A "WAIT UNTIL" ALGCRITHM

FOR _GENERAL PURPOSE SIMULATION LANGUAGES

Jean G. Vaucher

Département d'informatique, Université de Montréal

Case postale 6128

Montr€al, Québec, Canada

ABSTRACT
Modern simulation languages such as SIMSCRIPT II and SIMULA 67 are very powerful

general purpose languages which contain faciiities to handle lists and to

schedule events in simulated system time (imperative sequencing statements).

These languages do not include some of the useful but more specialized

features of previous languages (GPSS, CSL, SOL) especially interrogative

sequencing statements such as "SEIZE <facility>" or "WAIT UNTIL <Boolean

expression>'"; however, the definition capability of the new languages is

powerful enough to permit their extemsion to include the interrogative

features.

The addition of some features of GPSS to SIMULA 67 was presented at a previous

SIMULATION CONFERENCE.

The present paper extends that work by describing an

efficient algorithm which adds the "WAIT UNTIL" procedure to SIMULA.

INTRODUCTICN

Modern simulation languages such as
SIMSCRIPT 1XI [1] and SIMULA 67 [2] =are very
powerful general purpose languages which contain
a relatively small number of special features
required for simulation. In common with other
modern languages, they have the ability to
define complex data structures, allocate memory
dynamicclly and handle lists. The special fea-
tures are mainly concerned with simulated system
time. Each language provides a CLOCK and wmain-
tains a list of event notices in chronological
order. Each also contains imperative sequencing

statements of the form

n

“SCHEDULE AN event AT timex".

The compilers generate fairly efficient co-
de and the languages can therefore be used for
general purpose computing as well as simulation.
The power and flexibility of the languages are
such that they may be used for any type of simu-
lation.

When comparing the two selected modern
languages to some older languages such as GPSS,
CSL, SOL etc..., it can be seen that the gain in
generality and efficiency has not been attained
without some losses. The predefined objects of
SOL and GPSS such as facilit.es, transactions

and storages, are not present and interrogative
scheduling statements have also disappeared.
Interrogative statements are used when it is
impossible to predict in advance the system ti-
me when an event should take place. An exampile
of such a statement commonly used in GPSS is
"SEIZE".

occupied facility, its execution is halted until

If a transaction attempts to SEIZE an

the facility becomes free and it is not possi-
ble to know in advince when this event will ta-
ke place.

A much more general interrogative séhedu-
ling statement is found in SOL [3]. This sta-
tement has the form

"WAIT UNTIL <boolean expression>"
where the boolean expression is a cendition
which must be met before execution coatinues.
‘fhe condition may refer to any number cf state
variables.

For certain classes of problems the avail-
ability of predefined objects and interrogative
statements allows models to be described in &
very natural and concise fashion. Programs for
the same models written in SIMULA 67 or
SIM3CRIPT II will be much longer, complex and
error prone although they will tend to use less
computer time and memory space.

It might appesr that the modexn languages
are hardly better than FORTRAN, perhaps aug-
mented with some subroutines (GASP), when it
comes to simulation. Such hesty judgement
overlooks the definition capability cf the new
languages where it is possible, using the source
language, to acfine the data structures and
procedures required to implement the useful
features that were frozen in the older lun-
guages, Given a sufficiently powerful generzl
purpose language, these extra features can be
added .0 the language so neatly that they eppear
to be extensions to the compiler.

SIMULA €7 is particularly well suited to
this extension philosophy. It contains several
elegant mechanisms whereby precompiled routines

and object declarations c-n be added to a user

78

progranme. This has already been done at the
University of Montreal, adding to SIMULA useful
objects c£ GPSS, such as transaction and facili-
tiss, as well as the associated procedures such
as SEYZE and RELEASE {4]. The present paper
describes the further addition of a WAIT UNTIL
feature to SIMULA.
ment this feature is easily described in SIMULA.

The algorithm used to imple-

The simplicity of the description shows quite
clearly the sequencing problems inherent in such
a powerful featuie and permits experimentation
with alternative a{gorithms.

‘The paper first gives a brief description
67, then
shows some examples of the use of WAIT UNTIL.

of some pertinent fe.tures of SIMULA

The implementaticn is described and the problems
arising from the use of TIME as part of the WAIT
CONDITION are pointed out.
partially resolved through the use of ALARMS.

The probiems are

Finally, there is a discussion of efficiency

considerations.

