SIMULATION IN THE DESIGN OF

AUTOMATED AIR TRAFFIC CONTROL FUNCTIONS

Paul D. Flanagan, Judith B. Currier, Kenneth E. Willis

METIS Corporation

Abstract

This paper describes the design and use of a
simulator of some of the newly automated safety
separation functions for terminal air traffic
control (ATC). The program was used not only
for analysis and design of these functions but
also as a testved for the logic actuelly imple-
mented in the Knoxville, Tennessee terminal.
imbedded in the program is an emulator of the
Goodyear Aerospace Corporation STARAN IV Assccia-
tive Processor used at Knoxville. The three
major ATC functions simulated are: 1) advanced
mid-air conflict prediction and evaluation,

2) conflict resolution mareuver generation, and
3) automated voice advisory message generation

and scheduling.

INTRODUCL' ION time, there was an ongoing program (the

In early 1971, the Federal Aviation ARTS III1 program) to provide auvtomated

Administration (FAA) began a program to radar tracking and alphanumeric display
provide expanded automated air traffic functions at the 63 largest terminals in
control (ATC) functions at the FAA test the U.S. The Knoxville experiment was

site in Knoxvillz, Tennessee. At that designed to extend these automated func-

tions to provide safety separation func-
tions, namely, mid-air conflict predic-
tion, resolution maneuver generation, and
autcmated vocal traffic advisories,

Another important aspect of the
Knoxville experiment was the evaluation
of the STARAN associative processcr (AP)
buiit by Goodyear Rercspace Corporation.
This new type of computer was to be con-
sidered as an addition to the ATC system
to provide large amounts of camputational
power for various specialized ATC func-
tions. The STARAMN would act in ccnjunc-
tion with a UNIVAC 1230 processor to pro-
vide the data processing required for the
Knoxville terminal area.

As participants in this program,
the authors designed and used a simulation

of the ATC system tc be used at Knoxville.

)

he: simulat~r was used for analysis and
design of t.e safety separation soft-
ware required for tl.e experiment. 1In
addition, the simulator functioned as a
testbed for the logic actually implemented
in Knoxville.

The major benefits derived from de-
signing.and testing the software on the
simulator were low cost of implementa-
tion and ability to allow parall.l soft-
ware development. Many functions were
being programmed for Knoxville, a unique
system with caly limited time available

for program test. By designing and

tasting the safety separation logic on
the simulator, other fonctions could use
more time on the Knoxville system without
impeding logic development. In addition,
the simulation program was located in the
programming facility in the Washington,
D.C. metrepolitan area. Thus, costs of
simulaticn development were offset by de-
creased travel costs and reduction in time

required on the Knoxville computers.

GENERAL DESIGN

The simulator was a model of the
software functions used in the Knoxville
experiment. No hardware was simulated
explicitly, although hardware characteris-
tics which impacted on the software func-
tions were included in the model. Figure
1 displays the data processing functions
of the original Knoxville experiment.

The simulator was written in FORTRAN
for the CDC 6600 ccmputer. The functions
of the Executive, Beacon and Radar Target
Return Processing, and Data Entry and Dis-
play Processing were modeled functionally.
That is, the input and output of these
functions were defined by the Knoxville
system and used in the simulator. The
logic of these simulated functions, how-
ever, was not identical to that used in
Knotville. The Conflict Resolution func-
tion was modeled logically. The simula-
tor was used as a test bed for this func-

tion. The software of the Associative

450

Processor was modeled by using an emu-
lator of the AP in the simulation. The
same instructions used in the AP at
Knoxville were input to the emulation
portion of the simulator to provide
these functions. In addition to the
functions showﬁ on Figuwe 1, a test
track generator was added to th2 simula-

tor so that the output of the data

acquisition system could be simulated.

As the project prcgressed, various
changes were made in the required func-
tions. Conflict resolution was changed

so that traffic advisories could be auto-

matically transmitted on the ATC voice

channel. Conflict prediction was examined
as a serial processor function rather than
as a parallel processor function. Thus,
various modules not shown on Figure 2 were

added to the basic simulation design.

