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Abstract

This paper describes the applicauon of sequential-block search techniques
to simulation experimentation with constrained systems, Two basically dif-
ferent approaches are examined. One approach combines desizned experi-
ments, multiple regression, and mathematical optimization to predict a
constrained optimum solution, which is then checked by further experi-
rentation in the region of the predicted solution. A second approach em-
ploys a sequential optimum-seeking technique, such as gradient search cr
sequential simplex search, modified to accommodate constraints, These
techniques are illustrated with a simple inventory system modeled with

the GASP-II simulation language. A comparison of the effectiveness of

these approaches is preaented.

INTRODUCTION

The objective of simulation expevimenta- the input variables X at several distinct sets of
tion is to determine the optimwum response y* values, observing the simulated response y at
of some function of unknown form e-:h X, and eventually selecting X* so as to

y = F(X), (1) yield the most beneficial response y*.

where y is some measure of system effective- Most realistic systems require considera-
ness and X is an n-dimensional vector of input tion of several system responses, yj,
variables, X< i=1, ««.,n. Simulation exper- j=0, 1,...,m, The most expedient approach
imentation consists of controlling the levels of to multiple~-response simulation experimentation
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is that of constrained optimization. In this ap-
proach, one response, y . is designated a pri-
mary or objective response. The remaining
responses y; j=1, ...,m become restric-
tions or constraints by placing specifications
on their performance. The mathematical
statement of this problem is as follows:

(2)

Maximize (or minimize) Yo = (X)

subject

Hi

a.SX.SC., p lpol.yn (3)
1 1 1

(4)
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where

X = n-dimensional vector of input variables,
x,i=1, «eoym

X, = value of the ith input variaole;

2 0= lower bound on the ith input variable;

c; = upper bound on the ith input variable;

F = objective function, of unknown form;

Yo = objective responge variable;

yj = jth response variaole;

G. = jth constraint function, oiien of unknown

h 3
o form;

d, = specification on the performance of the
J jth system response y;
n = number of input variables in the simu-
lation model;
m = number of secondary system responses.

Although much has been done to develop
improved techniques for simulation experimen-
tation, scant attention has been given to the
constrained optimization problem. This paper
examines two basically different approaches to
gimulation experimentation with constrained
systems. One approach combines designed

experiments, regression, and mathematical
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programming in a procedure for predicting a

constrained optimal solution. This paper com-
pares central composite and simplex lattice
designs fo their effectiveness in predicting an
optimal solution. A second approach utilizes
search techniques in s2eking a constrained opti-
mal sclution. This paper compares gradient
search «rith two direct methods, sectional
search (one-at-a-time method) and accelerated

sequential simpiex search.

EXAMPLE PROBLEM

The problem used to compare these various
techniques is a simple (R, r, T) inventory sys-
tem. In this problem, a retail outlet sells a
particular icem for $65. The wholesale cost of
this item is $40. There is an inventory carry-
ing charge of $0. 20 per dollar-year. Ifa cus-
tormner demands a unit when it is not in stock, he
will purchase it at a coinpeting retail outlet,
The outlet under study assigns a loss of $20 to
each such lost rale. The inventury position
(units in stock plus those on order) is feviewed
every T time periods, If inventory position P
is less than or equal to the reorder point r, an
order is placed for R-P units, The cost of each
review is $2 and the coust of placing an order is

$3.

tributed with a mean of five units per week, The

The demand for the item is Poisson-dia~

procurement lead time is Erlang-distributed

according to the relation

(ux)k-l e-ux
(k-1)!

0

fx(x) = x>0 (5)

otherwise



with y equal to 2 and k equal to 6.

The retail outlet wishes to maximize pro-
fits from retailing this item, but i1t must oper-
ate within the following conditions:

The stock-on-hand cannot excead 60 units
due to space limitations;

1.

2. Only one review can be performed on any
given day, and a review is require:: by man-
agement policy at least once every three
months;

3. The manager wishes to have the average

weekly lost sales not exceed 0. 2 units.