SIHULA 67

SIMULA 67 was developped by Dahl & Nygaard
as a successor to ALGOL. In appsarance, the
language is much like ALGOL although some of the
weaker points of its ancestor have been redesi-
gned and other features have been added.

SIMULA 67 has list handling capability and
standard 1ist procedures FIRST, SUC and EMPTY
will he used in this paper.

notation is used in SIMULA to indicate to which

The genitive or dot
object # procedure should Le applied. Fnr exam-
ple,

HLIST 1.FIRST"
means the FIRST element of LIST 1.

One of the more important lists in the
system, the list of event noticos or sequencing
set (SQS) is maintained autcmatically by the
system and simulated system time is givea through
the procedure TIME.

One of the important features of SIMULA is
the use of PROCESS as a data type.
are based on the co-routine concept.

Processes
Each

process has a local instruction counter in addi-

tion to its local data and programme. Proces-
ses operate in quasi-parallel fashion in roughly
the same way as programmes in a multi-program-
ming environment,

Execution of a process may be controlled
from another process by scheduling statements
such as the following:

1) ACTIVATE process AT timex ;

2) ACTIVATE process DELAY dt ;

3) ACTiVATE process ;

In the first two statements, an active
phase for the 'process™ is scheduled at some
time in the future. The last statement is al-
most equivalent to a procedure call in that
"process" is activated immediately, interrupting
execution of the activating process; this is
called “"direct" scheduling.

A process can alsc schedule itself with
the procedures HOLD and PASSIVATE. "HOLD (ts}"
causes the process to halt for an intervai 'ts'".
PASSIVATE suspends execution of the process for
an indefinite period; in this case, the process
continues execution only when activated by
another process.

Processes can be placed into or removed
from lists with the procedures INTG (list) and
OUT.

Figure 1 gives a simple but complcce
SIMULA program using some of the features de-
scribed. The main item of interest is the def-
inition of CLIENT which is a process. Clients
arrive at intervals of 10 minutes, spend a ti.:=
TS in the system and leave. TS could be any
of SIMULA's random generatcr procedures. There
is no contention for resources so that no queues
form. N represents the number of customers in
the system. The main program activates the
first client and, thereafter, each client acti-
vates his successor. tThe main program halts for
1000 minutes giving a duraticn of 1000 minutes

to the simulation.

1 SIMULATION begin

2 process class client ;

3 begin

4 activate new client delay 10 ;
5 N:=N+1;

6 hold (TS) ;

7 N:i=N-1;

8 end ;

9 integer N ;

10 activate new client delay 0 ;
11 hold (1000) ;

12 end ;

FIGURE 1 - A complete SIMULA program

It is interesting to note that list handling
facilities as well as simulated system time are
not strictly part of the basic SIMULA language.
These facilities are defined as a standard pre-
compiled extension to the language called SIMULA-
TION.

wishes to use this extension by prefixing his

A user indicates to the compiler that he
program with the name of this extensicn: heace,
the "SIMULATION begin' at the start of the pro-
gram.
GPSS and the WAIT UNTIL procedure have been im-

To make
use of these extra facilities, a user would prefix

In the same way, the standard entities of

plemented as an extension called GPSSS.

his program with the name of the extension,
"GPSSS".
USE OF "WAIT UNTIL"
This section presents the "WAIT UNTIL' state-

ment as a natural way of expressing complex sched-
uling rules. Three exampies of increasing com-
plexity will be used.

The WAIT UNTIL statement is implemented as
a procedure with one parameter which can be ter-
med the "wait condition':

WAIT UNTIL (condition) ;

The condition is a Boolean expression of

any degree of complexity. It may evean include

function calls with side effects. When the

procedure is used by a process, further execution
is suspended until the condition becomes true.

If the condition is true at the outset, there is
no wait.

The first example is a modification of the
programme of Figure 1. In this example, clients
need the use of a facility whose state, free or
occupied, is represented by the boolean variable
"Free 1%, Clients wait until, the facility is
free then mark it as busy by setting "free 1"
equal to false. They use the facility for a time
TS then reset the facility tc frce upon leaving
the system. Here the statement, WAIT UNTIL (free
1)} is equivalent to a SEIZE of GPSS. The PROCESS
definition for this example is shown in Figure 2.

process class client ;

begin
activate new client delay 10 ;
N:=N+1;

WAIT UNTIL (free 1} ;

free 1 := false ;

hold (TS) ;
free 1 := teue ;
N:=N-1

end ;