ASSOCIATIVE
1230 PROCESSOR
EXECUTIVE
r - CORRELATION
' paTa BEACON AND RADAR AND TRACK
I ACQUISITION TARGET RETURN »{ SMOOTHING
SYSTEM i PROCESSING
"f
i CONFLICT CONFLICT
i RESOLUTION PREDIC'TION
b U —
| DATA ENTRY
AND DISPLAY et -
l PROCESSING
J/ b S |
/’
/
fDISPLAY QISPLA/
KEYBHARD KEYBOARD'
Figure 1
DATA PROCESSING FUNCTIONS -~ KNOXVILLE EXPERIMENT
Figure 2 shows the simulation struc- These modules were: serial computer
ture. The box labheled APEX represents tracking logic, serial computer conflict

the associative processcr emulator.
This figure represents the initial

sinulation design.

45

prediction, and automated voice advisory
massage generation.

The remaining sections of this paper

describe the design of the various

simulation modules.

—
. SIMULATED EXECUTIVE CONTROL
OF KNOXVILLE 1230

position would be reported to the track-~

ing function after a suitable amcunt of

. AU SO R
¢ TEST TRACKING
TRACK —» TRACK LOGIC
DATA GENERATOR (ap)

- - |
I b

i

!

—#< APEX re—-——

-

1

“conFnicr | cowmcﬂ
PREDICTION RESOLUTION
ap) | [LogIC

!
.]
T |
: I 7 i
| SIMULATED | e ‘
- -l BSSOCIATIVE e i i

l ARRAY _J >

Figure 2

Simulation Structure

EXECUTIVE AND TEST TRACK GENEFRATOR

These two modules were thes sim-
plest modules in the simulacor. The
executive function merely called the
other modules in the order they were
called at Knoxville. The system
worked on a radar scan time basis.
Each scan represented four seconds of
time, equal to one radar antenna rota-
tion. The track smoothing logic was
called eight times a scan (once every
half seccnd of simulated time) and all
other functions were called once per
scan.

The test track generator merely
read in a description of the desired
test track flight paths. At each scan,
the position of each aircraft would be

updated to a new position. This new

4

error was added to model the radar posi-
tion errors.

ASSOCIATIVE PROCESSOR EMULATOR

This section describes the design of
the module which functionally simulates
the Goodyear Associative Processor,
STARAN IV, RAlthough the simulation was
designed as a research and develcpment
tool, primarily for use in assisting in
software development for the Knoxville
experimeﬁt, the simulator is flexible in
design, and is capable of accepting any
algorithms written in the associative
processor insiruction set. It can easily
be adapted to accept new or modified AP
instructions.

The simulator system accepts as in-
puts a program written in the associative

processor instruction set. The system

2

then interprets and executes the AP
instructions so as to provide outputs
identical to thcse that the AP would pro-
vide. The simulavor also can output the
éxact configuration of the associative
array at any desired point in the AP
program. Finally, it provides as out—
put the exact time that would be con-
sumed by the AP in executing the pro-
grammed instructicas. (These timing
calculations include the time required
to page new instructions oxr data into
the control memory of the AP.) The
simulator is capable of maintaining
statistics on the execution sequence in
order to identify the time biands in the
actual AP.

The Goodyear Associative Processor
accepts programs written in an assembly
language form. An assembler pregram
execvted on a XDS Sigma V computer
transiatas such programs into the
machine language instructions required
by the AP. 1In order to make the simu-
lator faster running, and be more use-
ful, it was designed to accept as inputs
programs written primarily in the highexr
order AP assembly language. The simu-
lator maintains a simulated associative
array in the core of the host computer.
This array is manipulated by the AP
instructions precisely as the AP mani-

pulates its associative array.

(#3]

The AP simulator is designed to
operate in two parts. The first part is
an assembler or encoder (GAPE - Goodyear
Associative Processor Enceoder). This pro-
gram takes AP assembly language instruc-
ticns as input and produces an interpre-
tative code tc be executed by the second
paxt of the simulator. The second part
of the simulator actually manipulates the
simulated associative memory by executing
the interpretative code produced by GAPE.
The second part is named APEX for Associ-
ative Processcr Executor. This division
of the simulator is analagous tc the
standard assemble {(or compile) and execute
steps usually used in any higher level
language. GAPE assembles the ccde into
exeutable form and APEX loads the intex-
pretative code and simulates the functions
of the associative processor. Figure 3
displays the operational flow for AP
algorithm execution.

The assembly step (GAPE} reads
STARAN 1V code directly from card input
and translates the instructions into an
"executable" form suitable fcr processing
by the AP ecuter (APEX). The output
is normally punched cards.

