ON THE APPLICATION OF USER CHAINS IN GPSS

THOMAS J. SCHRIBER
GRADUATE SCHOOL OF BUSINESS
THE UNIVERSITY OF MICHIGAN
ANN ARBOR, MICHIGAN

ABSTRACT

The GPSS Processor uses a Current Events Chain, Future Events Chain, Inter-
rupt Chains, and Matching Chains to support the logic of a GPSS simulation.
These chains, which are an implicit part of the language, are automatically
maintained and manipulated by the Processor as a simulation proceeds, At
the analyst's option, one or more additional chains of a type known as User
Chains can be explicitly incorporated into a GPSS model. These user-defin-
ed chains can be introduced for sither one of two guite distinct reasons:
(1) to decrease the execution time requirements of a given model, and (2)
to implement queue disciplines other than first-come, first-served, within
Priority Class. Despite their application scope, however, there are several
subtleties associated with User Chain use. Thice subtleties arise princi-
pally because the GPSS Processor is inherently sequential in nature. This
paper, presented in the spirit of a tutorial, explores User Chain applica-

tions and identifies some of the subtieties associated with their usa.

1. Introduction

Those to whom this paper 1s addressed are assumed

fa) to be active GPSS model-builders, thoroughly
conversant with the operation of the Current and
Future Events Chains in the language, but (b)
without prior knowledge of the GPSS User Chain
entity. The first assumption makes it possible
to avoid starting the paper at too elementary a
level. The second assumption provides an excuse
to include here the fundamental User Chairn
groundwork needed to support some of the points
to be made. Apart from these conveniences, are
the assumptions realistic? The evidence sug-
gaests that they are. In much GPSS modeling, it
is not necessary to apply User Chains (even
though their aprlication might be of advantage
in decreasing the CPU time required for a simu-
lation). Furthermore, the topic of User Chains
is an "advanced" one in GPSS. The self-taught
GPSS model-builder, then, can conveniently avoid
getting into the User Chain concept. And the
person who has "gqone threciugh a course" on GPSS
may not have been told much, if anything, about
User Chains, unless the course was either "iong"
or "advanced". Finally, there is no definitive

treatment of User Chains anywhere in the 1it-
erature on GPSS. They are introduced, yes, and
the mechanics of using the two GPSS "Blocks"
associated with them are spelled out, but there
are few examples given for them. It is not un-
usual to see only one or two examples showing
how User Chains can be applied when a con-
strained resource is being simulated with a
single GPSS Facility. But this is the simplest,
most straightforward application of User Chains.
As such, it gives no hint of the subtle “simul-
taneity of events" complications which are
associated with modestly more imaginative User
Chain use.

There seems to be a need, then, for a more com-
plete treatment of the GPSS User Chain entity.
An attempt is made here to provide that treat-
ment. In total, 7 different Block Diagrams, or
Block Diagram segments, are presented and dis-
cussed to illustrate User Chain use in various
ways [2]. Particular emphasis is given to the
"simultaneity of events" problems that can oc-
cur in conjunction with User Chains. After the

[2a] Portions of this material are taken from the manuscript for a book being written by Thomas J.

Schriber (see reference [1]).

As part of the manuscript, these portions have been copyrighted

by Professor Schriber, and are reproduced here with his permission.

examples presented here have been studied, the
GPSS model-builder should be abie to apply User
Chains creatively, and properiy, in whatever
contexts might be encountered in practice.

2. The Concept and Utility of User Chains

Whenever a Transaction encounters a blocking con-
dition during a simulation, it is left, by de-
fault, on the Current Events Chain by the GPSS
Processor. There are two disadvantages asso-
ciated with this default Processor behavior.

(1) The CPU time required to simulate with
the model may be larger than necessary. This is
true even though the Processor makes a distinc-
tion between "unique", and "non-unique", blocking
conditions in a model. The distinction is made
because certain CPU time economies can be real-
ized through the "Scan Indicator" concept when-
ever a blocking condition is unique. Transac-
tions experiencing unique blocking are "scan-in-
active" [b]. Even scan-inactive Transactions are
processed at least one time, however, at each
reading of the simulation clock. It is true that
the only CPU time used to process scan-inactive
Transactions is that required to test their Scan
Indicators. In the Tong run, however, even this
CPU time can be significant. Furthermore, when
blocked Transactions are scan-active, the Pro-
cessor attempts to move them into their next
Block each time they are encountered in the scan,
even though the logic of a given situation may
make it evident (to the analyst, not to the Pro-
cessor) that a blocking condition is still in
effect. It should be clear, then, that if
blocked Transactions could be made totally in-
active in a model by removing them from the Cur-
rent Events Chain, execution time economies could
result.

(2) The second potential disadvantage concerns
queue discipiine., The ordering of blocked Trans-
actions on the Current Events Chain is determined
solely by their Priority Level, and the chrono-
logical sequence in which they were hooked onto
that chain. This is why the default queue disci-
pline in GPSS is "first-come, first-served, with-
in Priority Class". If some other queue disci-
pline were to be implemented, these steps would
have to be performed. '

(a) Instead of leaving waiting Transactions on
the Current Events Chain, they would have to be
removed from that chain and put "someplace else",

(b) Then, when the time came for one of them
to move forward in the model (to capture a now-
available server, for example), the Transaction
brought from that "someplace else" and put back
on the Current Events Chain could be selected by
some criterion other than "first-come, first-
served, within Priority Class".

In summary, there are two possible benefits to
be realized if blocked Transactions can be re-
moved temporarily from the Current Events Chain.

The time required to simulate with a model can
conceivably be decreased; and arbitrarily-
defined queue disciplines can be implemented.

For the reasons cited, an entity known as “User
Chains" has been made a part of the GPSS lan-
guage. User Chains are a "someplace else" where
Transactions can be when they are in a model,
but are not on the Current Events Chain or one
of the other "implicit" chains. Like the Cur-
rent and Future Events Chains, User Chains have
a "front" and a "back". But here the similarity
stops. In the case of the Current and Future
Events Chains, the GPSS Processor automatically
moves Transactions to and from them, and main-
tains a pre-defined ordering property for Trans-
actions on them. In the case of User Chains,
Transactions are hooked -onto them only accord-
ing to logic explicitly provided by the analyst.
Furthermore, the analyst can choose from several
available alternatives tc determine the position
a Transaction is to occupy on a User Chain when
it is placed there. In like fashion, Transac-
tions are unlinked from User Chains and brought
back into active status only according to the
analyst's explicitly-providad logic. The ana-
lyst can also choose from a series of options in
selecting the one or more Transactions which are
to be unhooked from a User Chain and put back
onto the Current Events Chain.

This overall logic of User Chain use is shown
schematically in Figure 1. Blocks in the figure
have been labeled A, B, C, D, €, and F. Blocks
C, D, and E suggest the basic sequence followed
to simulate use of a limited resource, such as
that modeled with a Facility or Storage. C, D,
and E might be a SEIZE-ADVANCE--RELEASE combina-
tion, or an ENTER-ADVANCE-LEAVE sequence. Block
A represents the "look-ahead" feature of User-
Chain logic, and block B indicates the conse-
quence which follows when the look-ahead reveals
that a blocking condition exists. Block F sug-
gests how an active Transaction which has just
removed a blocking condition causes a Transac-
tion to be unlinked from a User Chair and
brought back to the Current Events Chain,
scheduled to make use of the now-available re-
source.

As might be expected, a pair of complementary
GPSS Blocks is used to accomplish the User-Chain
logic shown in Figure 1. One of these Blocks
corresponds to the "linking logic" shown at A

and B in the figure. The other performs the "un-
linking logic” shown at F. It is essentially the
use of these two Blocks which will be described
in this paper.

User Chains have many of the same features as
cther GPSS entities. There can be many different
User Chains in a model. Each chain can be named

[b] Familiarity with unique and non-unique blocking conditions and the Scan Indicator is assumed. For
an explanation of these concepts, see sections 7.2 and 7.3 in reference [1].