FIGURE 2 - Use of WAIT UNTIL as SEIZE

In the next example shown in Figure 2, o

client must use two facilities one after the
other. The facilities are represented by '"free
1? and "free 2" and the order of use is immate-
rial.

process class client ;

tegin

-

WAIT UNTIL (free 1 or free 2 ;
if free 1 then goto one then two
eiss gotc two then one ;

one then two:

free 1 := false :

hold (TS1) ;

free 1 := true ;

WAIT UNTIL (fcee 2) ;

free 2 := false ;

hold (TS52)
free 2 := truve ;
goto to over ;

two then cne @

FIGURE 3 - Scheduling dependent on two facilities
Although the use of system time, TIME, as

part of the '"wait condition" will be shown to
present problems, it is often useful to model
"balking'' where a customer will leave a queus
if he has not been served within a certain time.
In the last example, the client wants to use
facility I but refuses to wait in line longer
than TWAIT unless he sees that he will be the
next to be served. In this case, the facility
is represented by two integer variables, IN: ond
BUT1, es well as by the state imdicator, 'free
1", These variables contain the total number
of clients having arrived at the facility and
having left the faci ity. The difference between
them indicates the number of clients either being
served or waiting for service. The client notes
in AHEAD the value of IN1 st the time of arrival;
then AHEAD-@UTT will give the number of people

shead in the queue,

wrecess class client ;
begin
integer AHEAD ;
real THUT ;
AHEAD := IN1 ;
TAUT := TIME + TWAIT ;
WAIT UNTIL (free 1 or’
(TIME > TGUT AND AHEAD - SUT1 >1)};
SUT1 := PUTL + 1 ;
if free 1 then goto occupy 1
else goto exit ;

end client ;
FIGURE 4-Programming of complex balking decision

The WAIT UNTIL statsment is clearly a pover-
ful tool for the description of models., It also
describes scheduling in a natural manner.

IMPLEMENTATION

The WAIT UNTIL extension has been implemen-
ted using the source language facilities of
SIMULA and not by modifying the compiler. There
are four vital elements to the implementation of
WAIT UNTIL:

1) A procedure called WAIT UNTIL to be

used by the processes,

2) A list, WAITQ, where processes halted
as a result of use of the WAIT UNTIL
procedure are kept.

3) a monitor which examines waiting pro-
cesses and reactivates them at the
opportune moment.

4) A global Boolean variable, aCTION, used

for communication between waiting pro-
cesses and the monitor.
Tae procedurs makes use of parameter pas-
sing by name.

"B" results in re-evaluation of the '"wait condi-

In the procedure, each use of

tion" passed as the parameter. The procedure is

given in Figure S.

procedure WAIT UNTIL (B) ; name B ;

ot

boolean B ;

2 begin

3 if B then goto exit ;

4 into (WAITQ) ;

5 if monitor.idle then activate

monritor after next ev ;

6 loop : passivate ;

7 if not B then goto loop ;
8 out ;

9 action := true ;

10 exit :

11 end wait until ;
FIGURE 5 ~ The WAIT UNTIL procedure

If the wait condition is true initially,

81

only be queried 2ftsr each event.

the process is not halted and leaves the proce-
dure, Otherwise, the process is placed in WAITQ
ud passivated. The test to detemine if & pro-
cess may leave WAITQ is done, not by the monitor
| However, it is
the responsibility of the monitor to activate

out by the process {lines 6,7).

processes when it is poésible that the wait con-
dition may be true. When the wait condition is
fulfilled, the process leaves WAITQ by using the
standard SIMULA procedure OUT (line 8), sets
Haction" (line 9) to indicate successful exit
and carries on execution of its programme. To

reduce overhead, the wait monitor is normally

idle (passive) and is only activated when pro-

cesses enter WAITQ (line 5).

The interrogation of the wait conditions
could be done continuocusly, but this is grossly
inefficisnt. nce a process is blocked. it can
only concinue following a change in system state,
With the exception of the system vaviable TI'ME,
a change of system state may only be caused hy
an event. Processos in WAITQ need, therefore,
This periodic
examination is controlled by the "wait monitor"

whese description is given below:

process class wait monitor :
begin

ref (process) pt ;
start :

action :=

if waitq.emptv then passivate ;
false ;

pt :- waitq.first ;
loop : if pt== none then goto wait ;
activate pt ;

W oo U s N e

if action Mgggg start ;
pt
goto loop :

reactivate this wait monitor after

-t
(=]

i~ pt.sug :

o
N e

wait 3

next ev ;

13
14

goto start ;
snd wait monitor ;

FIGURE 6 - The wait mopitor

Basically, the monitor gees into action

after each event (line 12) and activates in tumn
ali processes in WAITQ {lines 7-11). The ispli-
cit priority is FIF0, new arrivals being placed
at the end of WAITQ but & priority schems
could easily be implomented.