This leads to the following constrained optimi-

zation problem:

Maximize Yo © $25 Yy- $20 Yoo $0. 15344y3
- $3y, - $2/x, (6)
subject to
0< x) < 60
0=x,< 69
X 2 X%, (7)
0.2 < Xy S 13.0
y, S 0.2
where
Yy, = 2average weekly profit, $ ;
Yy = average weekly sales, urits;
y, = average weekly lost s.ales, units;
y3 = average siock-on-hand per week; units;
V4= average weekly orders;
X = inventory position, R, units;
x, = reorder point, r, units;
X3 = review period, T, weeks

This problem assumes a five-day week, Note

the discrete nature of the independent vari-

ables. If x, is considered on a daily basis, all

3

three independent variables X t21,2,3 are

discrete. Note also that the objwutive

229

response function is expressed in terms of four
response variables. Hence, there are live re-
sponse variables which must be observed ex-
perimentally.

The simuiation model for this problem is
written in FORTRAN using the GASP-II simu-
lation language [13]. The simulator used in
this study consists of a MAIN program, an
EVNTS subroutine, and four events subroutines
DMAND, PEREV, RECPT, and ENDSM,

These components provide the following func-
tions:
1. MAIN

a. Initializes model variabies.

b. Turns control over to GASP executive.

Subroutine EVNTS

a. Transfers control to the appropriate
event subroutine.

Subroutine DMAND

a. Creates next demand in accordance with
the Poisson-distrihuted arrival rate.

Tests stocck level. The variable SALES
is incremented by one if STOCK > 0 and
SLOST is incremented by one if STOCK=0.

b.

Collects statistics on STOCK if a sale is
made,

C.

Subroutine PEREV

a. Checks inventory position P against
reorder point r. If P < r, the receipt of
R-P units is scheduled in accordance
with the Erlang-distributed procurement
lead time.

Increments number of orders ORD by one
if an order is placed.

Restores inventory position P to level R
if an order is placed.

C.

5. Subroutine ENDSM

a. Terminates simulation,



b. Computes weekly averages for the fol-
lowing quantities:

1.) Stock, Yar

2.) Orxders placed, Yy
3.) Sales, Yy

4,) Lost sales, Yo
5.) Profit, Yo

A six-year or 312-week period of operation is
examined for all experiments in this study.

DESIGNED EXFPERIMENTS

Considerabie attention has been given to
using designed experiments in simulation ex-
perimentation. Burdick and Naylor [4],
Hunter and Naylor [7], Mihram [9], 2nd
Schmidt and Taylor [14] provide exceilent
treatments of this subject. Most of these
works suggest the use of a seguence of first-
order experiments in moving toward an opti-
mum, switching to a second-order design in
the vicinity of the optimum., Montgomery and
Evans [10] have evaluated several second-
order designs for experimenting with simuia-
tion models.

This paper examines the use of two sec-
ond-order designs for simulation experirnen-
tation, (1) a central composite design by Box
[3] and (2) a simplex lattice design. The
basic procedure used for this study is as fol-
lows:

1, A designed experiment cons.isting of a pre-
determined set of design points 18 per-
formed with the GASP-II simulat.on model
of the (R, r, T) inventory system. Each of
the responses yy, k=0, 1,...,mis observed

ard recorded.

2. A multiple linear regression program is

“form in Table 1,
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used to fit quadratic models of the forn |

n-l n

n n
- °\ 2 b
Vic* Dot 2 P+ P ¥ 4 jzzi;ﬂ 15747

(8)

for each of the m+1 responses [8].

The fitted equations are used to formulate a
constrained optimization problem as ex-
pressed by equations /2) - {4), which is
solved using a computerized constirained
paitern search procedure [11] based on the
Hooke and Jeeves search method {6].

Central Composite Design

The central composite design for a system of
three independent variabies is shown in coded
Table II gives the actual val-
ues of X» Xy and x4 for the present problem.
Observe that the radial points in the design are
not exactly equal to the a values specified by the
central composite design, due to the discrete
nature of X, i=1,2,3. The valuesy and Y,
are also given in Tsble II. The center point is
thrice replicated to provide an estimate of lack-
of-fit error. The central composité design pro-
vides (2n+ 2n+ 1) points, compared to the
[(n+1) (n+2)/2] coefficients in the quadratic
model given by (8). For larger problems, the
number of points in the central composite de-
sign considerably exceeds the number required

by the quadratic model.