Additionally, the assembler flags
errors in the STARAN IV input deck, such
as illegal instructions, doubly defined
symbols, and undefined symbols. The

GAPE assembler is written in FORTRAN IV

e ——

XDS SZGEA 5

R e,
STARAN / Al msJEc'r | ASSOCIATIVE
ASSEMBLER | CODE " | PROCESSOR
;)
R S : —
“mssemsry | _ _ ACTUAL o PROBLEM PROBLEM
CCDE SIMOLATED INPUT OUTPUT
- - DATA DATA
| 1
| 1B 360 CDC 6500
i Ve -
| GAPE /" APEX. , : APEX
!
| asseMBLER [* ! OBJECT CODE s
| TIMING
DATA
Figure 3

Problem Solution Process

and BAL for the IBM 36C.* It cccupies

approximately 80K bytes of cora. Its
device requiremente are a card reader,
a card punch, a printer, and a scratch
file. The CPU time required is approxi-
matelvy .1 sec per AP assembly instxuction
on a 360/65.
The cutput deck of the assemblexr
is a series of 39 bit words (punched
in octal format). The general form of
an operation to be performed by APEX is:
I1f T: then: A .op. B(I)s5{J)
: otherwise: no operation

where T is a parameter to be tested

#An alternate FORTRAN version is

implemented on a CDC 6600.

to deteymine if the instruction is to be

executed,

and

454

A

.cp|

is the first parameter used for
the operation,

is the binary operation to be
performed,

is the second parameter used
fcxr an operation,

is the location of the "address"v
of B ir indirect addressing

is used,

is the parameter field to be
replaced by the results cf the
operation,

is the location of the "address"

of S if indirect addressing

’+ used.

The first word (30 bits) of each
group of words transferred to APEX is
called the command word. It contains
basic instruction information. This
information includes the instruction
operation and suboperation codes (nine
bits and four bits respectively), the
number of parameter words f£ollcowing
the command word (three bits), a para-
meter descriptor list (five bits), a
data register index (five bits), an
instruction test parameter (T} (one bit).,
an argument usage parameter (one bit),
and the two most significant bits of
the argument itf present, If the argu-
ment usage bit is set. the command word
is followed by a word containing the 30
least significant bits of the argument.
Following the command word {or argument
word if present) is a series of 15 bit
half-words, packed two per word. These
parameter half-words each contain a
parameter identifier (e.g. A) (two bits),
the addrsss of the most significant
bit of the parameter field {eight bits),
and the number of bits in the parameter
field minus one (five bits).

The second part of the emulator,
APEX, is implemented in the FORTRAN IV
language on the CDC 6600. The code is
written tc be compatible with the

FORTRAN implemented on the UNIVAC 123C

compater.

APEX reads the instruction list pro-
vided by GAPE, reads the timing informa-
tion, and simulates the logical and arith-
metic functions of the STARAN IV processor.
Figure 4 presents a diagram displaying
the relationships between the subroutines
comprising APEX. The design of APEX
allows the user to input five different
AP algorithms for selective execution by
an external control program. This mode
of operation closely simulates the mode
of operation of the AP at Knoxville. As
each algorithm is selected, APEX modifies
the simulated associative memory accord-
ing to the assembly instructions which
created the algorithm.

There are two basic kind 'of instruc-
tions for the AP. The first kind uses
inputs from vwords of associative memory
or the response store and produces output
in the associative memory or response
store. These instructions must be accom~
plished sequentially in the simulator
through each simulated word of associative
memoxy. Subroutine DOIT provicdes for
execution of these instructions. There
are 15 operations or tests which can be
performed by the AP on the bit fields
of associative memory. These are:
less than, less than or equal, equal, not
egual, greater than, greater than or
equal, logical not, logical and, logical

or, logical exclusive or, absolute value,

455

add, subtract, muliiply, and divide.

------ Information

———-Program Control

s enmmaniim emiioeey
INIT :
— . - !
GAPE Read Instruction | _ _ _ __ . - .
Output _ "
List. Initializes 1 : -
TIMING DATA — —. —y INSTRUCTION |
- Asscciative Mamory|) LIST !
I L7 ' 1
DIRECT i |
Controls Program - 1 !
Timing _, __ _ | Flow. Performs Simulated | !
Data B Timing associative =t — ¥
o Calculations Memory
— j' -
— e = . {
i INTEX DOIT } i
Rt b] :
- Executes Executes :)
~ Instructions | Instructions
. which Are ////1 which Are : l
' Nonparallel | Parallel) i
!
—— e em - e . 3 ‘
[DUMPIT ; MOVEBF, : ,
i % LBYT, SBYT | '
! ‘ e et e v mt — - e w - ———— -t ——
. . — 4 Prints State Manipuiate BitLqu -
! of L Fields
! -~ Associative -
N Memory

Figure 4

BAPEX Logic Relationships

Subroutine DOIT extracts the bit fields
for each operand (A,B) from each word of
associative memory; performs the re-
quested operation, ané stores the result
in the specified field (S) in each
associative memory word.