141

TRANSACTION ARRIYES
AT MODEL SEGMENT
WHERE BLOCKAGE MAY
EXIST

(n)

DOES
A BLOCKING
CONDIT)ON
EXIST

LEAVE CURRERT
EVENTS CHAIN:

PATH OF

TRANSACTION
BEING LINKED

NO
PATH OF TRANSACTION BEING UNLINK&

(c)

BLOCK CAPABLE
OF DENYING ENTRY

l’ (p)

BLOCKS SIMULATING
USE OF LIMITED
RESOURCE

é' (e)

BLOCK WHOSE
EXECUTION REMOVES
THE BLOCK!NG
CONDITION

1L ()

URLINK A TRANSACTION

FROM THE USER CHAIN:

SEND 17 TO USE THE -
RESOQURCE

™~

B FRONT OF CHAIN

////,BACK OF CHAIN

&

TRANSACTIONS ON THE
APPLICABLE USER CHAIN

TRANSACTION WHICH TRIGGERED
THE UNLINKING GOES ON ITS

HWAY IN THE MCDEL.

Figure 1

A Schematic Representaiiun of the Logic of User Chain Use

either numerically, or symbolically, according to
the usual rules. The number of different User
Chains permissible depends on the amount of com-
puter memory available to the Processor. Like
Facilities, Storages, Queues, Tabies, Blocks,
etc., Usar Chains havr a set of Standard Numeri-
cal Attributes associated with them, Furthermore,
a set of User Chain statistics much Tike those
for Queuss appears os part of the standard out-
put produced at the end of a simulation.

Like the Current and Future Events Chains, non-
empty User Chains are printed out by the Pro-
cessor at the end of a simulation only if "1" is
used as the D Operand on the START Card. The
PRINT Block can also be used to print out User
Chains. For this purpose, the Block's A and R
Operands indicate the smallest and largest num-

142

bers, respectivaly, of the User Chains which are
to be printed out. The Field C mremonic is CHA.
When a Transaction moves into the Block "PRINT
2,5,CHA", then, User Chains 2 through 5 are
printed out as a result.

3. Transaction Movement to and from
User Chains: The LINK Block and
the UNLINK Block

The ability to put a Transaction onto a User
Chain is provided with the LINK Block. The LINK
Block can be used in either one of two modes:
conditional mode, or unconditicnal mode. A con-

ditional-mode LINK Block plays the rotes of
blocks A and B in Figure 1; that is, it embodies
a certain "look-ahead" feature, as suggested by
block A in Figure 1, and it has the capability
of either sending a Transaction to capture an

available server, or of putting a Transaction
onto a User Chain if there is no available
server. In contrast, an unconditional-mode LINK
Block has no effective look-ahead capability; it
therefore plays only the role of block B in Fig-
ure 1. Transactions which enter an uncondition-
al-mode LINK Block are aiways put onto a User
Chain as a consequence.

Because use of the LINK Block in unconditionai
mode is the easiest to unde''stand, this usage
mode will be discussed fiist. Consider Figure
2, which spells out the spacific detai’s asso-
ciated with the LINK Block. As indicated in
that figure, when no C Operand is supplied for
the LINK Block, the Block is being used in un-
conditional-Tinkage mode. (In fact, if the C
Operand were eliminated from the LINK Block in
Figure 2, the path leading from the LINK Block
would be eliminated, too.? When a Transaction
moves into such a LINK Block, it is placed on
the User Chain whose name is supplied by the
Biock's A Operand. The position an incoming
Transaction takes on the User Chain is gov-
erned by the LINK Block's B Operand. The four-
character B Operands FIFQ (First-In, First-Out)
and LIFO (Last-In, First-Out) cause the Trans-
action to be placed on the back or front of the
chain, respectively. If the B Operand is Pj,
where j is some integer from 1 to 100, Trans-
actions are arranged on the User Chain in order

of increasing Pj value [c]. Each incoming
Transaction §s placed ahead of those chain resi-
dents which have a higher Pj value, but behind
those which have a lower Pj value. In case of
ties, the incoming Transaction goes behind other
residents having the same Pj value. For example,
suppose that Transactions A, B, and C have P3
values of -4, 21, and 32, respectively, and they
enter the Block "LINK HOLD,P3". Then, after the
Tinking, Transaction A is at the front of the
User Chain HOLD, B is behind it, and C is at the
back of the chain. If Transaction D now enters
the LINK Block and has a P3 value of 21, it is
g;aged between Transactions B and C on the User
ain.

Linking is conditional when the LINK Block's €
Operand is used. ransaction moving into a
conditional-mode LINK Block will either be placed
on the Yser Chain, or will be routed to the "C
Block", i.e., the Block in the Location whose
name is supplied by the C Operand. In practice,
the "C Blcck" often turns out to be the Block
which is sequential to the LINK Block in the
model. But even when this is the case, the ana-
lyst must use the C Operand on the conditional-
mode LINK Block, and must attach the correspand-
ing Location Name to the sequential Block. There
is no requirement, however, that the “C Block" be
sequential to the LINK Block. This explains why
there is a horizontal path leading from the Fig-

1

A
LINK
B
E(cn
Default Value
Operand Significance or Result
A Name (numeric or symbolic) of a User Chain Error
B Specifies where the Transaction is to be placed on
the User Chain; there are three possibilities. Error
B Operand Indication
FIFO Go on the back of the chain
LIFO Go on the front cof the chain
Pj Merge into the chain immediately ahead
of the Transaction with the next higher
value of Parameter j
C Optionai Operand; Block Location to which the Trans- Transaction is

action moves if it is not iinked onto the User Chain

Figure 2

linked unconditiona-
ally onto the User
Chain

The LINK Biock and Its A, B, and £ Cperands

[c] Some caution is required here.

When the LINK Block's B Operand is Pj, the "P" simply signals to

the Processor that the linking criterion is "ordered according to the value of a Parameter". The

number of the Parameter is directly specified, and is j

j itself. If a given LINK Block has P10 as

its B Operand, then, the 1inking criterion is "ordered according to the value of Parameter 10", not
"ordered according to the Parameter whose number can be found in Parameter 10".

143

ure 2 LINK Block, instead of a vertical path.

Nothing has been said yet about what determines
whether a Transaction entering a conditional-mode
LINK Block takes the C-Block exit, or is Tinked
onto the referenced User Chain. To chcoze be-
tween these two possibiiities, the QPSS Processor
tests the setting of the referenced User Chain's
Link Indicator. Each User Chain has its own Link
ndicator. e indicator is either “on" ("Set"),
or "off" {"Reset"). If the Link Indicator is
"of f" when a Transaction moves into a conditional
mode LINK Block, the Processor does two things.

(1) 1t turns the Link Indicator "on".

(2} It does not link the Transaction onto the
User Chain; 1instead, it routes the
Transaction to the "C Block™. .

On the other hand, if the Link Indicator alresady
is "on" when a Transaction enters a conditional-
mode LINK Block, the Processor puts the Transac-
tion onto the User Chain, and leaves the Link
Indicator "on". :

As indicated earlier, the unconditional-mode LINK
Block corresponds precisely to block B in Figure
2. In this unconditional mode, the referenced
User Chain's Link Indicator has no useful purpose,
In contrast, the conditional-mode LINKBlock takes
on the roles played by blocks A and B in Figure
1. The referenced User Chain's [ink Indicator
embodies the "look-ahead" feature, and can be .
thought of much in the sense of a green-red traf-
fic light. When the Link Indicator is "off", the
traffic 1ight is green. When a Transaction en-
ters a conditional-mode LINK Block and finds that
the traffic light is green, it interprets this as
a "no blockage" signal. The Transaction moves
ahead in the model, but before doing so, it
switches the traffic light to red (Link Indicator
"on"} as a signal for later arrivals to the LINK
Block. Conversely, if a Transaction arrives at
the LINK Block and finds the traffic light is red
{(Link Indicator "on"), it interprets this to mean
that blockage exists, and consequently goes onto
thg gser Chain instead of moving ahead in the
model.

The Link Indicator's look-ahead role cannot be
fully appreciated until the Block complementary
to the LINK Block has been described, and its
effect on the Link Indicator's setting has been
indicated. It might be mentioned now, however,
that use of the Link Indicator for lock-ahead
purposes is extremely restricted. In fact, it
is really useful as a built-in look-ahead device
only when the limited resource which might offer
blockage is simulated with a Facility. Most of
-the time, the analyst supplies his own look-
ahead jogic with a TEST or GATE Block at posi-
tion A in Figure 1, and sends Transactions into
an unconditional-mode LINK Block when the look-

ahead reveals that a blocking condition exists.

The Block compiementary to the LINK {is the UN-
LIKK. It is the UNLINK Block which is used at
position F in Figure 1. The purpose of the UN- :
LINK Block, of course, is to remove one or more i
Transactions from a User Chain and put them back
on the Current Events Chain, so that the Pro-
cessor can subsequently move them forward again
in the model. By using appropriate UNLINK Block
Operands, the analyst can specify which Trans-
action(s) on the User Chain qualify for unlink-
ing, There are two broad possibilities here.