Sirnpiex Lattice Design

A design that is very eccnomical for use with
quadratic models is the {n, 2} simplt;x. lattice
design. Myers [12] describes the use of sim-
plex designs for first-order experin.cnts, Fig-
ure 1 shows two and three-dimensional first-
order simplex designs. The {n, 2} simplex lat-

tice design follows directly from the first-orcer



simplex design by placing a point at the mid-
point of each edge of the simplex, as illustrated
in Figure 2. This provides exactly the

[(n+1) (n+2)/2] design points needed for esti-
mating the quadratic modei. A center point can
be placed at the centroid of this system and re-
plicated to provig'l.e a test of error due to lack
of fit. Table IiI gives the design points and re-
sponses for a simplex lattice design for the

(R, r, T) inventory prcblem.

Comparison of the Two Designs

To provide a comparison of the two de-
signs, the data from Tables II and III were em-
ployed in a '"canned" mul.iple regression pack-
age to fit quadratic equations of the form given
by (8). The resulting equations were then used
in formulating the constrained optimization pro-
blern which was solved using the ''canned' pat-
tern search., The results of these studies were

as follows:

Central Simplex
Composite Lattice
X (60, 45,12) (49,37,9)
Prcfit (predicted) $124. 25 $122. 43
Pretit {actual) 118.52 121, 49
Lost Sales (predicted) 0.011 0.036
L.ost Sales (actual) 0.035 0.0

Hence, the simplex lattice design performs
slightly better than the central corposite de-
sign in this problem., The main advantages of
the simplex lattice design, however, are those
which contribute to its relative economny:

1. It uses exactly the [(n+1) (n+2)/2] points
needed 1o estimate the quadratic model.

2. 1t develops directly from a first-order de-
sign.
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3. It contains smaller sin'plices (refer to Fig-
gure 2) which can te used to form a simplex
lattice design in a sub-space of the experi-
mental region around a predicted solution
simply by performing the expe riments cor-
responding to the edge mid-points for the
simplex sub-space.

Disadvantages of the simplex lattice design are
as follows:

1. It does not possess optimal statistical pro-
perties, such as minimum bias and mini-
mum variance. Furtharmore, no attention
has yet been given to describing the mathe-
matical properties of the design.

2. The crientation of the simplex in the factor
space is left to the judgement of the experi-
menter. (The vertices of the design given
in Table III closeiy approximate an orthogonal
first-order simplex design given by Myers

[12]).
SEARCH METHODS

An alternative to employing designed experi-
ments in simulation experimentation is to use a
search technique. These fall into one of two
basic categories, (1) gradient methods ang (2)
direct methods. Thay can be made completely
automatic by having a '"canned'' program com-
pute the succession of observations in the
search, or they can be made adaptive by having
the experimenter exarnine iiis results after each
block of experiments and plan the next block.
The latter approach is likely to make more ef-
ficient use of computer time and is the scheme
developed in this paper. A gradient search pro-
cedure is compared with two direct search
methods, sectional {onz-at-a-time) search and
accelerated sequential simplex search. Each
of these methods has the feature that experi-
mentation proceeds in a sequence of biecks,
aliowing the experimenter to exercise his judge-

ment as experimentation progresses.



(radient Search

Gradient search is initiated by placing a
set of exneriments around a base point Xo to
estimate the gradient. For a system of n vari-

ables, n+l experimenté must be employed in

estimating the gradient, as given by the follow-

ing expression:

X
o]
Xy =X, + bxy
: : (9)
Xn = Xo + ﬁxn

After observ.ng the n+l responses YorYpreeeo
Yy the experimenter can compute the gradient

direction as

ra .
. = B- : B. j = l,'.-, .
m.l J/Li::zl i ] j n

(10)
where
Ay.
I
Bj ij (11)

ij is the chanrge in thebresponse y caused by
the incremental change ij, with all other vari-
ables held at the Xo level.

Having determined the gradient direction,
the next block of experiments is performed at
uniform intervals along this direction. For
constrained systems, the bounds given by (3)
will limit the step in the gradient direction.
This combination of a gradient-determining
block and a step-determining block is repeated
antil an acceptable solution is found.

Beveridge and Schechter [1] give an excellent
presentation of this topic.

