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Abztract

GASP IV is an extenéioﬁ of the»néit eveﬁtl
simulation language GASP II. A generalizatiom -
of the definition of "event” and additions to
the language structure engble GAS? IV to be used
for continucus or combined models while retaining
the full power of GASP 1I for discrete models.
Continuous system state description may be
in the form of & set of algebrzic andIOt.differential
equations. GAS? IV handles the details of state
and event control (including state variable integra-
tion when necessary), information storage scd
retrieval, system performance data coilection and
analysis, and repor% and piot gemeratiom.
In addition to the models which can be coded in
GASP II, the following types of models have been

successifully coded in GASP IV: Systems Dynamics

Modele (Industrial, Urban, and World Dynsmica Mocdels);

Mechanical Impact Models; and Chemical Process Models.
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In esch cese, an anaiyst familiar with GASP II haz .

been abie to quickly write the CASP IV code.

Iurroduction

_GASP 1V is a new simulation language with

new capabilities. Although it is sn éitenéioh '

of GASP II, it provides many of the capabilities:

normally associated with cont;nuous aimuiatibu,r
hIangﬁages. These edditional capabilitiea

are integrated into the GAS? II structure re-
sulting in avconceptually aud phyaically i#te-‘
grated language. Bécauée GASP-II is well

- documented (Referen¢ea 3_an¢ 4), this paper will
emphasize those features and capabilities of
GASP IV not included in GASP II.

GASP ‘IV consists of a set of FORTRAN sub-i
routines organized to assist the analyat in
preparing diecrete, contiuous, or combined
aimulétion models. GASP IV formalizes an
approach to the preparation of such modele by

providing an sppropriate world-view supported

by prepared aubroutinea which handie the problem-

independent structure of the model. The world-

view provided describes the atatus of the
subject eystem in terms of a sat of state
variables and a sat of entizles with thelr
associated attributes. The GASP IV simulatien
Ehilosophy is that the dynamic simulation of a
system can be obtained by modeling the events
of the system and advanciag time from one event
to the next. This philosophy presumes an

expanded definition of "eveant" which will be

- stated later.

Every GASP‘I¢ simdi;tien model consists of:
1) A set of subroutines which describe a |
/véystem's operatirg rules. (Subroutines

defining ev;nts,‘conditions causing
events, and the trajectories of the
state variables.) |

2} Lists and matrices ﬁhich-écote'informa-

tion. |

3) An executive routine.

‘The set of subroutines describing the

'Opetafing rules~re§tesent the technological

logic of chg;ays&em being studied. The iists
aud;matti;es represent the specific enﬁit;ea;
their attributes, and ésédéidtgd control infor—
wa@ian.JLVariables céﬁhon te‘ﬁany simulation .

programs are defined snd providéd 88 GASP

_ varisbles requiring the user to define only
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problem dependent, non-GASP, variables.
The;fxecutive routine and its supporting
adbroutines provide thernine fuaqtions shown
below:
1) State and event control including state
variable integration when necessary.
SUBROUTINE GASP
‘ 2) System initialization.
SUBROUTINE DATIN
" SUBROUTINE CLEAR




SUBROUTINE SET.
3) Iaformation storage and:tetrieVal.‘
SUBROUTINE ¥ILEM (IF{LE) |
 SUBROUTINE RMOVE (NTRY, TFILE)
SUBROUTINE CANC, (mm')

SUBROUTINE COPY (NTRY)

4) Location of epecified siat conditions,

| FUNCTIOK KROSS (IKRSG, IDRSD,
CONST, LDIR, TOL) |
SUBROUTINE FIND (XYAL, _Hcons,
IFILE, JATT, m.'m’; TOL)
5) System perfcrmsnce data collecgion.
 SUBROUTINE COLCT (XX, LCLCT) .
SUBROUTINE TMST (XX,T,ISTAT)
 SUBROVTINE HISTO (x:‘{,'iATw IHIST)
snxkou'rmz ‘GPLOT (n’mr 1TAPE,

:.wm, LCODE, 'rmz, P)

6) Ststistical-ccmputa;inn and reborting}

_ SUBROUTINE PRNTQ (IFILE)
SUSROUTINE PRNTS

SUBROUTIKE SUMRY

7) Monitoring and error reporting;

SUBROUTINE MONTR |
SUBROUTINE ERROR (KODE)

8) Random variate generation.