(}) Transactions can be removed from the frent
or from the back of the User Chain. In this cass,
Transactions "qualify" for unlinking simply by
virtue of the position they occupy on the User
Chain,

(2) Transactions can be removed from anywhere

on the User Chain, providing that their proper-
ties satisfy analyst-specified conditions.
Only the possibilities indicated in (1) above
will be described in this section. The possi-
bilities indicated in (2) will be taken up in
Section 7.

The UNLINK Block is shown with its various Oper-
ands in Figure 3. In considering the Block, it
is important to distinguish between the Uniinker- =
Transaction (i.e., the Transaction which moves
into the UNLINK Block, thereby initiating the un-
1inking operation), and the Unlinkee-Transaction
(i.e., the Transactions being unlinked). Uuhen a %
Transaction enters the UNLINK Block, the Proces- o
sor removes from the referenced User Chain the

number of Transactions specified via the C Oper-

and (assuming this many are on the User Chain to

begin with, and that they satisfy the unlinking

conditions). The C Operand, which can be a con-

stant, a Standard Numerical Attribute, or ALL, is

termed the "Unlink Count". If the C Operand is

ALL, then all qualifying Transactions on the re-

ferenced User Chain will be unlinked. The UNLINK

Block's B Operand indicates the Location of the

Block to which each of the Uniinked Transactions

is to be routed. The D and E Operands are used

in combination to indicate from which end of tie

User Chain the Unlinked Transactions are to be

taken. When neither Operand is used, Transac-

tions are unlinked frem the front of the User

Chain. When BACK is used as the D Operand, and

the E Operand is not used, Transactions are un-

linked from the back of the User Chain.

The UNLINK Block's F Operand is optional. If it
is not used, the Uniinker moves unconditionally
from the UNLINK Block to the sequential Block.
If used, the F Operand supplies the name of the
norn-sequential Location to which the Unlinker
moves next if no Transactions were unlinked in
the attempted unlink operation [d].

[d] For the two UNLINK Block D-E combinations in Figure 3, the condition "no Transdctions were unlink-

——

ed can arise if and only if the referenced User Chain 13 empty prior to the attemptad unlinking.
For the other UNLINK Block D-E Operand combinations to he discussed in section 7, the "nq Trans-
actions were unlinked" condition can occur even when there are Transactions on the User Chain at

the time of the attempted unlinking.

144

Now consider the effect of the UNLINK Block on
the referenced Ucer Chain's Link Indicator. Hhen
the User Chain is empty at the time a Transaction
moves into the UNLI: 1ock, the Processor
switches that User Chain's Link Indicator “off".
Using the traffice 1ight znalogy, this is equiva-
Tent to switching the traffic light from red to
green. It is logical for the Unlinker to do this
when it has just ceased to cause blockage at a
point, and then discovers (because of the empty
User Chain) that no other Transaction is currently
waiting for the blockage to be removed. Later,
when the next Transaction appears at the asso-
ciated LINK Block, the green traffic light serves
as a signal that it need nnrt go on the User
Chain. Instead, the Traasaction will switch the
Tight to red, then move ahead in the model with-
out delay.

Control of a User Chain's Link Indicator can be
summarized this way.

(1) The Link Indicator can be turned "on" (but
never turned "off") at the LINK Block.

(2) The Link Indicator can be turned "off"
(but never turned "on") at the UNLINK Block.

Consider next a chain-oriented interpretation of
the way the UNLINK Block works. When a Transac-
tion enters the UNLINK Block, the Processor re-
moves Transactions from the referenced User
Chain, one-by-one, placing each Transaction in

turn on the Current Events Chain as the last
member 1n 1¢s Priority Class. The Processor
works from the front of the User Chain toward the
back, unless the D-E Operand combination is
"BACK; not used", in which case it works from the
back toward the front. Execution of the UNLINK
Block causes the Status Change Flag to be turned

“"on" if at least one Transaction is thereby un-

linked [e]. When the UNLINK operation is com-
plete, the Unlinker continues its forward move-
ment in the model. This means that the Unlinked
Transactions, if any, have not yet been proces-
sed. When the Unlinker finally comes to rest,
the Processor tests the Status Chanae Flag and,
if it is "on", turns it "off", and re-starts the
scan of the Current Events Chain. This guaran-
tees that, independent of their Priority Level,
any Unlinked Transactions will be processed at
the current reading of the simulation clock.

Finaily, the relationship between User Chains and
Block Counts should be carefully noted. When a
Transaction is on a User Chain, it is not "in"
any Block in the model. In particular, it is not
“in" the LINK Block via which it was put onto the
User Chain. Transactions on User Chains do not
reflect themselves, then, in any fashion through
Current Counts at Blocks. When a Transaction has
just been unlinked from a User Chain and brought
to the Current Events Chain, it would seem that
it is also not yet "in" any Block. Conceptually,

A
Bl c UNLINK
o
. (Fi;
Default Value
Operand Significance or Result
A Name (numeric or symbolic) of > User Chain Ervor
‘B Block Location to which the unlinked Transaction{s) is
(are) to be routed Error
C The numbeyr of Transactions to be unlinked (the Unlink
Count); can be a constant, a Standard Numerical
Attribute, or ALL Ervor
Dand E Specify which end of the User Chain Transactions are
to be taken from, per this scheme: Transactions are
. unlinked from the
D Operand E Operand End Indicated front of the
Not Used Not Used Front End User Chain
BACK Not Used Back End
F Optional Operand; Block Location to which the Unlinker- Unlinker-Trans-

Transaction moves next if no Transactions are unlinked

Figure 3

action uncondi-
tionally moves to
the sequential
Block in the model

The UNLINK Block and Its Operands

[e] Familiarity with the concept of the Status Change Flag is assumed.

sections 7.2 and 7.3 in reference [1].

145

For an explanation, see

CUSTOMERS
ARRIVE

\ ENTER THE
LINE

P

GENE!AT'El TIMER ARRIVES
(\\ AT TIME 480
480
SHUT OFF
THE RUN

TERMINAT

HOLD
LINK CAPTURE IMMEDIATELY
EIFO IF POSSIBLE; OTHER~
WISE, GO ONTO BACK
OF USER CHAIN
(SETEM)
(GETEM)
SEIZE CAPTURE THE
_.__.% BARBER
108
DEPARY LEAVE THE
JOEQ LINE
ADVANCE USE THE
BARBER
16,4
RELEASE JOE /' pree THE
BARBER
-
: Jl'
]
ol
[*7]
e HOLD
- SEND NEXT WAITING
! 1 UNLINK CUSTOMER (IF ANY)
T0 CAPTURE
TERMINATE LEAVE THE
SHOP

Flgure 4 A First Example of User Chain Use
the just-unlinked Transaction has much in common
with Transactions which are "on their way" into a
model via a GENERATE Block into which they have
not yet moved. Nevertheless, from the point of

view of Current Counts, the Processor treats un-
linked Transactions as though they are in the

UNLINK Block whose execution caused them to be
roug

rom the User Chain to the Current Events

146

Chain. This fact is sometimes of importance when
Current Block Counts are being interpreted. It
also explains why the UNLINK Block's B Operand
(i.e., the "Next Block Attempted” for unlinked
Transactions) appears in Figure 3 on a path lead-
ing from the UNLINK Block. The idea here is to
provide a graphic indication of the fact that un-
1inked Transactions do move from the User Chain
via the UNLINK Block intc their "Next Block At-
empted”. In contrast, the other two paths lead-
ing from the Figure 3 UNLINK Block apply to the
Unlinker-Transaction. One path leads to the se-
quential Block; the other leads to the non-
sequential Block which 1s implied if the optional
F Operand is used.

