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Abstract

This paper presents simulation results from a general sequential

production system.

The results are used to establish the effect

of service time variability and to estimate minimum cost-in pro-

cess inventory capacities.

This paper deals with the problem
of finding optimal in-process inventory
levels for a general production system.
Specifically the system can be described
as a production line with N separate
stages (work stations}! where an iq—pro-
cess inventory buffer with a fixed capa-
city is provided between these stages,
All work units are processed through the
stages in & fiﬁed sequence., We assume
an infinite supply of input at the first
stage and no blocking of output from the
last stage. Typically, such systems are

used for high volume production, and op-

erating costs saved by choosing ar

optimal size buffer will be desirable.

Industrial engineers and system apalysts
are frequently confronted with the de-
sign and evaluation of such production
line systems. |
The Model

In our research we simulated 2—,3
3-, and 4-stage production systems with
0, 2, 4, 6, and 8 buifer capacities and
with normal service times., Coefficients
of vzriation for the normal distribu-
tions ranged from .0l to .30. We used
the normal distribution for several rea-

sors: aumerous variables seem tc follow

a pattern of variation that is similar




to the normal distribution; and the
normal distribution can be an excellent
approximation to several other distribu-
tions. The chief reason for using the
normal distribution, however, was its
practical significance. Lind [6] and
Nadler {7) found that manufacturing pro-
cesses, whether machine ox operator con-
trolled, exhibit an inherent variation
about their mean production rates rang-
ing from approximately normal diestribu-
tions to positively skewed distributions
of the Pearson Type II curve. GPSS
(General Purpose Systems Simulation) was
chosen as the languagg for ocur studies
because of its adaptability to manufac-
turing'processes and espacially to pro-
duction lines. WNot only is the struc~
ture of GPSS suited quite well to such
gueueing problems incapable of mathema-
tical formulation, but it also permits
the direct and complete observation of
the dynamic behavior of the processes.
In general simulation provided a closer
fit to reality and an insiéht into sys-
tem characteristics unobtainable through
strictly analytical fonmulatipné.

In this research we investigated
the behavior of systems in which the in-
dividual stages have service times with)

different coefficients of variation.

For each system we determine an 6ve:nll '

measure of system wvariation. We define

the system coefficient of variation by

the following formula:
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v

vhare GV = the system coefficient of
variation |
CVl = coefficient of variation of
Stage 1
.CVZ = coefficient of variation of

Stade 2

CYN = coefficient of varlation of
Stage N
N = number of stages in the
system
The service timé at each staée in the
simulated production line was randomly
assigned a normal distribution with a
coefficient of variation of .01, .02,
.03, .04, ..., .27, .28, .29, or .30.
Three sets of variation patterns for the
coefficient of variation of each system
were calculated, and one of them was
discarded on the basis of duplication or
close similarity to another pattern.
The example below illustrates two such
pattérns for a 3-stage mocdzl with a
buffer capacity of 4 and a coefficient

of variation for the system of 0.20.




cv cv cv CV for

Stage 1 Stage 2 Stage 3 System

System 1 .20 QR .28  .2007
System 2 .24 .24 -08 .2013

- The Simulation Process

A basic unit called a transaction
travels through the simulation model
with processing stations and storage
areas, and statistics are gathered on
its movement with iespect to congestion
and cccupancy, total time, and delay.
We used a 3000 transaction starting run
for assurance that  the effect of tran-
sient-gstate burild up would not affect
the steady—state‘gtatistics. ‘We then
used 15,000 transaction steady-state
runs.

Two iypes of de;ag were identified
in the studies: lack of work and block-
ing delay. Lack of work occurs at a
stage when the buffer immediatelvy pre~
ceding it is empty and the stage is
available for processing; blocking
occurs when the buffer immediately pro-
ceeding it ié full and the stage has
complcted processing on its curxrent con-
tents. During the simulation runs we
gathered statistics on blocking and lack
of work delay, buffer content, facility
uﬁilization, and production times, Af-
ter gathering statistics for all the
systems, we used regression analysis for

the formulaticn of functions defining

various aspects of the systems according é
to the parameters of the humber of .
stages in the system, the system coeffi-
cient of variation, and the buffer capa-
citr. Our goal was to use the simula~-

tion resulis tc find the following func~

tional relationships: 0

INVENTORY = £ { N,B,CV )

DELAY = £ ( N,B,CV ) ) {21

UTILIZATION = £ ( ¥,B8,CV )
where N = number of stagesvin system

B = buffer capacity

CV = system coefficient of varia-

tion

Using these equations, we developed
the general cost egquation for anyApro~ : »  §
duction lire system where

TOTAL COST = £ ( N,B,CV ) (31
This equation along with the others pro-
vided the framework for determining op-
timal bLuffer capacities, optimal operat~
ing costs, and optimal utilization of
production line facilities.

