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Abstract

A technique is introduced for analyzing simulations of stochastic systems in steady-state.
Confidence intervals are obtained for a general function of the steady-statz distribution.

1. INTRODUCTION

The principal goal of most simulations of
stable stochastic systems i{s to estimate prop-
erties of the stationary or steady-state behav-
jor of the system. Two of the major problems in
such simulations are the statistical dependence
petween successive observations and the inability
of the simulator to begin the system in the
steady-ﬁtate. The»first preblem has necessitat-
ed using methods of time sefies analysis rather
than classical statistics. ‘The‘second has-
inspired many'simu]ators to let the system run
for a sufficient length of time so that the
initial transient wears off and a steady-state
condition obtains. This procedure, of course,
requires a judgement on how long to let the
systam run before making observations.

For many stochastic systems being simulated
it is possible to find a random grouping of
observations which produces independent identi-
cally distributed (i.i.d:) blocks from the start
of the simulation. This grouping thet enabies
the simulator to aveid the two problems mentioned
He has at his disposal the methods of

above.

classical statistical analysis such as confidence
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intervals, hypothesis testing, regression, and
sequential estimation since the observations are
now i.1.d. Furthermore, information that is use-
ful in estimating the steady-state 5ehavior of
the system can be coliected from scratch thus
eliminating the problem of the initia!Mtransient.

The key requirement for obtaining these |
i.i.d. blocks is that the system being simulated
return te a single state infinitely often and
that the mean time between such returns is
finite. This requirement will be met for many,
but not all, stable systems that might be
simylated.

In this paper we shall iT1lustrate the main
jdeas of this'épproach as applied to Markov
chains, in both discrete and continuous time, and
to the GI/G/1 queue. The results will only be
sketched here as the complete details are avail-
ap?e in [11, [2], and [3]. This peaper is orga-

nized as follows. Section 2 sunmarizes the
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probabilistic structure of Markov chains with an
eye toward using these results in carrying out a
simulation. Section 3 does the same for the
GI/6/1 queue.

dence interval is stated for the ratio of itwo

In Section 4 a statistical confi-

means. Numerical fllustrations of this metﬁod
are given in Section 5 for the repairman problem
and the M/M/1 queue.. The reader who is only
interested in the results and not the underlying
' theory can turn directly to Section-ﬁ with

little loss of continuity.

2. MARKOV CHAINS

Suppose we are interested in simulating a
stochastic sjstem cvolving as a Markov chain
(M.c.). Let {Xx :n>0} be a diccrete M.c.
defined on a probability triple (Q,7, P}
with discrete state space 1= {0, 1,2, --}.
Everything we do here can be carried over to the
case of I finite. Assume that tnis M.c. is
known to be irreducible, aperiodic, and positive
recurrent. Under these conditions there will
exiSt a unique stationary distribution,

{my :ie 1}, for the M.c.

Seiect now a fixed state of the M.c. which
we shall take for convenience to be the state 0.
Now set _)(O = 0 with probability one; that is,
we shall always begin our M.c. in ‘the 0 state.
Since the M.c. is assumed to be positive recur-
rent, there exists an infinite sequence of ran-

dom time epochs {B; : i > 0} such that

xB = 0 with probability one. Thus the epochs
i _

B; are the successive times the process returns

to 0. HWe shall speak of the integers

{8,y + 1, =", 8} as constituting the kA
cycie of the M.c. Let oy = By - Biq» i>1

and for k > 1 form the random vectors

¥, = o, X s 7t s X ).
k k quﬂ Bk

As a consequence of the fact that the random
variables (r.v.'s) {8, : k> 1} are optional
and finite with probability one it is pussible to

show the following results.

PROPOSITIGN 1. The random vectors {¥, : k > 1J

are independent and identically distributed.

This proposition lies at the heart of our method

of analyzing simulations.

Now let f be a function from I to
(-», +=) and suppose the object of cur simula-
tion is to estimate 7 f(j) mss the station-
ary expected value of ;:"I Define new r.v.'s

Bk“$
o= 5o fxy),

&

3=By 4

k>1.

As an immediate coroliary of Proposition 1 we

state

COROLLARY 1. The sequences {oy : k > 1} gg_ﬂ
{¥, : k> 1} are independent ard identically

distributed.

The second important result is



PROPOSITION 2. If

I 17(3}imy <=, then the
Jel

L, )y e /)

Corollary 1 and Proposition 2 form the ba-
sis for our method. We méntion in passing that
all the results of this section carry over to
the case where X, :m > 0} 1s a Markov pro-
cess with a general state space E, a single
ergodic set and no cyclically moving sets, pro-
vided there exisis a point (singleton set) to
which X

n
ability one and for which the expected length of

returns infiniicly often with piob-

the cycles is finite.