4, Basic User Chain Use with
Facilities and Storages

The basic use of User Chains with Facilities and
Storages is iliustrated through a series of three
examples in this section. First, their use with
singie Facilities is shown. In this situation,
the User Chain Link Indicator is adequate for the
required look-ahead logic. Then, their use with
Storages is illustrated. Such use requires
analyst-supplied look-ahead logic, and this in
turn requires caution in terms of a potential
simultaneity-of-events problem which can arise.
Later, in Sections 5 and 7, additional examples
of User Chain use will also be given,

4.1 User Chain Use with a Facility. A Block
fagram tor a one-Tine, one-server queuing system
is presented in Figure 4. The particular model
shown is for a "one-man barber shop®. Inter-
arrival time for customers at the shop is 18+6
minutes; service time is 1644 minutes. The Fm-
plicit time unit in the model can consequently
be inferred from Figure 4 to be 1 minute. The
two-Block timer segment indicates that, when the
model 1s run, the simulation simply shuts off
after 480 minutes (i.e., 8 hours) of simulated
time. No special provisions are made, then, to
provide a reaiistic closeup feature for the medel.
Any “customers" in the model at the end of the
Bth simulated hour are simply left “as they are".
The queue discipline to be practiced in the shop
is first-come, first-served.

Notice that a LINK-UNLINK Block pair has been in-
corporated into the Block Diagram, implying that
customer-Transactions who are waiting their turn
to get a haircut are kept in this simple model on
a User Chain. The LINK Block has been sandwiched

between the QUEUE and SEIZE Blocks; similarly,
the UNLINK Block is sandwiched between the RELEASE
and TERMINATE B8locks. The effect of the presence
of these two Blocks will now be explored.

Wkhen a customer arrives at the shop, he first up-
dates waiting line statistics by moving into the
QUEUE Block. He then moves into the conditional-
mode LINK Biock. If the Link Indicator is "on"
(traffic light red), the customer-Transaction is
Tinked on the back {(FIFQ) of the User Chain HOLD,
and the Link Indicator remains "on". If the Link
Indicator is found to be “"off" (traffic light
green), however, it is switched "on" and the cus-
tomer-Transaction proceeds to the Bliock in the
location GETEM, i.e., moves into the SEIZE Block.
The DEPART-ADVANCE-RELEASE sequence then follows.
After the RELEASE, the customer-Transaction at-
tempts to unlink 1 Transaction from the front of
the User Chain HOLD (UNLINK Block D and E Oper-
ands both blank), sending it to the Block GETEM
to capture the now-available Facility. If the
attempted unlinking is unsuccessful because the
User Chain is empty, the Link Indicator 1is
switched from "on" to "off" (traffic 1light green)
so that the next arrival, instead of linking,
will move directily to SEIZE.

Note that, when the traffic light is red at the
LINK Block, arriving Transactions are placed on
the back of the User Chain (go to the back of the
Tine). Later, via action initiated by an Un-
linker Transaction at the UNLINK Block, they are
removed from the front of the User Chain. The
resulting queue discipline is first-come, first-
served [f]. _

The pattern foliowed by the Link Indicator in the
Figure 4 model reveals how it serves as a built-
in look-ahead device in the context of Facility
use. It is initially "off". The first customer-
Transaction turns it "on", then captures the ser-
ver. While the server is being used by this
first customer of the day, the Link Indicator re-
mains "on". Suppose the second customer-Transac-
tion arrives while the server is still in use.
Finding the Link Indicator "on", the second cus-
tomer goes onto the User Chain. When the first
customer finishes, he unlinks the second customer
and sends him to capture the barber. Meantime,
because the User Chain referenced from the UNLINK
Block was not empty, the Link Indicator remains

"on“. In fact, it is “"on" whenever any customer
is using the barber, whether that customer (a)
found the indicator "off", and moved directly to
capture, or (b) found the indicator "on", and
spent time in residence on the User Chain before
eventually being sent to capture. The only way
to turn the Link Indicator "off" is for a custo-
mer to finish with th: barber when no other cus-
tomers are waiting (User Chain empty). Turning
the Link Indicator "off" in this circumstance
guarantees that when the next customer does ar-
rive, he will preoceed to capture the barber im-
meidately.

The punchcards for the Figure 4 model were pre-
pared, and the model was run for one simulated
day. The D Operand on the START Card was used to
force a chain printout at the end of the simula-
tion. Tigure £ shows a portion of the output
that was thereby produced. Parts (a), (b), and
(c) in Figure & show the Current, Future, and
User Chains, respectively. There is a single
resident on the Current Events Chain, Transaction
3; this Transaction is poised to release the Fa-
cility. [The NBA (“Next Block Attempted") column
in Figure 5(a) shows a value of 7. This is the
Location occupied in the model by the RELEASE
Block, as "counting it out" in Figure 4 will
show.] The two residents on the Future Events
Chain are the incipient Transaction arrivals at
the two GENERATE Biocks in the Model. (Their NBA
entries are 1 and 10, respectively, which are the
Loga%i?ns occupied by the GENERATE Blacks in the
mode1.

In Figure 5(c), the User Chain is described as
"USER CHAIN 1". The symbolic name HOLD has been
made equivalent to the number 1 by the Processor,
and this numeric equivalent has been used to
label the User Chain in the printout. There is
one Transaction resident on the User Chain, Trans-
action 4. Note that the various column labels
for the User Zhain are identical to those for the
Current and Future Events Chains.

The Transaction on the User Chain is the next
customer, waiting for the barber. We know this
because of the problem context, but the GPSS Pro-
cessor does not know this., In fact, the "destin-
ation" of the Transaction on the User Chain will
not be known to’ the Processor until it is un-
Tinked. At that time, the UNLINK Block's B Ope-

[f] It is sometimes mistakenly concluded that if the B Operand at a LINK Block is FIFO (meaning that
incoming Transactions are linked onto the back of the User Chain), it must be specified at the
associated UNLINK Block that Transactions are to be remcved from the front of the User Chain; or,
that if the B Operand at a LINK Block is LIFO (meaning that incoming Transactions are linked onto
the front of the User Chain), the associated UNLINK Block must specify that Transactions are to be

removed from the back of the pertinent User Chain.
Blocks are entirely independent of each other.

This is not the case. The LINK and UNLINK

It is the analyst's responsibility to ses to it

that the linking and unlinking criteria interact in such a way that the overall effect "makes

sense" in context.

For example, the B Operand at a LINK Bleck can be FIFO, and the associated

UNLINK Block can specify that Transactions are to be unlinked from the back of the pertinent
User Chain. The resulting queue discipline would be "last-come, first-served".

147

CURRENT EVENTS CHAIN

TRANS 80T BLOCK PR SF NBA SET MARK-TIME P1 P2 P3 P&
3 480 6 7 3 453 0 0 0 0
0 0 o 0
(a) Current Events Chain* 0 ° 0) 0
FUTURE EVENTS CHAIN
TRANS BDT BLOCK PR SF NBA SET MARK-TIME Pl P2 K P4
i 409 1 1 -27) 0 o 0
) o 0 0
0) 0 0
5 060 10 5 -1 ¢ 0 o 0
« . 0 0) 0
1 *
(b) Future Events Chain ° 0 0 0
USER CHAIN 1
TRANS BDT BLOCK PR SF NBA SCET MARK-TIME P1 P2 - p3 P4
& 472 4 472 0 : 0 0 0
- ' 0 o o 0
b o 0 0 0
(c) User Chain*
USER CHAIN TOYAL AVERAGE ~ CURRENT AVERAGE MA X T MUM
ENTRIES TIME/TRANS CONTENTS CONTENTS CONTENTS
HO_D ie 40277 :] _ «160 1
(d) User Chain Statistics
QUEUE MAX IMUM AVER AGE TOTAL | ZERO PERCENT AVERAGE SAVERAGE TABLE CURRENT
CONTENTS CONTENTS ENTRIES ENTRIES - ZEROS TIME/TRANS TIME/TRANS NUMBER CONTENTS
JOEQ 3 . i60 27 12 d4e4 24851 50133
SAVERAGE TIME/TRANS =

, i
AVERAGE TIME/TRANS EXCLUDING ZERO ENTRIES

| (e) Queue Statistice ' : 2
|

y ‘ Figure 5 Selected Output Produced by the Figure'4‘Mode1.at'the End of the Simulation
\
|
|

*The 7 rightmost columns of information assOciated with these chain; bave been eliminated.

rand will be used by the Processor to determine
the unlinked Transaction's "Next Block Attempted".
Not:, then, the entry in the BLOCK column in
Figure 5(c) is "blank". The BLOCK column indi-
cates which Block a Transaction is currently "in",
But, as explained earlier, when a Transaction is
on a User Chain, it is not "in" any Block in the
model.

The BDT ("Block Departure Time") column in Figure
5(c) shows a value of 472. Block Departure Time
is the time the Transaction is scheduled to try
to move into its "Next Block Attempted." As far
as its "future movemeni" is concerned, the BDT
entry for User Chain Transactions is meaningless.
The BDT value shown in User Chain printout can be
interpreted as the time the Transactionwas 1inked
onto the User Chain.