General System Behavioxr

In viewing the data, it appears
that buffer capacity ard the system co-
efficient of variation have the most
significant effect on average delay. As ';
buffer capacity increases, delay rapidly
approaches zero. There is a very large
drep in delay with an increase in buffer
capacity from zero to two units. This

is in agreement with Hatcher's analytical




results (lSGS)_that only a small amount.

of storage capacity is required to reach

near optimum ptcdcction rates. For ex-’
ample, a 3-stage system with a7systepj
coefficient of variation of .20 aia-
played 13. 3% delay. for no buffer capaci—

ty, 2.11% for a buffer capacity of two,

and .73% for a buffer capacity of eight.

Similarly as the system coefficient of

 variation increases, the system'displays"

greater delay. A 3-stage system with a
buffer capacity of 4 displayed .1l2%
averageidelay for a system coefficient
‘of variation of .05 and 1.9% delay for a
coefficient of .25.
ber of stages in the system also in~
creased delay but not as significantly
as the other two variables. For exam-
ple, for two systems with huffer»capaci—
" ties of 4 and a system‘ccefficient of
variation of .20, a 2—stage system dis~
playea 1.0% delay and a 4—stage system
displayed 1.7% delay.

Average system content appears to
be affected by both‘buffer capacity and
number of stages in the system. Natur-
ally syStem content increases as buffer
capacity is increased up to a point
where blocking deiaybapproaches zZexro.
‘When buffers are large and blocking de~-
lays near zero, furtaer inrreases in

buffer capacity remain unused. Obvi- .

\

ously an increase in the‘nsmber of .

Increasing the nuﬁ;

B asically, blocking Jelay is highest“for

:stages-increases‘8Verage system content
by more than one unit since not only is

'anotter stage added but ‘3lso another

buffer.a In wiewing the data, hcwever,,j :
the svsyem coef‘icient of variation )
appears to have no signi‘icant effect on

average content. For the case o£ no

buffer, systems with higher system vari-”

'aticn display slightlv lower average‘*‘

‘content, but this does pot hold as. soon

asg’ buffer capacity is added.,; _
In analyzing internal syatem behav-'
ior, the results for leck of- work and ,';

blocking delav were in agreement with f<f7

N

S

//

‘ Anderson s aarlier results where the co-
_efficient of . variatioﬁ was. held constant R

at each stage thrcughout the system. '

the first stage’ and decreases at each\ ;

stage up to. the ] st une%e it is zero.

Lack of work is zero for the first stagei,'
and_increases up to the highest anonnt"
at the last stage. This ceneral rsle
held for all systems with fer exceptions.
Average buffer content was, with only
one exception, highest in the £irat buf-

fer and lowest in the last buffer; The

_ percentage of time the buffers were emp-

ty, a good indicatiom of relative lack

of wcrk delay at proceedings stages, was
in every case lowest for the fixst_bufff
er and highest:for the last htffer; In‘

ROme cases the gradations from lowest

H




lack of work and blocking delay were
gradual and in other cases quite steep.
Howéver, this could not be t-aced to
particular variation patterns. Also,
evidence seems to indicate that contents
of the individual buffers is independent

of the system coefficient of variation.

Estimating System Delays and Contents

First we used stepwise regression
to develcp a formula for content. Using

the following terminology

C = system coefficient of variation
N = number of stages
B = buffer capacity
we regressed the variables C, N, B, Cz,
2 2

N, B, CN, CB, and NB,

3

correlation coefficient of .938.

We obtained a
With
the exception of Bz, all of the vari-
ables containing C were the last to en-
ter the regression equation and did not
increase the correlation coefficient
significantly. Using the variables N,
B, and NB, we obtained thg foilaowing
equation:

.08-,27B+,93N+,41NB  [4]

Us.ing nonlinear re-

Content =
with an R? of .928.
gression did not result in any signifi-
cant improvement,

After this we developed a delay
equation from stepwise regression of the
variables B, N, C, Bz, C2, Nz, BN, BC,
and NC. But we obtainea an R2 of only

.8681 and the fit was very poor. Next we

resorted to nenlinear regression. As a
theoretical basis fo& the delay equation,
we considered Hunt's analytical deriva-
tion of delay in the 2-stage exponential
service time syétem. He cotained analy-

Lically the following equation:

Delay = ‘ﬁ%‘! [5]

Using this starting point, Anderson had

previously developed the delay eguation
o1
B+a2

=

Delay [6)

where a, = fl(B,N,C)

a, fz(B,N,c}

After testing several formulations, we
came up with the following function

which is relatively simple

pelay = 31'1'3‘5'3‘ (-.134

028 .870

+.131N° +.111C +.0352CN) {71

with an R2

of .985. Further complexity
did not improve the fit significantly.