Table IV presents the results of a gradient

search approach to the example (R, r, T)

”
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inventory problem. The requirement for dis-
crete valtes of x,, i = 1,2, 3 somewhat compli-
cated the selection of experiments in the step-
datermining blocks, so that in effect only a
Yinear-gradient' direction could be followed,
Nevertheless, gradient search is seen to be
adequately effective as a simulation search
technique. The search was terminated after
block 8, because the indicated gradient direc-
tion would have caused constraint violation.

In Table IV, biocks 1,3,4,6, and 8 are gra-
dient-determining blocks., Blocks 2,5, and 7
are step-determining blocks. In block 2, the
best point along the gradient direction was (60,
20, 30). The gradient from this point, however,
as computed from thé results from in block 3,
would have violated the upper bound on the vari-
able %), Theretore, the decision was made to
evaluate the gradient from the next best point in
block 2, (40,20, 34), which produced the results
in block 4. This episode points out one of the
difficulties in sequential-block experimentation,
that subjective judgements must often enter the

experiment selection process.

Sectional Search

Perhaps the simplest direct search method
is that in which only one variable at a time is
changed. By keeping n - 1 of the n variables
fixed at some level, the remaining variable can
be altered over its range. This process is re-
peated until an optimal solution is found.

Table V gives the results of a sectional

search applied to the example inventory



problem, Four experiments are used in each
block,‘_’ except in block 2 where fhe fourth éx‘-
periment would have duplicated an experifnent
from block 1. In block 2, Xé wag variétivfrorn
18 to 36, rince it could not. exceed Xl, which
1 wasg

varied from 38 to 56, since it could not fall

was maintained at 40, In block 3, X
. below the value of Xz aAt 36. In block 4,A X, was
varied from 4 to 16, since higher values had
been shown in block 1 to be less profitable.

The search was halted in block 6, since none of
~ the experiments in the hlock produced results
‘superior to the solutio:’xyvis‘ubserved in blocks

4 and 5,

Accelerated Sequential Simplex Search

A technique that appears promising for

. simulation experimentation is the accelefated
sequential simplex search method [2], which
is based on the sequenﬁal simplgx method of

_ Spendley, Hext, and Himsworth [15]. Instead
of moving along one point at a time, however,
this new technique employs a simplex of n+!
points in each successive block., The direction
of movement is that from the worst point in the
simplex through the centroid of the n remaining
points. If tne same direction is maintained in

successive blocks, the movement accelerates

in accordance with the following relations:

Xé= Xk+ Zh(Xc-Xw), k=0,1,...n (12)
where
Xl'c = kth vertex in the next simplex,
Xk = kth vertex in the current simplex,

h =no. successive blocks in which the same

direction is maintained,

X

w - point yielding worst xesponse y,
= X. 13

where S is the set of all points in the siriplex
other than X_ .
- Pw

Figure 3 shows the progress of the stand-

_ard sequential simplex search technique for a

si'i'nplé two-diméneionai problem, Figure 4
shows the progress of the accelefafed method
for the same problem. Table VI'presents the
results from employing accelerated sequential
simplex searcﬁ with the (R, r, T) inventory pro-

blem, The worst point in each simplex is noted

" with an asterisk. The search was laited after
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block 6 because the indicated direction of move-
ment to a seven:;"ﬂ"block was toward a region
that had already been examined in bloék 5,
Moreover, the maxix"nuni profit in block 6 was
less than 0. 6 percent higher than that ‘n block 5,

Comparison of Search iMethods

Of the three search methuds examined here,
the accelerate® sequential simplex proceduore
yielded the best solution to the example (R, 1, T)
inventory problem, With respect to search ef-
ficiency, the simplex and sectional search pro-
cedures each required s.x sequential blocks,
compared to eight blocks for the gradient pro-
cedure, The results are conditioned, however,
on the somewhat arbitrary criteria which were
used to etop the search,

The initial experiments by each procedure

produced solutions that violated the lost sales

constraint; however, moves that gave improved




valucz of the objective response Yo also re-
duced the extent of lost sales ceonstraiant viola-
tion, This outcome is not surprising, con-
sidering the relatively high cost of a lost sale,
This i3 not the most »zaiistic situation one
could encounter, hcwever, and the example pro-
hlem ig defective in that regard.

