of the
interrupt, it should either return control to
the user job or terminate it, and then load
the next,

2, Monitor 2.0, an extension of the 1.0, is sup-
posed to manage three simulated job queues,
each from a different data channel, in a mul-
tiprogramming environment. This means that
Monitor 2.0 must maintain three separate user
jobs in CM simultaneously, assigning the CPU
to each in turn whenever an interrupt occurs,

These user jobs, require the monitor to limit

their total processing time to a specified
number of simulated machine cycles, and
vigorously exercise the interrupt system.

Those students who complete Monitor 2,0 early
enough are encouraged to extend their monitor to
perform any or all of the following functions for
a varying amount of extra credit:

1. multiprogramming with memory compaction,

2. time slicing of the CPU among user jobs,

3. servicing dynamic user requests for a change
in CM,

4, rollout, to disk, user jobs waiting for more
cM,

5. aging of user job priority and managing a
priority scheme for CPU assignment,

6. providing individual job logs appended to
each user job's output,

7. job swapping to disk,

8., maintaining I/0 queues on disk.

January 14-16, 1974

A brief discussion of student performance
over this assignment set is given in the next sec-
tion.

Summary

Systems programming students at MSU have
found the HMS 5050 simulator to be a realistic
computer system with programmable interrupts and
data channels. 1In the three terms it has been
used, approximately 90% of the students have been
able to complete Monitor 1.0 and 75Z have com~
pleted Monitor 2,0, About a third of the latter
group attempt some of the extra credit extensions
to their monitor, with a wide range of success;
one or two students in each class of thirty-five
ordinarily complete a full-blown monitor which
contains most of the features 1listed in the pre-
vious section,

These percentages are about the same as those
achieved by earlier classes who used the MSU 6507.
But recent students, by virtue of their HMS 5050
experience, have learned considerably more about
interrupt and input/output processing than did
their predecessors.

References

1. Control Data 6400/6500/6600 Computer Systems
SCOPE Reference Manual, Control Data Corpora-=
tion Publ. No. 60189400, Rev. L, 1971,

2. Forsyth, John, "The MSU 6507 Interpreter for
the CDC 6500," Abstracts of the Computer
Science Conference; page 80, 1973,

Notes

ls. Huyser, sponsored by L, Weiner, did the
original design of the HMS 5050 and also
implemented the simulator.

2Because Allan Moluf, a student at MSU, later
developed the HMS 5050 1I/0 simulator, HMS now
stands for the Huyser—-Moluf Simulator.

20USISJUON) UOTIRTNWIS ISIUTM

€8

F NN

27
30

31
51

65

43103
20122
0160002137

00101
0020000000040D0D00026
00310000000400008000
20164
0331000021

00500000270400000026
0100000014

00101
002000000004%0000026
00600000270400000026
0100000014
0200000001

004000000004760000286

00700

00400000000477000026
8200000014

60101
00200000000440000026
00600000300400000026
0100000014
8000000008

0000000000
60000000010800000031
60000000010000000051

47051604461706460611

LaooP

WAIT

IDENT
HMS
LIST

MX1
LX1
RT

CcC
CE
cs
LX1

BR
RJ
GO
GE
8W
RJ
JP

8Ssz
FT

WT

FINISHED CC

REJ

CCH
EOFCH

BUFFER
EOFMSG

£S

I0TR
IOTR

BSSZ
DIs

END

EXAMPLE
-8, -R

3
i8
X1,IM

1
1,0,40,REJ
X1,1

59-7

X14 FINISHED
CCWy1,REJ
WAIT

1
1,1504REJ
CCW,y1,REJ
WAIT

LoopP

i
1,768,4REJ

1,778,4REJ
HAIT

1

151,0,4REY
EOFCH,1,REJ
WAIT

1,BUFFER
1,EQFMSG

16

MACRO TO,SELECT ABSOLUTE ASSEMBLY AND LIST OPTIONS.

HMSTEXT OF 07/06/73 AT .02,50,35.
CREATE MASK IN X1 TO BE USED TO DEVECT
INTERRUPT CONDITIONS ON CHANNEL ONE

PLACE THE MASK INTO THE INTERRUPT MASK

CLEAR CHANNEL 1
CONNECT CARD READER TO CHANNEL 1
STATUS CHANNEL 1

AND TEST EOF BIT TO SEE IF ALL GARDS READ

ISSUE READ ON CHANNEL 1

WAIT FOR READ TO FINISH

GLEAR CHANNEL 1

CONNECT LINE PRINTER TO CHANNEL 1
ISSUE WRITE ON CGHANNEL 1

WAIT FOR HWRITE TO FINISH

TRY TO READ ANOTHER CARD

ENTRY POINT OF SUBROUTINE
FUNCTION CHANNEL 1 TO INTERRUPT
ON ALL CONDITIONS
IDLE CPU UNTIL OPERATION IS FINISHED
(BIT IS SET IN INTERRUPT REGISTER.
FUNCTION CHANNEL TO CLEAR INTERRUPT
RETURN TO CALLING ROUTINE