The other instruction type makes
less use of associative memory. Instruc-
‘tions of this type manipulate the arith-
metic register, output register, field
These

pointers, or date registers.

instructions may also shift the response

456

store values, control program flow, pro-
vide input/output, etc. This second type
of instruction is executed by subroutine
INTEX. This subroutine contains a small
interral subprogram for each instruction

of this type. As the instruction is en-

countered, the internal subprogram mani-

pulates the AP registers in the appro-
priate fashion.

The use of DOIT and INTEX is con-
trolled by subroutine DIRECT. This sub~

routine controls the selection of instruc-

tions and the interpreting of the com-
mand words and parameter identification
words of the language produced by GAPE.
Subroutine DIRECT alsc maintains the in-
struction execution fregquency and timing
information data.

Subroutine DUMPIT prints tlie state
of the associative array con command.
Subroutines MOVEBF, LBYT, and SBYT per-
form bit field manipulations in the
simulated associative arxay.

CONFLICT PREDICTION

The prediction fun:tion is respon-
sible for identifving (1) all pairs of
aircraft that are in hazardous positions;
and (2) all aircraft flying too close to
the terrain. The basic design of this
module was inspired by the implicit geo-
nmetric filter concept described in the

paper "Intermittent Positive Control" in

the March 1979 issue of the Proceedings

of the IEEE.

The airspace is divided into 1024
horizontal square cells, or "boxes",
each 4 miles on cne side. This grid
covers a square area 128 miles to a side,
Each aircraft is entered into a number
of boxes according ot its location,
speed, and direction of flight. The
method of placement in cells is as
focllows:

1. Place the aircraft in the cell

centaining its present posi-

tion. (This is the primary
ceil.)

2. If the aircraft is within 1/2
the minimum safe separation dis-
tance of a cell edge, place the
aircraft in the adjacent cell.
(This is a positicnal secondary
cell.)

3. Place the aixcraft in cells
(called velocity secondary cells)
according to three indices:

a. speed class

b. cell gquadrant position

c. heading
The speed class is an index to the air-
craft's indicated ground speed. The cell
gquadrant positiocn is the guadrant within
the cell within which the aircraft lies.
The heading is an index derived by divi-
ding the compass into twelve egqual sized
{30 degree) sectors. This placement of
the aircraft into adjacent cells to allow
for flight during the warning time is
pexrformed by a table look-up on speed
class, <ell quadrant position, and head-
ing. The table contains cell displace-
ments to calculate the new cell indices
from the basic cell index. The construc-
tion of the table was performed off-line
to provide for fast real-time execution.
The table considers the tracking erxrors.

After all aircraft are entered into

the cells, the conflicts between these

457

aircraft are selected. The box size and
placement method are such that if an
aircraft is the only cell occupant, there
can be no conflict. If more than one air-
craft cccupies a cell, further tests
are required to determine the hazard.
(These tests ars described later).

Terrain avoidance is performed
during the cell placement process.
Each cell has a minimum altitude for
safe flight. Only aircraft with altitude
information can be checked for terrain

avoidance. Before an aircraft with

altitude information is placed into a
cell, its reported altitude is cl..ecked
against the acceptable minimum altitude.
If the aircraft is too low, the appro-
priate information is output.

There are three further filiters to
be performed before an aircraft pair is
output as a conflict. First, the soft-
ware determines if this aircraft pair
was selected as a conflict in the pre-
vious 6} seconds. If so, no further
processing is done, as this pair has
already been processed by display or
resolution. The second test is an
altitude filtexr. If both aircraft have
altitude information and have reported
greater than 500 foot vertical separa-’
tion, then the conflict is ignored. The
final test is a coarse hazard filter.

The coarse hazard filter adds the time

dimension to the prediction process and
determines if the aircraft can violate
the safety standerd.

Because the aircraft are tracked,
the software can determine if a near miss
is predicted. It is known that the head-
ing data provided by the tracker is sub-
ject to error. Thus, for each speed class
and bearing position, thexre is a maximum
error in the veloccity components in the
two horizontal directions. The coarse
hazard filter will add these maximal
errors to the predicted velocities to
obtain the highest relative closing
velocity. Then, a simpie miss distance
calculation will determine if the air-
craft could pass within the minimum safe

miss distance.