FUNCTION DRAND (ISTRM)

FUNCTION mmm.' {ULO,UHI ,ISTRH)
FUNCTION RNORM {IPAR,ISTRM)
FUNCTION RLOGN (IPAR, ISTRY) .
FUNCTION ERLNG (IPAR,ISTRM)
FUNCTION GAMA (IPAR,ISTRM)
FUNCTION BETA (IPAR,ISTRM)

' FUNCTION NPOSN (IPAR,ISTRM)
FUNCTION GAM (AK,ISTRM)

9) MiScellaneona suppor
-FU&CTION SUNQ (JAIT IFILE)
FUNCTION PRDDQ (JATK.,IFILE)
FUNCTION,GTABL;(TAB,X,XLDW,{
XHIGH, XINCK) o
SUBROUTINE GDLA& (IFS, ILS,XIN DEL) Vr’,a

Because of the functions performed by

i GASP: 14 the analyst need only Drepare subreu-i”

‘tines defining Lhe events and state variables in . *-ié

order to- obtain a complete simulation model. f”

Event Definition

The GASP IV definition of. "event"'is »

" fundamental to the world-view vhich supports the;

'fmodeling of conrinuous, discfete’ °t °°mb1“ed

It should be noted that this definition does not ;E_e

systems within the same conceptual framework
AN EVENT IS ANY POINT IN TIME BEYOND WHICB Sy

THE STATE OF A SYSTEM HAY NOT BE: PROJECTED,f L

WITR CER&AINTY

. s

relate an event to any change, either discrete

or conrinuous, 1n-the-atate of a system. Such

a relationship often exists, but it is possible

- to have an event with no: associated change in
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system state. Convetaely, it is possible to have

abchange in system state with no associated event.
In GASP IV, it is useful to describe events
in terms of the mechanism by which they are '
scheduled. Those events which occur at. a speciuw
fied time are referred €0 a8’ time;events. They b

axe the type nf event cammonly thougbt of in

conjunction with "next-event“ simulation. Eventsr

which occur when prescribed conditions defined in




terms of the syotem state are met are called
state~events. Unlike time-events, they are not
scheduled in the future. They may, howaver,

initiate time-events. Likewise, time-evente may
initiate state—events.
this paper 1llustraces these types of intes-

action.

The GASP 1V Language

The execuiion of a typical GASP IV program
begins with a user provided main pregram vhich
initiates the simulation. Control f{s then
transferred to GASP, the executive routine,
which controls the simulation until completion.
A general flow chart of SUBROUTINE GASP is
shown in Figure 1.

GASP first calls SUBROUTINE DATIN which
initializes all GASP variables either directly
or from reading data cards. _In addition to
initialization, DATIN also provides an echo
check of the input data.

Immediately following initialization, GASP
prepares to advance simulated time. GASP uses
a combined "next-event" and "step-evaluation-
step" method of time advance. This combined
method is necessary because of the potential
existence of state-events whose location on the
time axis are not known., GASP first checks to
see if there is a time-event to process. If
there is, that cvent is processed by calling
SPUBROUTINE EVNYS(IX) with the prope= eveat code,
1f not, GASP checks to see if there are any

active stete or derivative equations. If there

are ncne, time is advanced from time-e.ent to

The example presented in
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. sider the system depicted in Figure 2.

tine-event a8 each ig processed. That is, it
proceeds as in GASP iI. If therc are sctive
state or derivative equatione, a different time
event mechsnism is used. Tiwme is advanced by the
mazimun allowable ete§ size (user spacified) or
to the next time-event, whichever is less. (If
there are active derivstive equations, this in-
volves intermediate steps and accuracy checks.)
At that point the system state is examined to see
if a state-event has occurred. If a state-event
has been passed by more than the specified tol-
erance, time and state are reset tc the bagin-
ning of the step cnd a smcller step size is
tried. If no state-events have been passed by
more than the specified tolerance all sﬁate-
events which have cceurred within the specified
tolerance are processed., If a time-event 1s
scheduled, it is processed. If no event is
scheduled, another step iz started.