Suppose now we are interested in simulating
" a continuous time M.¢.
a continuous time M.c. definad cn a probability
triple (.2, P) and having discrete state
space I = {0, 1, 2, ---} and standard transi-
tion matrix {p;;(t) : ¢ >0, 1,§ & I}. Again
assume that the M.c. 15 1rreducible and positive
recurrent. As in the discrete case, there
=xists a unique stationary distribution,
fny : 1 e}, of the M.c. Alsc the
éiz pﬁj(t) T for atl i,j ¢ L.

How set X{(0) = 0 with probability one.
Sinée the state O will be entered an infinite
‘number of tdmes as & consequence of our
assumption of positive racurrence, we can define
py{i 2 1) to he the length of the ith visit o
state 0. Then let B4 = 0, and

By = Inf{t > p; + By 4t X(t) =0}, P21,

let {X(t) : t> 0} be .

Thus B; 1s the time of ith return to 0. If
we let o, =By - By, 121, then a, is the
length of the 'ith cycle from the state 0 and
plays the same role as in the discrete time case.

While the technical details for the contin-
uous case are much harder than the discrete case,
the intuitive ideas are the same. Hence for
this discussion we shall keep the details brief.
Let f be a mapping from I to (=, +=) and
define the r.v.'s

By

'Yk f fIX(s)]ds,
Bk-1

k :_1 .

For this continuous time M.c. Proposition 2 and
Coroilary 1 continue to hold. These results
provide the basis for analyzing simulations of

continugus time M.c.'s.

3. QUEUES

Consider now a GI/G/1 queueing systemn in
which the 0th customer arrives at time fo = 0,
finds a free server, and experiences a service
time vy. The nth customer arrives at time t_  and
. let the inter~

R
sn>1,

experiences a service time v

arrival times tn -t Assume

n-1" Yp

that the two segquences {vn :n>0} and

{u, : n 2 1} each consist of 1.1.d. r.v.'s and
are themselves tndependent. Llet Elu } = A'],

1, and p = where 0<A, u<e,

E{vn} =y
Thus u{x} has the interpretation of the mean
service (arrivai) rate. The parameter p s

called the traffic intensity and is the natural




measure of congestion for this system. We shall
assume that p < 1, a necessary and sufficient
condition for the system to he stabie.

The principal system characteristics of
interest are Q(t), the number of customers
in the system at time t; wn; the waiting time
(time for arrival to commencement of service) of
the nth customer; MH(t), the work load facing
the server at time t; B(t), the amount of time
in the interval [0,t] that the secrver is busy;
and D(t), the total number of customers who
have been served and have departed ¥rom the
system in [0,t].

Here we shall review the basic structure of
the GI/G/1 queue relevant to our simulation
study. Using the nctation of optional r.v.'s,
it can be shown that there exists a sequence of
r.v.'s {Bk‘: k > 0} such that B, = 0,

By < Bre1® and wek = 0 with probability one,
In other words, the customers mumbered 8, are
those lucky fellows who arrive to find a free

no waiting in the gueue.

server and experience

The fact that there exists arn infinite number of

such customers is a direct consequence of the

assumption that p < 1. The time axis

Rl = [0,2) can be divided into alternating
intervals during which fhe server is busy, idie,
busy, etc. HWe call these intervals busy periods
(b.p;'s) and idle periods (i.p.'s). An i.p.
plus the proceding b.p. is called a busy cycle
(b.c.). If we let o, =B B, 15K > 1,

then Ay represents the number of customers
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served in the kth busy period {(b.p.) and they are
numbered {Bk“]? B ¥ 0 277 s B =1} The
sequence {Bk : k > 1} plays th2 same role here
as in Section 2 on M.c.'s.

Next define the random vectors
ék = (vk_]w uk) and“yk = {Uk: Eak-]+])'°‘y56k}s
k > 1. Observe that the vector ,
Vo = {atqs Xq: **° » X} includes all the data
"'-‘ 1 ~My *"OL] o
required to completely construct the behavior of
the system in the first b.p. Let f be a mea-

suratle function from [0,») to (==,») and set

Bk’]
Y=l
k j=6k—]

f(wj), k>1.