To summarize the procedures to apply in
the face of constraints, the foremost rule is to
initiate the search in the interior of the feasible
region. The three search metheds could then
operate in the following ways:

1. In gradient search, select as a point along
the gradient direction that point which yields
the maximum value of the objective response
yo Without violating a constraint, The gra-
dient-determining block would then be per-
formed to establish the best directicn from
{bat point.

2. In sectional search, consider only those ex-
perimental points in each block which do not
violate constrainta, selecting that point
which maximizes the objective response.

3. In accelerated sequential simplex search:;

a, If, for a simplex derived by letting hx2,
congtraint viclation occurs, set h= 1 and
compute the next simplex.

b. If, for a2 simplex derived by letting h=1,
constraint violation occurs, gelect & point
other than the worst point as X, Re-
compute a new simplex with h = 1,

c. If rules a and b fail to yield a solution
satisfying all constrainta, curtail the
search and adopt the best observed point
as a solution,

it should be stressed that none of these methods

‘produce a globally optimal solution. They are
effective, however, in producing a very worth-
while solution,

CONCLUSIONS

This paper has discussed the use of

seguential-block search tecnniques in simula-
tion expe.rime.ntaﬁon with constrained systems,

Two basically different procedures have been

examined, each of which is effective in locating

an acceptable constrained solution. None of the
techniques examined here assure a globally opt-
imal solution, however,

Of the two second-order experimental de-
signs studied, the simplex lattice design offers
both eé:onomy and search ei‘fec’civenezss‘ii;_ gim-
ulation experiménﬁaﬁon. There is much to be
lea.rna.d about this design, however, and addi-
tional resaarch in both its theoretical and prac-
tical-azpects is neceesary. The approach of
performing a desigred experiment, fitﬁng firat
nz pecond-order response models, and applying
a mathematical programming procedure in
seeking a constrained optirnal solﬁtion is defi~
nitely worthwhile for simulation experimentation.

Gradient or direct search is another prac-
tical and effective approach to constrained sys-
tems simulation experimentation. This ap-
proach is especially useful for complex systems,
where the experimenter desires to exercise his
own judgement after each block of experimenté-
tion, A technique that appeais to be very pro-
mising for sequential-block experimentation is
acceleraied sequential simplex search, This
technique retains the advautages of the stand-
ard sequential simplex search technique, in-
cluding an effective direction-determining
mechanism, and adds the capability for accel-

eration in a direction that consistently proves
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TABLE I

DESIGN POINTS FOR CENTRAL COMPOSITE DESIGN FOR EXAMPLE PROBLEM

" Design R T T Profit Lost Sales Seed
Point *y %, X Yo ¥y ‘
1 46 36 2 $117.27 ¢.0 5461
2 46 36 18 118. 35 0.11 5461
3 46 44 2 116. 81 0.¢ 5461
4 46 44 18 118,31 0.11 5461
5 54 36 2 117. 54 0.02 5461
6 54 36 18 112,68 0.23 5461
7 54 44 2 119,78 0.0 5461
8 54 44 18 122. 31 0.01 5461
9 45 40 10 121, 90 0.01 5461
16 35 40 10 122. 98 0.01 5461
11 50 35 10 121,80 0.04 5461
12 50 45 10 121.43 - 0.0 5461
i3 50 40 1 114. 86 0.0 . 5461
14 50 a0 19 125. 50 0. 02 5461
15 50 40 10 119,88 0.6 | 5461
16 50 40 10 125, 84 ¢.02 1971
17 50 40 10 119. 53 0.01 8433
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TABLE III

DESIGN POINTS FOR SIMPLEX LATTICE DESIGN FOR EXAMPLE PROBLEM

Design R b3 T Profﬁ Lost Sales Seed

Point %y X Xy Yo Yy
1 50 46 2 $116.93 0.0 5461
2 40 36 18 110,58 0.30 5451
3 50 26 2 115.78 0.11 5161
4 60 36 12 117.98 0.11 5461
5 45 41 10 120. 35 6.01 5461
6 50 36 2 118,76 0.0 5461
7 55 41 10 119,36 0.0 5461
8 45 31 in 117.82 0.13 5461
9 50 36 16 118.24  0.10 5461
10 55 31 10 118.27 0.05 5461
11 50 36 10 121.73 0.02 5461
12 50 36 10 125, 42 0.06 1971