The statistics for the User Chain HOLD which ap-
pear in the standard output are shown in Figure
5(d). Figure 5(e) shows the statistics for the
Queue JOEQ. Comparison of the two sets of sta-
ticstics reveals that they are quite similar.

The Queue statistics contain somewhat more infor-
mation than those for the User Chain, indicating
how many zero entries there weve (ZERQ ENTRIES),
what percentage the zero entries were of the
total (PERCENT ZEROS), and what the average Queue
residence time was when zero entries were in-
cluded (AVERAGE TIME/TRANS).

At first, it might bz thought that there are no
“zero entries" to User Chains because, "if block-
age does not exist, Transacticns bypass the chain
and move directly forward in the model." User
Chains can experience zero antries, however. That
is, it s possible for some Transactions to have
zero residence time on a User Chain. This will
happen, for example, in the Figure 4 model when
the following conditions are true.

(1) The Facility is in use.

(2) No Transaction is waiting to capture the
Facility.

(3) There is a time-tie between the two events
"completion of service", and "arrival of the next
customer".

(4) The event-sequence is "arrival", foliowed
by "service completion".

In the scan of the Current Events Chain at the
simulated time in questicn, then, the arrivin
customer-Transaction is processed first, per ?4)
above. Finding the User Chain's Link Indicator
"on", the Processor puts this Transaction on the
User Chain. The releasing Transaction is then
processed. After moving through the RELEASE
Block, it unlinks the just-arrived Transaction
from the User Chain and sends it to capture the
Facility. Hence, although the just-arrived Trans-
action was made a User Chain resident, its resi-
dence time on the chain was zero. It contributes
then, to the User Chain TOTAL ENTRIES statistic.
And, from the Queue's point of view, it contri-
butes to the ZERO ENTRIES statistic.

The phenomenon just described explains why there
were 18 TOTAL ENTRIES to the User Chain in Figure
5(d), but only 15 non-zero entries to the Queue
ir. Tigure 5(e). Three of the User Chain entries
were apparently of the "zero residence time" type.
Note that this phenomenon also makes interpreta-
tion of the AVERAGE TIME/TRANS statistic for User
Chains somewhat subtle. It would be easy to draw
the false conclusion for the Figure 4 model th:t
$AVERAGE TIME/TRANS in the Queue should equal the
AVERAGE TIME/TRANS statistic for the User Chain.
$AVERAGE TIME/TRANS measures the waiting time

only of those who had to wait, however; in con-
trast, the AVERAGE TIRE/TRANS value for User
Chains can, in general, include Transactions
which did not actually have to wait. The 3 “"zero
residence time" entries to the User Chain ex-
plains why AVERAGE TIME/TRANS is only 4.277 time
units in Figure 5(d), whereas $AVERAGE TIME/TRANS
is 5.1333 time units in Figure 5(e).

User Chain statistics and Queue statistics, al-
though similar, differ from each other, then, in
these three major ways.

(1) Zero-entry information is provided for
Queues.

(2) The AVERAGE TIME/TRANS User Chain statis-
tic requires careful interpretation.

(3) The distribution of Queue residence time
is easily estimated with use of the QTABLE Card,
whereas nothing analogous to the QTABLE Card is
available for User Chains.

4.2 More About the Link Indicator. Consider use
of the LINK-UNLINK Block pair in connection with
any segment of a GPSS Block Diagram. Figure 5§
ustrates this situation where, for generality,
the particular Blocks occupying the Block Diagram
segment in question are not shown, but for speci-
ficity the LINK-UNLINK Block Operands are shown.
Assume that Transactions can gain entry to the
segment only by moving through the conditional-
mode LINK Block in the figure, and that they can
exit the segment only by moving through the UN.
LINK Block. There can then never be more than
ore Transaction Tn_the encircTed Block Diagram
segment at a time. B

This last statement can be made as a direct con-
sequence of the properties of the User Chain's
Link Indicator. The reasoning goes like this.
Vhen the simulation starts, the encircled segment
is empty. Furthermore, the Link Indicator is
"off". When the first Transaction arrives at the
LINK Block, it therefore moves immediately to the
3ock in the Location MOVIN, thereby entering the
segment., (MOVIN is assumed to be the Location of
the "first" Block ir the encircled segment.)
khile the first Transaction is in the segment,
tien, any other arrivals at the LINK Block are
mt on the User Chain. When the first Transac-
tion eventuaiiy leaves the segment via the UN-
LINK Block, it unhocks exactly 1 Transaction from
the User Chair, routing it into the segment,

49

Only Point of Eatry to
the Segqment {(Hypothesized)

Any Block Diagram
Segment

UNLINK

(MOVIN)

Only Point of. Departure from
the Segment (liypothesized)

Figure 6 Use of a User Chain with an Ar-
bitrary Biock Diagram Segment

Hence, the segment-exiting Transaction "replaces
itself" in the segment with another Transaction.
This "replacement pattern” is in effect as long
as there is at least 1 Transaction on the User
Chain when the UNLINK Block is executed. If the
User Chain is empty when the UNLINK Block is exe-
cuted, the resuit is that the Link Indicator gets
turned "off". This means that when another Trans-
action eventually arrives at the LINK Block, it
moves immediately into the segment, causing the
Link Indicator to be turned back "on" in the pro-
cess, ntc,,etc.

The ideas Just expressed really only repeat what
was said about the Link Indicator when it was in-
troduced in Section 3. Repeating the ideas in
the context of Figure 6, however, leads directly
to the two following conclusions.

Conclusion 1. When a User Chain is used in
connectior with a Facility, the SEIZE-RELEASE
Block pair is not really needed, unless the ana-
lyst requives the statistics which the Facility
entity provides. After all, use of a SEIZE-
RELEASE Block pair has two effects.

(1) It guaranteesc that there will never be

150

HOLD
LINK
FIFO
GETEM
| (OETRM?
CGETEM)
ADVANCE
E—
16,4
”
zi JL
§
oLD
Tl : UNLINX
GETEM

&
En

Figure 7 A Model Segment which Simulates a
Single Server without Using a
SEIZE-RELEASE Block Pair

more than one Transaction at a time in transit
between the pair of Blocks (assuming, of course,
that alternative methods of "getting between"
the pair of Blocks are 7ot used in the model).

(2) It causes the ¢ ;$ Processor to maintain
certain statistics about the "use" of the
Facility.

But Effect (1) is precisely the effect that the
Link Indicator has when a conditional-mode LINK
Block is used. Consequently, if Effect (2) is
not needed, the SEIZE-RELEASE Block pair can be
eliminated. For example, Figure 7 repeats Fig-
ure 4, with the SEIZE-RELEASE Block pair eli-
minated. The QUEUE-DEPART Block pair has also
been eliminated, on the hypothesis that the User
Chain statistics are sufficient measures of wait-
ing 1ine behavior for the anplication at hand.
The Block sequence "LINK-AUVANCE-UNLINK" in Fig-
ure 7 may seem a bit strange at first, but it
nonetheless validly simulates a single server
under the conditions stated here.

Conclusion 2. When the User Chain's Link
Indicator 1s relied upon to supply "look-ahead
Togic", 1t is extremely ‘nflexible. In fact, be-
cause a consequence o7 1ts use 1s to iet only

“one Transaction at a time" in the model segment
between the LINK and UNLINK Blocks, the Link In-
dicator is really only of value when the con-
strained resource being simulated betwezn the
LINK-UNLINK Blocks is a Facility (or a unit-
capacity constraint). For example, suppose the
constrained resource is being simulated with a
Storage whose capacity is two. This means that
up to 2 Transactions at a time should be permit-
ted to be in transit between the LINK-UNLINK

Biock pair. Because this effect cannot be
achieved with the Link Indicator, the analyst

must supply his own lcok-ahead logic to determine
whether an arriving Transaction can move into the
(]

TN
ENERATE
bm
6.2
1

PRIORITY

GATE
SNF

;\ CFULUP)

(OKNOW) CFULUP)

LINE

ENTER LINK

FIFU

ADYANCE

16,4

J
LEAVE w

3 ,
0
Z
8i)L
> LINE
1 UNLINK
TERMINATE

Figure 8 A Second Example of User Chain Use

151

model sagment, or must be put onto the User Chain.
The next section goes into further detail about
use of a User Chain with the Storage entity.