Then Proposition 1 and Corollary 1 continue to
hold. Hence we have the intuitively plausible
conclusion that comparable r.v.'s in different
However, Propesition 2 must be -

b.p.'s are i.i.d.
replaced by

PROPOSITION 3. If E{|f(N)|} < =, then the
E(F(H)} = E{Y, }/E{o,} .

where W is the stationary waiting time.

In addition to obtaining resuits for
E{f(W)} we can also handle the expected value of
the stationary queue length and virtual waiting
time, length of a b.p., b.c., or i.p. Further-
more, this techrique can be extended to the gueue

GI/G/s, s > 1; see [1].



4. CONFIDENCE INTERVALS

. From Propositions 2 and 3 we are cqnfronted
with the need to produce ccﬁfidence intervals for
the ratio of two means. 4.4
'??"rahdcm (column) vectors Xy» X5007 05X, where
X = (Yk’“k}’ and assume that E{X]} =y=
‘(“l' ”2) with pz # 0. Let the poswtive
definite covariance matrix of X] be Z with

- elements given by

n_ %
I = |
- \912 Y2

let v = “1/“2‘ Our goal 1svtalfbnm;a,confideﬁce

interval for v based on the'sbsefvaiions

% s 1ks n} where n is large. This

‘probiem was treated by ROY and POTTHOFF (1958)

for the case of bivariate normal random vectors
Let»the sample mean of the

Xys *** » ¥, be denoted by

¥(n)

a(n)

and the samplie covariance matrix by

n B -
s = ghy T Qg - B Qg - )
S

with elements -

' spnd

512(“)\ |
522("); ‘

s12(n)

Suppose we observe 1.1.d |
| confidence iwt»rva? hc abtain. Let ZY.- ¢ 7(y,, suﬁ

‘where,,‘

| Using the centrq! 1imit theorem for sums of

 1 i.d. random variab]es and the strong law of

and large n the "andom 1nterva1

_approximutely l-y,

n observations

. of two different models.

’the BN/ queue.

W\,k, k = 1 2’ ‘. n’

Observe that the

- Next let Zk"n k.
and let Z(n) =l Z .
" k=1 o
= 2 E = Y
E{Zk} 0 and -he {Z } = ol 0}1 2vo,2
vzozz. The idea of irtrcducing the Zk 's is due

to ROV and. POTTHOFF (1953) and 15 the key to the

0(2) =1 ‘; "-u lzdu b
. ‘,21:' .

1arge numbers we can. shou that for 0 < y <

' o | ‘;_A”'1/2_
[(Ya‘_,— - hsy,) = D
& -,hszz‘

sur?aunds the parameter v with probability

where

D= (?&i' hslz)zi; (?? - hslz) (az.-‘hSZé)‘. .

énd

' 2
h= Z]_lefn .

5. NUMERICAL ExméLss =

We 11lustrate our met%ods with simulations -
The first is the " I
c]assica? repaivman preblem, and the second 1s

The thsoretica? resu!ts for

these modeTs are well known and provide a basis -

. for comparrson,




The repairman problem is a contjnuous time

Markov chain that can be desciibed as follows.
We have M + N identical pieces of equipment
which have an expone 1ial failure time with
failure rate A. At most N of these units
operate at one time, the other ¥ units being
thought of as spares. When a unit fails, it is
sent to a repair facility consisting of S
repairmen (servers) having expoaential repair
rate p. Let X(t) denote the number of
failed units undergoing or waiting for service
With the

is a birth-

at the repair Tacility at time t.
above assumptions {X{(t) : t > 0}
death process, a special type of the continuous
time M.c. discussed in Section 2.

Let X be a discrete random variable
having the stationary distribution
{my :9=0, -, M+ N} of the M.c.
X 1is the random variable to which X(t)

In other
words,
converges in distribution. We simulated the
repairman probiein in order to estimate
E{f{X)} for various chcices of the function f.
Now let X(0) = 0. In order to znalyze
the simulation recall that the process returns
to the state 0 infinitely often, and o is
the Yength of the kth qycle from the state 0.
As in Section 2, let Yk be the integral of
£[x(t)] over the kth gycle. From Proposition 2
and Corollary 1, we know that the random vectors
{(Yk.ak) k> 1} are i.i.d. and that E{f(X}} =
E{Yk}/E{ak}. We may thus obtain a confidence
interval for C{f(X)} by simulating the system
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for a fixed number n cycles and applying the
method of Section 4. In particular, let Y and
a denote respectively the sample means for Y,
and o, in n observations, let 1 and sy,
denote the sample variances, and letf $12 denote
the sample covariance hetween Yk and O -
A 100(1-y)% confidence interval for E{f(x)}' is
then given by equation (1) of Section 4.