13 50 36 10 121.10 6.08 8433




TABLE IV
GRADIENT SEARCH APPLIED TO (R, r, T} INVENTORY PROBLEM

Block R r T Profit Lost Saies
* T %2 *3 Yo Y2
30 20 36 $50.37  1.72
1 33 20 36 59, 99 1,51
50 23 36 50, 37 1,72
L 30 20 39 48, 39 1.72
i’ 35 20 35 65. 69 1. 37
40 20 - 34 81,67 - 0.98
2 45 . 20 i 33 61.3% _ 1. 47
s¢ .z 32 65.75 1,37
55 - 31 . 76, 08 112
| 60 : 20 30 91.01 - . 0,74
3 - 57 20 30 85.17 0,93
60 23 30 92, 26 0,75
L 60 © 20 27 87. 88 ©0.82
T 43 20 34 80.32 - 1.01
4 40 23 34 83,55 0. 92
40 20 31 85,43 0. 90
- 38 23 28 74, 40 1.18
5 36 26 22 91,54 6.77
34 29 16 104,74 0. 44
. 32 32 5 10 111.98 0. 25
- 35 32 10 116. 39 0. 15
6 32 29 10 105.27 ' 0. 40
L 32 32 7 118,18 0. 20
- 34 33 7 120, 94 0,13
7 36 34 4 122.70 0.01
. 38 35 1 112.94 0.0
r 39 - 34 4 120,82 0. 04
8 36 3] 4 119, 86 0. 06
7 121, 62 0. 08

L 36 34




TABLE V

SECTICNAL SEARCH APPLIED TO (R, r, T) INVENTGRY PROBLEM

Block R ¥ T Profit Lost Sales

*1 ) X3 Yo Y

* 40 30 10 $119.95 0.058

1 40 30 2h 95.18 0.72
40 30 40 69. 40 1.30

40 30 55 49.94 1.70

40 18 10 85.74 9.92

2 40 24 10 102. 90 0. 48

* 40 36 10 120. 38 0.022

38 36 10 119.26 0.067
3 44 36 10 120. 67 0.9

* 50 36 10 121.73 0.022

56 36 10 119. 71 0.039

50 36 4 120.19 0.019

4 50 36" 8 122, 38 0.035

* Ny 36 12 122.87 0.058

50 36 16 119, 60 0.074

50 34 12 117.28 0.12

5 50 38 12 121.94 0. 006

* 50 40 12 122.87 0.019

50 42 12 121,73 0.010

46 40 12 121.71 .003

6 48 40 12 122. 81 6.016
52 40 i2 121.93 0.0

54 40 12 118.93 0.055

Note:

% denotes best value of X
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TABLE V1

ACCELERATED SEQUENTIAL SIMPLEX SEARCH WITH (R, r, T) INVENTORY PROBLEM

Block R r T Profit Lost Sales
xl xz x3 3’0 Y-z
2 30 20 35 $48.74 1.75
H 34 21 36 62.95 1.44
3 24 36 53.77 1.65
31 » 21 39 51.63 1.65
34 24 39 89.50 _ 1.45
2 38 25 40 - 67.25 1.32
' 35 28 40 57.98 1.54
* 35 . 25 43 48.92 1.79
35 25 32 68. 76 1.32
3 39 , 26 o33 87.27 0.84
.36 29 33 79.14 1.02
* 36 26 | 36 68.73 1.31
38 28 19 106. 31 0.46
4 42 , 29 - 20 105. 46 0.44
39 32 20  107.72 - 0.42
* 39 29 23 104.i2 0.46
o 41 31 2 118. 82 0.055
5 45 32 k} 119.28 © 0.016
42 35 3 120. 27 0.0
42 32 6 123. 94 0.039
45 35 6 124. 64 0. 045
6 49 36 7 122. 49 0.0
45 39 7 120.90 0.0
* 46 36 10 120, 34 0.003
Note: * denotes worst point, XW
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Figure 1
#First-Ovder Simplex Designs
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Accelerated Sequential Simnplex Search