Upon satisfaction of user specified condi-
tions, the run is terminated. GASP then calls
SUBROUTINE SUMRY to proQide a summary report,
calis SUBROUTINE OTPUT to provide usef defined
output, checks the number of runs remaining, and

then either begins a new run or returns to the

main program.

Description of Example Problem1

As an example of ths use &f GASP IV, con-
A hydro-
generation reaction is conducted in four reac-

tors, each of which may be started, stopped,

The authors are indebted to Profeesor J. M.
Woods of the Purdue University School of Chemical
Engineering who formulated this example problem.




discharged, or cleaned independently
of the others. A compreasor with constant molal
flow rate pravides a supply of hydrogen gas to
the reactors. The hydrogen flow is as shown in
Figure 2.

The operating policy for the facility is
to start each of the reactors initially at 30
minute intervals. The concantratioa of the
reactants is then monitored until it reaches
10% of its initial value at which time the reac-
tion 18 complete and the reactor is turned off.
Following completion of a batch, the reactor is
discharged, cleaned, recharged and restarted.
The time to discharge the reactor is known to be
exponentially distributed with a mean of one
hour. The time to clean and recharge the reac-
tor is known to be approximately normally dis-
tributed with a mean of one hour, a standavd
deviation of one-half hour, a minimum of zero
hours, and a maximum of two hours.

The valve' connecting each reactor to the
reat of the system is adjusted by controlé 80 as
to maintain an effective pressugze of 1060 paia in
each active reactor unless the system pressure
has fallen belcy 100 psia in which case the
effective pressure is the actual asystem pressuve

In order to preclude the preessure from

faliing tooc low; if system pressure falls below

the critical value (100 psia), the last reactor

to have started is immediately shut off. In

addition, no reactors ave ever started if the
system pressure is below the nominal value of

150 psia.
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Only twe events are asgociated with the
system; a start of reaction event and a stop
reaction event. The stari of reacticn event wnay
be eicher & tiwme-event, based upon a specified
time from completion of one batuch to the start of
the next batch; or a state-event, basad upon
system pressure rising above nominal. The siop
reacticn event will be treated as a state-event,
based either upon completion of a bstch or pres-
sure falling beiow critical. These events will
be described more fully in the discussion of the

coding which follows.

Coding for Exemple Problem

A liberally annotated listing of the scurce
program for the cited example is given in Figure
3. In large part, the coding is ﬂdentical to
that used in GASP II models, althokgh there is
not complete upwerd compatability. There is how~
ever, virtually complete conceptual compatability.
Because of this fact, oaly selected features will
be described in this papexr. Tn order to facili-
tate understanding of the coding, some of the
important GASP IV variables are defined below.

. ATRIB (I) Buffer storage for entries

being stored in or removed
from NSET.

D(1} The derivative of the Ith

state variable.

The maximum step size used to
advance time if any state
equations requiring integvra-

tion are active.

DTVG .The difference between TNOW
and TLAST.




ID

IEVNT

IM

INK(I)

IS(3)

JEVNT

KRANK{1)

LSEV

WFE(T)

MLE{I)

NEQD

NEQDS

NEQS

NOQ

NQ(I)

NSET(I)
QSET(I)

s(I)

Maximua number of entries
allowed 1in NSET.

fvent code for state~svents.

Mumber of attributea per
entry in NSET.

A code eatablishing th2 rask-~
ing for file I.

A flag indicating the cccur-

rence 0f a stste~event.
Event code for time-events.

The attribute number on which
file I is ranked.

A code indicating whether
state-events may cause dis-
crete changes in the zystem

state.