CONFLICT RESOLUTION

Once a possible conflict has been
isclated by the prediction function, it
must be further evaluated to determine its
relative collision potential, or risk.
Ordering the possible conflicts by risk
allows the auvtomated systém to respond
consistently to the priorities of the
users in presentation of warnings. The
chosen measure of risk is the probability
of violating a given miss distance within
tke warning time provided by the system.
This probability is calculated from the

geometric configuration of the two air-

crafcr and the uncertainties inherent in

458

their positicn and velocicy data. The
logic does not consider the conditional
probability that an aircraft will turn
from its current course, although future
systems should utilize whatever "intent"
information is available in the system.
Considering the aircraft's current
position, velocity, and acceleration, it
is possible to project an ensemble of
possible paths which the aircraft could
follow. The uncertainty associated
with the choice of a path from this
ensemble arises from two sources:
variances in the current data, and un-
certainty about the pilot's intent.
Uncertainty in velocity (in par-
ticular, heading) is a major source of
spread in the path ensemble. This
uncertainty is approximated by the
normal distribution cf straight paths
symmetxically projected about the es-
timated heading of a non-turning track.
Uncertainties in position are accom-
mc3dated in the miss distance criteria.
Lack of knowledge of the pilot's
intent is ancther source of uncertainty
in cdefining the path ensembie. If an
aircraft turns within the projected
time period, then the assumption of
straight flight can result in a hazard
suddenly appearing with less than 50
seconds to possible impact. If all

possible paths are included in the

paths.

ensemble, however, the volume of air-
space occupied by the ensemble grows, and
Cata must be available to defiae the
probability distributions of turning

The problem of turning aircraft
is compounded by the fact that the track-
ing logic produces greater variances in
current estimated heading, as well as
time lags in heading prediction, when a
turn is in progress. These consideratiocns
led to the assumption of a uniform dis-
tribution of headings in the direction of
turn if a turn was determined to be in
progress from the track data. The basis
for the assumption was that if an air-
craft were turning in the terminal environ-
ment, it was equally likely that it would
continue turning, or stop turning at any
point on the current trajectoxy (and
proceed straight along a tangent to the
turn curve). While this assumption is
only a modest first approximation to a
definition of the full path ensemble, it
does reflect the broader distribution
resulting from the turn in a realistic
manner. Further development of the
conflict resolution logic must examine
the possibility of developiny valid

& priori probabilities of turn in the
terminal airspace, perhaps as a function
of aircraft position, wind patterns, or
other variables.

Future systems might

incorporate such "intent" information

459

from the other ATC functions in the data
processor.

The risk prckhakility is calculated
by a numerical integration over the en-
semble of possible paths of the two air-
craft. Tiie area encompassed by the

potential paths is divided into a num~

ber cf egqual size segments, and a repre-~

sentative path celected for each s.:gment.

Each representative path has a probahility

associated with it. If the two aircraft
paths result in a violation of the miss
distance in the warning time, then the
joint prcbapility is summed into the
risk probability. More explicitly, the

risk propability mecomes

RISK = };_‘ ; p§ p? J‘Dca)

where pi is the probability aircraft A
traverses the ith path in the ensemble
and d. (Dca) = 1 if the distance of
closest approach for paths i & j is
less than a critical distance, and 0
otherwise. A more responsive risk
criteria funrtion currently under in-
vestigation would additionalliy weigh
each contribution of a conflicting

path pair according to the time remain-

ing to violate the separation criteria.

This criteria becomes
a _2 ij
. . D
§ ijl p J0i)) x

iy
W (TCE)

RISK =

whers W(Tig) is & weighting function
{0-1) which is a function of Tig, the
time of closest apprcach for paths i and
je.

M aircraft configuration is con-
sidered hazardecus if the risk probability
is greater than a thresheld value. Accord-
ing to the Kncxville experiment require-
ments, certain configurations required
calculation of a maneuver which would
eliminate the conflict. This maneuver
was displayed to the coantroller for trans-
mission to the pilot.

The aircraft are divided into two
types, associated and unassociated.
Associated aircraft are under direct
positive control of an ATC controller
(Instrument Flight Rules). Unassociated
aircraft are not under positive control
(Visual Flight Rules). For conflicts
between one associated and one unassociated
aircraft where both aircraft are report-
ing altitude information, a maneuver is
calculated for the associated aircraft.