4.3 User Chain User with a Storage. Suppose that
in the Figure 4 barber shop, customer inter-arri-
val time decreases to 6+2 minutes and, to offset
this heavier traffic pattern, two more barbers
are hired, Figure 8 shows the Block Diagram for
a model of the shop under these circumstances.

- Discussion of the mode! will be broken into two

parts. First, the "GATE-ENTER-LINK" Block ar-
rangement will be commented upon. Then the reason
for placing the PRIORITY Block between the GENE-
RATE and GATE Blocks will be explained.

As indizated under Conclusion 2 in the preceding
sub-section, the analyst must supply his own
Yook-ahead logic when a User Chain is used in
conjunction with a Storage. The GATE Block in
Figure 8 provides this required look-ahead logic.
When a customer-Transaction moves into the "GATE
SNF 1" Block, a test is conducted to determine
whether at least one barber is currently avail-
able, i.e., to determine whether the Storage used
to simulate the three barbers is not full. If
the “Storage Not Full" condition is true, the
customer-Transaction moves sequentially through
the gate and captures a barber. If the “"Storage
Not Full" condition is false, the customer-
Transaction exits the gate non-sequentially and
moves into the LINK Biock. No C Operanu is pro-
vided with the LINK Block, with the result that
Transactions entering it are unconditionally
placed on the User Chain. Transactions enter the
LINK Block, however, only on the condition that
the Storage is full., Via use of the GATE Block,
then, the "unconditional" linkirng of Transactions
is forced to be conditional after all.

Now consider why the "PRIORITY 1" Block has been
placed between the GENERATE and GATE Blocks in
the Figure 8 model. The PRIORITY Block has been
used to defense against invalid lcgic which could
come about if a certain simultaneity-of-events
situation were to arise. Suppose that the fol-
Towing conditions are true at a given point in
simulated time.

(1) A11 3 barbers are captured.

(2) At least 1 Transaction is waiting on the
User Chain.

(3) One of the in-service customers is just
leaving.

(4) The next customer is just arriving.

(5) The leaving Transaction is ahead of the
arriving Transaction on the Current Events Chain.

When the leaving Transaction is processed, it
first moves into the LEAVE Block, thereby chang-
ing the condition "Storage Not Full" from false
to true. This leaving Transaction then moves
into the UNLINK Block, causing the Transaction

at the front of the User Chain to be moved to the
Current Events Chain. Because of its earlier
movement through the PRIORITY Block, the unlinked

Transaction has a Priority Level of 1. It is it therafore moves non-sequentially rrom the GATE

therefore piaced on the Current Events Chain Block to the LINK Block, and is put on the User
ahead of the arriving customer-Transaction, which Chain. The previously-waiting customer has cap-
has a Priority Level of 0. After the leaving tured the barber, which is as it should be.

Transaction has terminated, the Processor re-
starts the CEC scan. It first processes the just- It is easy to see how the logic of the model would
unlinked customer-Transaction, moving it into the be subverted {f the PRIORITY Block were removed
ENTER-ADVANCE sequence. Execution of the ENTER from the model, and the conditions described above
Block results in the condition "Storage Not Full" came about. The unlinked Transaction would be
being made false again. When the arrivirg custo- put on the current tvents Chain behind the just-
mer-Transaction is processed later in the scan, arriving customer-Transaction. When the
arriving Transaction reached the GATE Block, the
"Storage Not Fulil" condition would be true. The
"newcomer" would therefore capture the barber.

When the just-unlinked Transaction eventually tried
R UL to move into the ENTER Block, entry would be
- / denied. This previcusiy-waiting Transaction
' would have "missed its chance". Furthermore,
its subsequent waiting would take place on the
(FULUP) Current Events Chain, not on the User Chain.
LINE
/ LiNK Whether using the PRIORITY Bilock in the Figure 8

giro || model is "worth it" can be debated. The Block
b”:“\ does guarantee that the logic of the model will
JL always be valid. On the other hand, to inciude
this "

(OKNOW)

s "additional” Block increases the number of
Blocks in the model from 8 to 9. Speaking very
ADVANCE roughly, this means that exacution time for the
model is increased by about 12.5% relative to the
no-PRIORITY-Biock version of the model [g].

1.4 Depending on the size of the implicit time unit

and the intensity of the traffic pattern, the
conditions leading to the "problem of simulta-
R

neity" may come about very infrequently. To
save execution time in modeling situations such
as this, the analyst might rrafer to deliberately
exclude the PRIORITY Biock, and simply "accept"

occasional invalidity ir. his models. (Note that

:L the potential "problem J)f simultaneity” did not

have to be defensed against when the Link In-
SUFFER dicator provided the lcok-ahead logic in Figure
4, To check your understanding of the ideas
presented so far in this paper, you should now
try to explain why this is true).

‘]/ , 4.4 An AlZernative for Handling the Simultaneity
LEAVE 1 Problem. In the Figure 8 model, it was
Tconvenient" to place the PRIORITY Block between
the GENERATE and GATE Blocks. But this was
largely because the modeling context used as an
example was completely self-contained. It is not
normally true that a Transacticn "appreaches" a
LINE Storage from a GENERATE Block. More often than
UNLINK not, the "approach” is made from some preceding
! non-trivial model segment. The question then
arises, how is one to handle the problem of
simulcaneity in this circumstance? The purpose
of this section is to suggest an alternative

Figure 9 An Alternative Method for Haﬁdling :ggggeg?n be used under more complicated cir-

the Potential Prqblem of Simultaneity
in_the Figure 8 I'xdel Figure S shows the suggested alternative in the
Lg] When the PRIORITY Block's A Operand is a constant, a minimum of 114 assembler instruction-execu-

tions are peirformed when a Transaction moves into the 8lock. (This count appiies to GPSS/360,
Version 1, Modification Level 3.)

PRIORITY

(OXNOW)

.

152

form of a Block Diagram segment corresponding to
use of the Figure 8 Storage. It is assumed that
all Transactions move into the segment with a
common Priority Level, whatever that may be. The
"defense" against the simultaneity problem takes
the form of the PRIORITY-BUFFER sequence placed
between the ADVANCE and LEAVE Blocks.

Consider how the PRIORITY-BUFFER combination works
to eliminate the simultaneity problem. Assume
that the conditions required for the simultaneity
probiem are in effect, as follows.

(1) A11 3 barbers are captured.

(2) At least 1 Transaction is waiting on the
User Chain.

(3) One of the in-service customers is just
leaving.

(8) The next customer is just arriving.

(5) The leaving Transaction is ahead of the
arriving Transaction on the Current Events

Chain.

Now, when the leaving Transaction is processed, it
immediately moves into the PRIORITY B8lock, where
its "old" Priority Level is reassigned as its
"new" Priority Level. This produces no change in
Priority Level, but it does cau:e the Processor

to re-position the Transaction on the Current
Events Chain as the last member in its "new"
Priority Class. This means that the leaving
Transaction is noi behind the arriving Transaction
(which reverses condition {5) stated above).

The leaving Transaction then moves into the BUFFER
Block, forcing the Processur to re-start its CEC
scan. As the re-initiated scan proceeds, the
arriving Transaction is (eventually) encountered,
finds the condition "Storage Not Full" is false
(the leaving Transaction has not yet executed the
LEAVE B]ock?, and therefore transfers non-
sequentially to the User Chain. Later in the
scan, the Processor resumes the forward movement
of the leaving Transaction, moving it through the
LEAVE Block to the UNLINK Block. The Transaction
at the front of the User Chain is then transferred
to the Current Events Chain, and enters the Storage
when the scan is re-started (execution of the
LEAVE Biock caused the Status Change Flag to i=
turned “on"; execution of tha UNLINK Block then
caused it to be turned on "again", redundantly).

It should be clear what would happen under the
stated conditions if the PRIORITY-BUFFER Blocks
were not in the modei. The leaving Transaction
would be processed first, making the condition
“Storage Not Full" true. The unlinked Transac-
tion would be put on the Current Events Chain
behind the arriving Transaction, since they are
postulated to have the same Priority Level. The
arriving Transaction would then enter the Storage,
thereby capturing the server who had been intended
for the unlinked Transaction. By the time the un-
linked Transaction was processad, there would be
"no room left" for it in the Storage. In short,
the logic of the model would be invalid.