To illustrate, we consider seven choices for

the function f:

1) f ) =4, =0, ,M+N
i) fz(i)z-;?, 120, **,M+N
i) f, (i)={?; Hol AR R
iv) f, (1)=§$: ::g’;;, S,n”&;
v) g (1}={§"°13f§‘+'i; DM
vi) f6(1)={?’ 2:?, JHEN
vii) fy(i)={é’ ::?a...,pu—n ’

These functions allow us to estimate, respective-
ly, the sxpected value of X, the second moment
X,

{insufficient spares), the probabiiity the X

of the probability that X exceeds M
exceeds S (positive qurue length), the expected
aumber of idle servers, the probability that X
exceeds zero (at least one server busy), and the
probabiiity that X eguals zere (21l servers
idle).
which would yield useful estimates of the steady-

There are of cnurse many other functions

state behavioer.




Table 1 shows 90% confidence intervals M= 4 spares, S = 3 servers, failure rate

chtained after a run Yength of 300 cycles from A = 1, and repair rate u =4 Table 2 shows
the state X{8) = 0. The parameter settings estimates for E{X} 1in ten replications of the
used for this run were N = 10 operating units, simulation.

TABLE 1

SIMILATION RESULTS FOR THE REPAIRMAN PROBLEM

Parameter Theoretical Value Point Estimate 30% Confidence Interval

E(F(X)} = E{X} 3.47 3.406 [3.205, 3.607)
Eff (X)) = EOF) 17.278 16.644 [15.004, 18.594]

i E{f3(X)} = P{X>M} .306 -.294 [.206, .328]

| E{fy(X)} = P{X> S} .438 .429 [.393, .465]
E(fg ()} = EL[S - X1} .678 705 [.637, .773]
E{fg(X)} = P{X> 0} .939 .930 [.919, .942)
E(f(X)} = PiX=0 .061 .070 [.058, .081]

TABLE 2

ESTIMATES FCR E{X} IN TEN SIMULATION REPLICATIONS OF THE REPAIRMAR PROBLEM

Repitcation Point estimate Confidence Interval

1 3.406 [3.205, 3.607]

2 3.385 [3.221, 3.551}

3 3.384 [3.196, 3.571]

4 3.440 [3.260, 3.620]

5 3.234 [3.047, 3.420]

6 3.542 r3, 373, 3.nzj

7 3.433 [3.246, 3.620]

8 -« 3.382 [3.163, 3.600]

9 3.380 [3.213, 3.548]

10 3.415 [3.234, 3.596]

Aver \ge 3.4C0 [3.216, 3.585]
fiverage length 0.369

Theoretical value of E{X} = 3.471
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Our second example is the M/M/1 queue. We
have Poisson arrivais, exponential service, and
a single server. Although the queue length
process is a birth-death process and couid be
treated l1ike the repainman problem, we focus our
attention here on tha sequence of customer wait-
ing times {wn : n:g_O}. Recailing the discus-
sion of Section 3, the process returns to the

state HO infinitely often, and the time inter-

vals between returns define busy cycles {b.c.'s).

Letting £ be a function on the state space,
letting Y, be the sum of (i) over the kth

b.c. and letting % be the number of customsrs

TABLE 3

served in the kth h.c., we once again have

E{f{i)= E{Yk}/E{ak}, where W is the stationay

walting time and the random vectors {(Y, .oy} k > 1}

are 1.1.d. We may thus proceed exactly as before

to obtain confidence intervals for E{f(W)}.
Table 3 shows 30% confidence intervals in ten

replications of the queueing simulation, each

consisting of 2000 busy cycles. for these

runs, the customer arrival rate was assumed to

be 5 and the service rate 10 so that

p = .5. HWe consider only the function

(W) = W, although there are many other

interesting possibilities.

ESTIMATES FOR E{W} 1IN TEN SIMULATIGN REPLICATIONS OF THE M/M/1 QUELE

Replication Point Estimate Confidence Intervai
1 0.11¢ [.09%, .123]
2 3.0 [.080, .102]
3 0.095 {.084, .105]
4 0.111 [.087, .133]
5 0.096 [.083, .109]
6 0.100 [.087, .mn2]
7 0.032 {.081, .103]
H 0.099 {.084, .114]
9 0.0%6 [.082, .109]
10 0.090 [.c78, .102]
Average 0.098 [.084, .111]
Average length Q27

Theoretical Value of E{W} = .100

2N
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