The relative address of the
first space in NSET available

for storing a new entry.

The relative address of the
firet entry in file I.

The relative address of the
last entry in file 1.

The number of derivative

equations.

The total number of state
and derivative equations.
(NEQDS=NEQDHNEQS)

The number of sctate equations.

The number of separate files
in NSET.

The current number of entries
in file I.

The £iling array for storing
all entitise and thelr asso-~
ciated pointers.

The Ith state variable.

SL(I) The value of S{I) at TLAST. SL(I)
equals S5{I) except during periods
when GASP is in the process of

advancing time.

SEED(I) The aseed for the Ith stream of the
random number generator.

TLAST The latest time at which all of
the state variables were complete-~

1y updated.

TNEXT The scheduled time of occurrence

of the most imminent time-event.

TNOW Current simulacion tiwme.

SUBROUTINE STATE is a required GASP IV
subroutine whose purpcse is to define the state
variables or their derivatives. GASP IV allous
substantial flexibility with respact to the
definition of state eguations. One method of
coding subroutine STAIE for this exawple is given
in Flgure 3. The statements shown below indicatez
three possible alternative formulations for this
problem,

1) S(I)=SL(I)*(1.-DTVG*PK(I)*PEFF*RON(I))

2) TRL(I)=~accumulated running time for
present batch in reactor I at
TLASYT.

TR(I)=TRL(I)+RON(I)*DIVC
XPNTIﬂTR(I)*RK(I)*PEFF
S(I)=S0(1)*EXP (XPNTI)

3) XPNTI=~RON(I}*DTVG*RK(1)*PEFF
S(I)=SL(1)*EXP (XPNTI)

The coding of subroutine STATE snd the above
alternatives show three general approachzs which
may be used: 1) Use of the GASP IV provided
Runge-Kutta integrator (as in SUBROUTINE STATE);

2) Construction of an Euler integrator (as in



Alternative 1), or; 3) Use of the clcsed form
solution of the problem {as in Alternatives 2
and 3).

SUBRCUTINE SCOND performs the dual funme-
tions of setting flags to indicate state-event
occurrences as well as causing SUBROUTINE GASP
to locate any stdte-events within a prescribed
tolerance. The praséribed tolerance way be on
the.appropriate state varisble, on time, or a
combination cf both.

SUBROUTINE EVNTS(IX) performs the same
functions in GASP IV as in GASP 1i. The only
difference is that in addition to being called
‘for each time-event, it is also called for each
state-event. For time-events, the argument
passed is the event code (JEVNT=ATRIB(2)) of
the event to be processed. For state-events,
the argument passed is the user specified event
code (TEVNT=3 in this exampie) fur state-events.
Substantial flexibiliiy exists with respect to
making IEYNT a constant or variable and coding
the event logic directly into EVKIS or into
event subroutines.

SUBRDﬁTINE SEVNT is the state-event sub-
roucine. In this example, it could easily be
coded directly in EVNTS, but is separate in
order to clarify its function. SEVENT checks
those flags set by SCOND and causes the appro-
priate events to be processed. An alternative
method of processing the events, rather than
calling the appropriate event routine directly,
would be to schedule the event as a time-event

to occur at TNOW. That is, to replace CALL

START and CALL STOPP by CALL FILEM{(1). This
approach allows the user to control the sequenc=
ing of events which occur st the same inetant of
time. Thus, aimultaneous events may be processed
in any uaser-defined #2guence,

SUBROUTIHE START describes the pexformance
of the system at the lnstant in time that the
event occurs. If system pressure is below nomi-
pal, it causes the entity representing the asso-
ciated reactor to be filed in the file awaiting
conditions enabling the reactor to be started.
If system pressuve is above nomin#l it sets the
appropriate counters, flags, and attributes and
files the entity in the file awaiting conditions
causing it to be stopped.