In Figure 9, the PRIORITY and BUFFER Blocks were
shown separately, albeit in sequence, to make the

153

preceding explanation a bit more straightforward.
Active GPSS users will recall that when the
"buffer option" is used with the PRIORITY Block,
the effect achieved is precisely identical to
that of the two-Blcck PRIQRITY-BUFFER sequence
shown in Figure 9. That is, the single Block
"PRIORITY PR,BUFFER" could be used to replace the
PRIORITY-BUFFER Block-pair. In the remaining
examples in this paper, this "buvrfer option" will

"be used with the PRIORITY Block when the occasion

arises, frr the sake of "Block econcmy".
5. More Examples of User Chain Use

Two more examples of User Chain use with Facil-
ities are given in this section. The first ex-
ample illustrates application of User Chains
with two Facilities operating in parailel. The
second example shows how the "shortest imminent
operation" queue discipline is simulated with
Jse of Parameter-mode linking at the LINK Block.

5.1 User Chain Use with Two Parallel Facilities.
Suppose that two barbers work in"a barber shep.
Service time for the first and second of these
barbers is 133 and 15+4 minutes, respectively.
Customers arrive at the shop every 7+3 minutes.
Figure 10 shows how a User Chain can be incorp-
orated into a model of the barber shop. When a
customer-Transaction arrives at the shop, it
moves (through the PRIORITY Block) into the TEST
Block showr in Figure 10(a). There, it evaluates
the Boolean Variable CHECK, as defined in Fig-
ure 10(b), to determine whether either one or
both of the barbers are available. 1If°’a barber
is free, the customer-Transaction proceeds to the
TRANSFER Block in BOTH mode, from whence it is
routed to a SEIZE Block not currentiy denying en-
try. If both barbers are busy, it is routed from
the transfer-mode TEST Block to the uncondi‘ion-
al-mode LINK Block. There, it is linked onto the
back of the User Chain LONG.

Whenever a customer-Transaction releases a harber,
it causes ancther waiting customer to be unlinked
from the User Chain and routed directly to the
pertinent SEIZE Block. Because of the "PRIGRITY 1"
Block following the GENERATE Block, the unlinked
customer-Transaction is assured of being the one

to capture the just-released barber under al}
circumstances.

This example is one in which the execution time
savings resulting from User Chain use can be
substantial. In contrast with Figures 4 and 8,
where the potential blocking vonditions are both
unique, the TRANSFER Block in Figure 10 offers
non-unique blocking. If the User Chain were not
used, each delayed Transaction on the Current
Events Chain would attempt to move through the
TRANSFER Block at each CEC sc2:.., thereby con-
suming a telling amount of time. For the model
shown, the TRANSFER Block is executed successfully
one time by each arriving customer who finds a
barber immediately availabie. No attempt is
otherwise made to execute the Block.

N,

L] R et e e PP p e

PRICRITY !
MJM] llhm.g.x_.l..l._a..g.x_a_
: I |
I —:.LJ 11 [I T I | l [[T S T W WY G | .L_f_l_l.LLJ_*—.L_.I.J..LL
(b) Boolean Variable Definitin
TeST
(RYSY)
LONG
AN PANSFRRG (nanazy LINK
BOTH />‘" FIFO
CAANT CMANT)
$31ZE
X 2
} !
ADVANCE ADVANCE
13,3 15,4

B!]

. 5
z Ed
z Y $
UNLINK IONG] niiNk
i
TERMINATE TERMINAYE

{a) Block Diagram

Figure 10 A Third Example of User Chain Use

154

5.2 User Chain Use for "Shortest Imminent
Operation" Queue Discipline. Consider this
probiem. At the Facility MAC, the queue dis-
cipline practiced is "shortest imminent operation".
This means that the Transaction expected to hold
the Facility the shortest length of time is the
one permitted to capture it next. In case of

ties for shortest imminent operation, the ties are
to be resolved on a first-come, first-served basis.
When a Transaction does capture the Facility, its
actual holding time follows the expunential dis-
tribution.

Assuming that a Transaction's expected holding

time at the Facility ic stored in its second
Parameter, Figure 11 shows a Block Diagram segment
which implements this queue discipline. (It is
assumed that the Function symbolically named XPDIS
is the usual 24-point Function used to sample

from an exponential distribution with a mean of 1.)
Transactions waiting for the Facility are put onto
the User Chain QUE, ordered according to their P2
value. This means they are put onto the chain in
order of "shortest imminent operation", with ex-
pected operation times increasing from the front of
the User Chain toward the back. Furthermore, in
event of ties, each most-recent arrival is placed
behind earlier arrivals which have the same P2
value. In short, linkirg "in Parameter mode"
results in direct implementation of the shortest
imminent operation queue discipline (assuming, of
course, that Transactions are later unhooked from
the front of the User Chain).

In the Figure 11 model segment, just before a
Transaction releases the Facility, it moves into
a "PRIORITY PR,BUFFER" Block. The Processor
therefore re-positions the Transaction on the
Current Events Chain as the last member in its
Priority Ciass, and re-starts the scan. This
guarantees that, in case of a time-tie betwzen
the events "next arrival of a job", and "reil-
ease of the Faciiity", the arriving job-Trans-
action is hooked onto the User Chain before the
next Transaction to capture the Facility is cap-
tured. {It is assumed that all Transactions which
use the Facility have the same Priority Level.)
The result is to insure that the arriving job-
Transaction is included in the “competition” that
takes place to see which waiting job has the
shortest imminent operation. If this simul-
taneity-of-events situation arose and the
PRIORITY Block were not included in the Figure
11 model segment, the shortest imminent opera-
tion queue discipiine could be violated.

6. User Chain Standard
Numerical Attributes

Each User Chain has five Standard Numerical At-
tributes associated with it. The pre-defined
names of these attributes, and the significance
of the corresponding values, are shown in Tabie 1.

wWhen the Processor encounters a CLEAR Card, the
values of these Standard Numerical Attributes are
set to zero, and any User Chain residents are ve-

155

Link |QUE
P2
(TiEUp)
(TIEUP)
SEIZE
MAC

ADVANCE

P2,FN$XPDIS

\

PR
PRICRITY

BUFFER

RELEASE | \MAC

{

UNLINK
1

A Fourth Example of User Chain Use

(TIEUP)

QUE

Figure 11

moved from the model. The effect of the RESET
Card is tc set the values of CAj, CCj, and CTj to
zero. The value of CHj remains the same, and the
value of {Mj is set to the current value of CHj.
0f course, any User Chain residents are left un-
disturbed during the resetting operation.

7. Conditional Unlinking of Transactions
from User Chains

In Section 3, use of the UNLINK Block D and E
Operands to remove Transactions from (a) the
front, or (b) the back of User Chains was intro-
duced. In neither of these cas2s does a Transac-
tion have to meet a particular condition, other
than "relative position on the chain", to qualify
for uniinking. There are three other D and E
Operand combinations which can be used to impose
on potential Unlinkee Transactions the require-

Pre-defined
Name [h]
CAj, or CA$sn
CCi, or CCésn

Yalue

Integer portion of the average number of Transactions on the chain

The total number of Transactions hooked cnto the chain during the
course of the simuiation

The number of Transactions currently on the chain

Maximum number of Transactions simultaneously resident on the chain
during the simulatiox: the maximum value CHj {or CH$sn) has attained

Int?ger portion of the 5verage Transaction residence time on the
chain

Tabie 1 User Chain Standard Numerical Attributes

CHj, or CH$sn
CHMj, or CM$sn

CTj, or CTésn

Combination) ,
Number D Operand E_Operand Condition Required fer Unlinking

1 Any Standard Not used Let “j" represent the value of the D Operand; the User
Numerical Chain Transaction qualifies for unlinking if its j-th
Attribute Parameter value equals the value of the Unilinker's j-th

Parameter

2 Any Standard Any Standard Let "j" represent the value of the D Operand; the poten-
Numerical Numerical tial Unlinkee qualifies if its J-th Parameter value
Attribute Attribute equals the value of the E Gperand .

3 BYj, or Not used The potential Unlinkee qualifies if the Boolean Variable
BVSsh numbered j {or symbolically named sn) is true when it is

evaluated with that Transaction's Priority Level and Para-
meter values

Table 2 Additional D and E Combinations Possibie for the UNLINK Block

on a User Chain?' The answer is that if numeric

ment that they satisfy a specified condition.
data references in the Boolean VYariable include

These other three combinations are shown in Table 2.