GLEAR CHANNEL 1

CONNECT LINE PRINTER TO CHANNEL 1
ISSUE WRITE ON CHANNEL 1

WAIT FOR WRITE TO FINISH

HALT THE CPU

HALT THE CPU HERE ON AN ERROR

£CHO PRINT GCONTROL WORD
END-OF~-FILE MESSAGE CONTROL KORD

ECHO PRINT BUFFER

12, *END=-OF=-FILE ENCOUNTERED

APPENDIX

HMS 5050 Program to Read and Echo-Print Cards

¥8

461 ‘91-%1 Azenuef

p
RA
L8
us
MS
TL
LR
UR

-CH-
81
02
03
04
05

** HMS 5050 TERMINATION DUMP *+

000025 -IP 000836
600000 Bi 000000
000000 82 008000
020000 83 000000
400000 84 009000
600000 85 000000
000080 86 000000
000000 87 000000
CCWADR STATUS
00D000003000000-00001
00000000000000400000
00000000000000100000
00000000000000100000
00000000000000100D000

AG 000030 X0 00000000000000000088
A1 000000 X1 400000000000000008802
A2 000000 X2 0080D0000CD0OCO00DON0OD
A3 000000 X3 000000000000000008000
Ay 000000 X4 00000000000000000000
A5 000000 X5 000600000000080D00000
A6 000000 X6 000000000000000000D0
A7 600000 X7 ©000000000000GB0000000
OP PR=CNT PR-ADR
60000000000000000065 ~~—u_
00000000000000000000
00000000000000000000
009000000060000004000

00000000000000000000

i
IR
ue

GI
Ly

Channel 1 interrupts
selected.

00000300000000700000

80000000000000010020

00000840000000009030
08000000000014321446~ 0700k register - nurber
00900000006130046300 of cycles (octal)

50001% since deadstart.
Indicates last jump inetruction.

Control word at end of operation on channel 1.

Charmel 1 is connected and ready, the last control word was read from address 30.
Channels 2-5 are shown not available or not connected.

Octal dump of registers and channel status produced by the HMS 5050 at termination.

penunuo) *°° (0S0S SWH IHI IO NOILVINNIS

9OUSISFUOD UOTIRTNWIS JLJUTM

S8

¥x PRINTER 110
THIS IS THE FIRST CARD IMAGE FOUND ON THE INPUT DEVICE

{ THIS IS THE FORM OF THE FILE CARD FOR THE HMS5058 (7-8 PUNCH IN SOLUMN GNFE)
A 7-8 PUNCH IN COLUMN ONE APPEARS ON OUTPUT AS THE GRAPHIC, I

MNEMONIC INSTRUCTION

CC (GLEAR CHANNEL) HALT ANY I/0 IN PROGRESS ON THE CHANNEL,
CLEAR ANY INTERRUPTS ASSOCIATED WITH THAT CHANNEL,
AND DISCONNECT ANY CONNECTED EQUIFPMENT.

Ce (CONNEGT EQUIPMENT) CONNECT THE SPECIFIED UNIT AND EQUIPMENT TO
THE CHANNEL. NOTE: NOT MORE THAN ONE EQUIPMENT AND
UNIT MAY BE CONNECTED TO A CHANNEL AT ONE TIME,

csS (COPY STATUS) REQUEST GOPY OF CURRENT STATUS OF CHANNEL.

FT (FUNGTION TRANSMIT) SEND FUNCTION GODE TO EQUIPMENT ON CHANNEL.

BR (BEGIN READ) INITIATES A READ ON THE CHANNEL,

-1 (BEGIN WRITE) INITIATES A WRITE ON THE CHANNEL.

WT . {HAIT) IDLES THE CPU UNTIL AN INTERRUPT OCCURS

=I0TR= IS A CHANNEL CONTROL (COMMAND) WORD. THE FIRST PARAMETER SFECIFIES
THE NUMBER OF RECORDS TO BE TRANSFERRED, AND THE SECOND PARAMETER SPECIFIES
WHERE THE RECORDS ARE RZAD FROM OR WRITTEN TO.

THIS IS THE LAST CARD TO BE ECHO PRINTED
¥ZND~CF~FILE ENCOUNTERED

User Program Output

This example was programmed by Thomas P. Carr, the student who implemented the HMS 5050 disk simulator.