For other types of conflicts, the con-
troller is merely alerted to the exis-
tence of the conflict.

Note that when altitude information

ig available, the risk probability has

been calculated on the basis of the

" three-dimensional position 7nd velocity

vectoxrs. If a level off command will

reduce the conflict probability below

450

the threshold value, the recommended
maneuver is "“evel Off"., However, if
that probability is greater than the
acceptable safety threshold, a turn
maneuver is calculated. Since most of
the aircraft in the system do not have
altitude reporting transponders, posi-
tive climb and dive maneuvers are not
generated. If a lateral maneuver is
requirec, the associated aircraft is
turned away from the unassociated air-
crafv until the distance of closest
approach is greater than the allowable
miss distance. The paths used to cal-
culate this turn are selected from the
ensemble of patns of the aircraft on
the basis of shortest time to conflict.
The direction of turn may be deter-
mined by considering the two aircraft as
a physical system and locating the pos’-
tional centroid of this system at the
time of the expected tuin. The maneuver-
ing aircraft is turned away from this
centroid. Turning the aircraft towards
the centroid may, in some cases, produce
in a

less severe maneuvers. However,

system with uncertainties in aircraft
position, velocity, and time of marsuver
initiation, a turn toward the centroid
often increases, not decreases, the risk.
The tim2 at which the relative location
of the controid, ard therefore the

advisable direction of turn, changes is

461

different for any twe aircraft paths.
Thus the ensemble of paths arcund each
aircraft generates a spectrum of these
critical times. If, within the time span
of interest, different paths have different
advisable turn directions, the maneuver
becomes ambiguov<. This ambiguity can
be discovered by inspecting the edges of
the ensemble of paths. If a maneuver

is ambiguous in this sense, the resclu-
tion algorithm indicates this on the
display and does not recommend a resolu-
tion.

To decide how far the aircraft should
tuirn, different degrees of turn, at the
standard rate, are projected. Tne dis-
tance between the aircraft paixr at the
end of each triai turn is J¢termined in
order tc insure that the aircraft do not
violate the minimum miss distance while
the maneuvering aircraft is turning.

The path tangent to the turn circgle is
then checked against the unassociated
aircraft's worst case heading vector
(appropriateiy projected in time) and
the distance of closest approach is cal-
culated., If this distince, the closest
that the two aircraft will ever get to
each othex if neither deviates trom

the given course, is greater *han the
minimum miss distance, then this is

considered to be a feasinle maneuver.

The tv/¢ new vectcrs then have their risk

probability calculated. If this proba-
bility is less than the threshol., then
the maneuver is accepted. If the
probability is greater than the threshold,
then the aircraft is turned further and
checked again. This last step is re-
peated until a safe maneuver is found.
No turn greater than 180° is considered.
Tables are maintained to determine
if an aircraft gets into multiple con-
flicts. If so, consistent maneuver
suggestions are calculated. If the
multiple conflict occiars from the same
side, then the ._arger of the bearing
changes will be sent as the maneuver.
If the conflict is from the opposite
side, then a flag is set to indicate

that no unambiguous maneuver was found.

ADVISCRY MESSAGE GENERATION

' The newest function added to the
simulator is a simple module which pre-
pares messages which could be trans-
mitted to pilots involved in conflicts.
A similar function was implemented and
tested at Knoxville in 1972,

Tha nessages consist of traffic
advisories and service wmegsages.
Traffic advisr “i@s warn an aircraft of
the location and aeading of aircraft
which could be in corflic.. Service
messages warn of restricted areas,

terrain conflicts, loss of radar con-

tact, etc.

The simulation module merely pre-
pares a message in a form which could be
sent to an automatic voice response unit
for transmission to the pilot. In gereral,
the time reguired to send an advisory
will exceed the time for cne antenna scar.
The average massage will take two or
three scans to transmit. During peak
periods, there will be messages wait-
ing in a gqueue té he sent to the aircraft.
The message generator must choose the
order in which the messages are trans-
mitted.

The basic structure of the system
allows for a flekible priority scheme
for message transmission. Therz are
defined classes of messages which are
assigned different priorities based on
selgctions made by the controller. 1In
addition, within these classes, priorities
are established as appropriate. For
example, the risk level provides a good
priority measure within the traffic
advisory class. Thus, the most hazardous
conflicts will receive the first messages.
Other messages, such as "all clear of
traffic" are given priority based upon

time in queue.

462