The Cosc Model and Optimal

Inventory Level

‘In order to evaluate systems on a
cost basis and derive optimal buffer ca~
pacity for various cost structures, we
use the same cost model as presented in
Anderson's earlier paper. The general
model for a sequential <ueue is shown

below.

Let N = number of stages



B = buffer capacities

D = average deiay/unit time

1 = average contents of the

system

$ = total number of storage
spaces

K = cost of delay/unit time

L, = inventcry cost/unit/unit

tine

[
]

2 storage space cost/unit/

unit time

+3
|

= total cost/unit time
the
T = DK + ILl + SL2 [8]

But since § is known to be:

S = (N-1)B [9]
we have
T = DK + ILl + (N-l)BL? [10]

Using the equations we obtained from re-
gression analysis for average delay and
content;, we can formulate the total cost

equation where a, and a, are as defined

before
a, K _
T = -B—;‘a-z— +{.08~-.27B+.93N

+.41NB)L,+(N-1)BL2 {11]
For optimal buffer capacity with respect

to cost we have

-a1 K
3'1‘ — "0271! +041NL
9B (B+a;;7 1 1
+(N-1)L, = 0 [12)

2

. [ax
BY = [ som T s (DL, -a, (13]

where a, = -.134+.1318°9284 113¢+ 870
+.052CN

a, = 5453
The second derivative shows this to be a

minimum.

In order to compare the cost proper-
ties of the two mcdels, let L equal the
effective space-holding cost at the opti-
mal buffer size of B¥., From the eguation
we must have

-.27L+.4NL+(N-1)T=327Ll+.41NL1

+(N-1)L, (14]
giving

--.27Ll+.41NL1+(N--1)L2

L = T 4N =1.27 £15]

Rewriting the equation, we get

a1 K .
B* = STTE ~ 22 [16]

Let ¢ = the ratio of delay cost K to the

effective holding cost
¢ = K/L [17]

Then

a ¢
1
B* - -
- N~l. a2

(18]}
and
T = DK + LI + (N-1)B* L

DK + IK/¢ + (N=-1}B* K/¢

(D + I/¢ + (N-1)B*/¢) K {19]
Letting K=9 we generate the following

table for optimal buffer capacities and




optimal costs for the given ratios of ¢.

Buffer Sizes Tctal Cost
cv TV

¢ N 205 <10 .15 .20 » 25 .05 .10 " .15 <20 «25
1,850 P 2 4 4 5 6 10,32 13,74 16.33 18.44 20.35
3 2 3 3 4 L3 " 15,75 20,92 25.01 28.11 31.12

4 2. P 3 4 4 21.01 28.01 32.75 37.21 40.91

5,000 2 6 9 10 12 13 21.28 29,08 34.89 39.71 43.94
3 5 7 8 10 il 33.34 44,83 53.64 §1.01 67.44

4 4 [ 7 9 10 44.61 59.43 71,08 80.76 89,31

1G6,000 2 S 12 15 17 19 29,66 40,57 48.57 55.64 .61.62
3 7 10 12 14 15 46.51 62.76 75.17 85.59 94,72

4 6 9 11 12 14 62.22 83,28 99.62 113.38 125,46

50,000 "2 20 28 34 39 43’ 64.52 89,17 107.57 122.88 i36.25
3 17 23 27 31 35 102.14 138,46 160.20 189.47 209,88

4 15 20 25 28 31 136.58 183.99 220.49 251.19 278,23

Simulation Summary

In total we simulated the produc~
tion process of 18,000 units a total of
150 times., These simulations required
over seven hours of computer time and
cost roughly $4800.

Conclusion

A general clas:s of simulation
models of production lines have been
studied to formulate theories on system
kehavior. All of the systems had norm-
ally distributed prccessing times as an
approximation to conditions often en-
countered in the manufacturing environ-
ment. Results show that the behavior of
such systems is a function of buffer ca-
pacity, the system corificient of varia-

tion, and the number cf stages in the

N

system, and that the pattern of varia-
tion among the individual stages has a0

significant effect on the behavior of

the system. From the results, it appears

possible to obtain an excellent approxi-
mation to optimum buffer size for any
system meeting ti.e general assumptions
of the model. Also we can gain insight
into the cost cof cénstraints on buffer
sizes less than optimum. Simulation has
provided significant results to the gen-
eral in-process inventory probhlem where
a theoretical approach would have been

virtually impossible.
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