For all three of the Table 2 combinations, the
User Chain is scanned from front to back by the
Processor until the Unlink Count has been satis-
tied, or the back of the chain has been reached,
whicnever occurs first. In Combination i, the
value of a specified Parameter of the potential
Unlinkee must a2qual the value of the same Para-
meter of the Unlinker. The UNLINK Block's D
Operand indicates the number of the applicable
Parameter; the E Operand is not used. T¥n Cow-
bination 2, the value of a specified Parameter
of the potential Unlinkee must equal some other
arbitrarily-specified value. The UNLINK Black's
D Operand again piovides the number of the po-
tential Unlinkee's applicabie Parameter; the E
Operand is the “Match Argument", i.e., provides
the vaiue which the Unlinkee's Parameter value
must equaj.

In Combination 3, the D Operand references a
Boolear Variable, and the E Operand is not used.
For each Transaction on the User Chain, the Pro-
cessor evaluates the Boclean Variable. Only if
its value is true does the Jser Chain Transaction
qualify for unlinking. The question naturally
arises, "hcw can the value of a Boolean Variable
be made to depend on pro,erties of a Transaction

Priority Level and/or Parameter values, the User
Chain Transaction currently being examined sup-
plies these values, not the Transaction at the
UNLINK Biock.

An example will now be given to show use of a
Boolean Variable with the UNLINK Block. Consider
the “shortest imminent operation" queue disci-
pling, as 11lustrated in Figure 11. A disadvan-
tage of this queue discipline 1s that jobs with

a large imminent operation time can be delayed
for very long times waiting for the Facility.
This happens if jobs with shorter operation times
keep arriving at the Fanility before the bigger
jobs can capture it. The probiem can be avcided
by dividing all waiting jobs intc two groups, as
determined by how long they have been waiting.
Highest priority is given to those jobs that have
been watting longer than some pre-determined time,
called the critical threshhold. Jobs in this
group are termed "critical". Within the set of
critical jobs, queue discinline is “shortest im-
minent operation". Queue discipline for the non-
critical jobs is also "shortest imminent opera-
tion". The overall gqueue discipline, then, is
"serve critical jobs first, then serve non-criti-
cal jobs; in each of these two categories, select
Jobs according to shortest imminent operation."

[h] "3" is understood to be the number of the User Chain, if it has been named numerically;

Ilsn"

is understood to be its symbolic name, if it has been named symbolically.

156

A Block Diagram for this overall queue discipline according to its imminent operation time as

is shown in Figure 12(a). W®hen a job-Transaction carried in Parameter 2. When a job-Transaction

enters the segment, its time-of-arrival is first is finished using the Facility, it enters an UN-

marked in Parameter 3. The Transaction then cap- LINK Block to request a Boolean-mode scan of the

tures the Facility MAC immediately if possible, User Chain. The User Chain is scanned from

and otherwise goes onto the User Chain, ordered front-to-back in a search for the first job-
Transaction, if any, for which the Boolean Vari-
able CRJ0B [defined in Figure 12(b)] is true,

" i.e., for which residence time on the User Chain
exceeds the critical threshhold, as held in the

e Sav:value CETJM. If such a Transaction is found,

R ™ by = it is unhooked and sent to capture; meantime, the

kK 8) i?gs“iw FACILITY Unlinker continues to the sequential Block. If

there are no critical jobs, however, the Unlinker

takes the non-sequential exit from the first UN-

LINK Block to a second UNLINK Block, where it un-

QUE GO CAVTURE, OR hooks the front-end Transaction from the User

LINK ACCORDING Chain and sends it to capture.
»2 TO SHKORTEST

- IMMINENT OPERATION 8. Other Sources of Examples
(TIEUP) The various exampies presented in this paper

should alert the GPSS analyst to the fact that
(HEU™ W care must be exercised, especially with respect
SEIZE to the "simultaneity of events" problem, when
————3 CAPTURE User Chains are applied in the language. Space
MAC does not permit presentation of additional,
larger-scale examples here. Those interested
should rever to cuse studies JA and 7C in refer-
ence [i). Case study 7A employs User Chains in
ADVANCE comparing a one-line, multipie-server queuing
USE system to a multiple-line, multiple-server queu-
FNSHOLD ing system in a banking context. For the latter

Y system, Facilities e used in parallel to simu-

late the parallel servers, and a separate User
Chain is associatea with each Facility. In case

rR ~ study 7C, in the context of a “city's vehicle-
FRIORITY ASRIVAL (10 Sum) o maintenance garage", parallel servers are alsc
BUFFER RE-START THE SCAN simulated with Facilities in paraliel. In this
case, pre-emptive use of Facilities is allowed.
Due emphasis is given to a simultaneity-of-events
problem which can arise when pre-emption and a
RELEASE | \MAC normal "release" of a Facility occur at the same
RFLEASE tie,

- o’

LINK

(TIEUP)

but they do not abound. 1In [2], examples of User
Que . SCAN USER CHAIN Chain use are given (a) for first-come, first-

1 UNLINK FOR CRITICAL JOB ?er)'ved queue discipline with a single Facility,
BV$CRIGH WITH S S b) for random queue discipline with a single
(MONE) TMMINENT OPERATION Facility, (c) when unlinking is based on a "Para-
jl meter-match" between the unlinker, and the poten-

‘ There are examples in other "pedagogical” sources,

(NONE} tial unlinkee, and (d) when a Boolear Variable

(TIEUP) & QUE UNLINK NO CRITICAL JOB

1 FOUND; SEND
NON~CRITICAL JOB
TO CAPTURE

v Locanion JORLRALICN 'A.B.c.b,t e S te
' z{s':{s[s tfelsim |||y.’,u'nl!|slzslllilu .9‘1-.>zzn122!nlniasi.}].‘I[n?mwlA-Inlﬁ[u]»,‘u
B O 1.1._..‘| i [A | Py i

i i
CRIOD BVARLABLE, . MP3 G XSCRTYM ., ..
RETURN TO . '
(BAKIN) 7 RANSFER -

i i |
s M}}IN BLOCK Pt) I] 5 N B : N
, SEQUENCE '

(b) Boolean Variable Definition

(a) Biock Diagram

Figure 12 A Fifth Example of User Chain Use

157

must be tru2 before unlinking can occur. The
same examples are repeated in [3] and [4]. There
are no examples in these sources that consider
User Chain use for constrained rescurces simula-
ted with more than a single Facility, and the
simultaneity-of-events problem is not mentioned.
In [5], a "random queue discipline" model is
shown which consumes less CPU time than the one
given in the above sources. Use of User Chains
to implement "Teast job slack per remaining op-
eration" queue discipline in a job shop problem
is also shown in [5]. In [6], Greenberg gives 6
examples of User Chain use, restricting the
constrained resource to a single Facility. The
purpose of having 6 exampies is to explain vari-
our LINK-UNLINK Block Operand combinations. No
additional appiications are illustrated, and no
mention is made of the simultaneity-of-events
problem.

9. Sumnary

¢S paper, presented as a tutorial, elaborates
on the User Chain entity in GPSS. The concept of
User Chains is presented, the potential penefits
to be gained from their use are described, and a
detailed description of the two GPSS Blocks sup-
porting User Chain use is provided. Examples il-
lustrating a range of User Chain applications are
introduced and discussed. The potential “simul-
taneity-of-events" problem that can occur even
with only modestly imaginative User Chain use is
brought to 1ight in several of these examples.
Reference is made to additional sources of ex-
amples in the literature.

10, Biography

Thomas J. Schriber is a Professor uf Management
Science at the University of Michigan. He regu-
larly teaches a 5-day "introductory" course and a
3-day "advanced" course on GPSS in the University
of Michigan's Engineering Summer Conference

Series. He gives GPSS courses in industry, and has
written two introductory books on the subject.

11. References

[1] Schriber, Thomas J., A GPSS Primer {cur-
rently available in softbound form from
Ulrich's Books, Inc., Ann Arbor, MI; being
published in hardbound by John Wiley & Sons,
Inc.. with publication date not yet set; title
enly tentative for hardbound form)

{2] GPSS/360 User's Manual {(IBM; Form Number
GH20-0326)

[3] GPSS/360 Version 2 User's Manual (IBM: Form
umber 694)

{4] GPSS V User's Manual (IBM; Form Number
SHe(-0851)

[5] Schriber, Thomas J., GPSS/360: Introductor
Concepts and Case Studies rich's Books,
nc". ; ; b

(€] Greenberg, Stanley, GPSS Primer (Wiley-
Interscience, 1972)

158