SUBROUTINE STOPP describes the performance
of the system at the instant in time that the
event occurs, It first sets appropriate flags
and counters to indicate the reactor is turned
off. WNext it checks to see if the STOPP event
is caused by batch completion or low pressure.
I1f it is ceused by low pressure, attributes are
set and the entity is, filed awaiting sufficient
pressure to start. If it is caused by batch
completion, concentration is initialized for the
next batch and the start of the next batch is
scheduled (the only time-event in this example)
for the appropriate time.

SUBROUTINE SSAVE normally does no more tham
provide a documentation point. It is called at
least once at each event time during periods
vhen there are active state equations. If a

discrete change in system g’ ate may occur &t the




event time, SSAVE is called both before and
after the potential change. Otherwise, SSAVE
is called only once at an event tiume.

Selected Qutput from Example Problem

The selected output shovn in Figures 4, 5
and 6 gives an example of standard GASF output.
Several other forms such as error oulput,event
tracing ouvtput and state variable tabular out-
put are not shown.

The initial output, Figure 4, consists of
an echo check of input data. Definition of
those parameters not given previously may be
found in Reference 3.

The output shown in Figure 5 18 automati-
cally generated by SUBROUTINE SUMRY. Included
are tabies of parameter values, statistics
collected by subroutine COLCT (time each réactor
is down after completion of a batch), statistics
collected by SUBROUTINE TMST (number of reactors
on), a histogram collected by SUBROUTINE HISTO
(time each reactor is down after completion of
a batch), and a final dump of both the file and
state storage areas.

The output shown in Figure 6, is generated
by SUBRCUTINE GPLOT. In this particular case
it provides a plot of each of the state vari-
ables as a function of time. The heading 1lists
the user-specified plot symbol and associated
identifier ae w211 as the scale for each vari-
able to be plotted. Thus, the plot symbol 'P"
represents the system pressure on a scale

ranging from ¢ to 1000 psia. The symbol " -

‘time 6.5.

12 used, in this case, to represeat critical
pressure (100 psia) and pominal preassure (150
psla}. Because the plot interval does rnot equal
the communication interval, multiple plot points
associated with the same time frequently occur;
specifically, where the rime step has besen re-
fined to locate a state-event or to obtain wmore
accuracy in integration. The dynamic behavior
of the system can be seen clearly in Figure 6.
Initially, only reactor 1 was on and pressure
rose rapidly until reactor 2 was turned on at
Reactor 1 was turned off because 6f
batch completion {a state~event) at about 0.7
hours., (More pracise accuracy on event times is
readily available through either a rable giving
every event point, a plot with a non~linear time
axis which gives every event geparately, or a
plot with a linear tiwe axis and reduced plot
interval.) Beginning with the start of reactor
3 (a time-event) st time 1.0, pressure fell
rapidly. There is an obvious discontinuity ia
the pressure curve at time 1.5, when reactor &
was started. Presgsure firsc went critical at
about 1.3 hours, causing reactor 4 to be stopped
(a state-event) since it was the iast one started.
From 1.8 until 2.8 hours pressure oscillated
several times between critical and nominal.
(Critical and nominal pressure are shown by the
cursors on the plot.) Because pressure falling
below critical and pressure rising above nominal
are state-events, there is a plot point for each

occurrence Which greatly aids analysis. It may

‘be noted that the oscillations in pressure caused
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reactor &4 to be stopped at 1.G, 2.2, 2.5, and b,
2.8 hours. (Note, the plot point fox pressure

being critical at time 2.2 coincides with a

plot point for reactor 3; thus it is indicated

in the duplicates columm.)

5.
Applications
Thus far, GASP IV has been used by the
authors and by graduate students in a simulation
6.

course to codé previously published and locally
generated medels. In each case, the coding has
been accomplished without undue difficulty. The
fraviously published models which have been
coded in GASP IV include: 1) An Industrial
Druamics formulatimi of a production-distribu-
tion systen (Reference‘ 1, pp. 383-386); 2)
World Dynsmics (Reference 2, pp. 132-134); and,
3) A mechesnical impact, Slip Clutch, problem
{Reference 4, pp. 74-76). In each case, the
GASP IV medel replicated the dynamic behavior

of the subject model.
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