1£ no process is able to leave, the moni-
tor walts umtil the next event. If, on the other
hand, a process leaves WAITQ, this is equivalent
to a mew event and the monitor passes through
" WAITQ once again. The monitor carries on testing
until no process can advance. It is by testing
the boolsan "action" that the monitor checks if
a process has beon ab‘iv to lsave WAITQ.
, ‘To Teduce overhésnd, the monitor pessivates
_ itself when it finds WAITQ empty. It is rescti-
vated by the first procass to enter WAITQ.

‘ " i

PROSLEM OF_TIME

The implementation described ié"\{'e;y ge-
neral and works for any i)ossible wait condition
with one exception. The exception is the use
of the variable TIME. TIME >i.-‘s different from
s11 other system varisbles in that it changes
continuously by itself without pnsting event
notices. This csuses some difficulties. Consi-
der thu two following staetoments:

a) WAIT ¥NTIL (TIME = 15) ;

b) WAIT UNTIL (TIME > 1S) ;
and azsume that two future everts have been ‘
scheduled at times 10 and 20 respectively. The
processes in WAITQ will only be graxined at ‘the-
se two times.

\

-
s3G-

The process having executes
tement (a) will mever be reactivated end the
process of statement (b) will carry on at

time = 20. This is obviously contrary o the
intent of the programmers who intended for their
processes to carry oa vhen TIME became equal to
15.

One solution weuld be to scan WAITQ at
fixed time intervals At and require that wait
conditions involving TIME expressions woxrk with
multiples of at.

advantages gained by using an svent-oriented

This method throws sway the

simulation. ‘ _

The solution that has been adopted is to
pfovide the prograsner with dummy events called
ALARMS. These are defined in SIMILA by

’

process class ALARM ; ;
A prograxmer can now insure correct opera-
tion of the "balking® exssple of Figure & by ge-
nerating an ALARM to trigger an event when the
client may wish to leave.

shown balow:

The proper procedure is

TOUT := TIME + TWAIR ;
zctivete new ALARM at TOUT ;
WAIT UNTIL (free 1 or TIME=TOUT) ;

DISCUSSION OF BPFFICIENCY

Interrogative scheduling as examplified by
the WAIT UNTIL statement is a powerful tocl, but
in the case of simple scheduling decisions, ths
method is highly inefficient compared to other
scheduiing algorithms. ‘

from two main sources.

The inefficiency comes

1) Walting transactions are placed in a
single list irrespective of the wait condition.
A change of state in the system leads to exami -
nation of all waiting procssses.

2) Each waiting process must be tested
before knowing if it can continue. A large pro-
portion of the tests will be unsuccessful.

Efficiency is gained by reducing vhe num-

ber of waiting processes that must be exawined

_element need be tssted also reduces overhead.

82

f5r a given change in system state. This is
achieved by having several wait lists, each cor-
responding to a distinct wait condition (this is
squivalent to the inverted list concept used in
structuring data bases). A natural ordering
within the list so that only the first or last
if
the wait condition for a particular list is spe-
cific enough, the repetitive individual testing
of each waiting process may be eliminated.

The future events list and imperative se-
quencing statements found in most simulation lan-
guages form an exasple of these principies. The

The 1ist contains all the processes waiting
for the passage of time. Control may be passed
to the first element in this list without
searching or testing. 1t is thevefore much
move efficient to use

“activate this process at THIT;"

than to use
"wait until (TIME = THUT);"

When scheduling of a process depends on
the state of one variable only, efficiency may
be gained if the variable is programmed 8s
a GPSS facility or storage.
mentationin SIMULA of these entities as well
as the associated SEIZE and RELEASE procedures
It would

Efficlent imple-

has previously been descxibed i4].
then be advisable to use

"SEIZE (1);"
rather than

“yait until (free 1):"

It is only in the case of complex sched-
uling decisions such as presented in the 'bal-
king" example that WAIT UNTIL should be used.
In such cases, putting a waiting process in
several lists, esach corresponding to a variable
involved in the waiting condition leads to
if fv.c-
tion calls are allowed as part of the wait

intolerable administrative overhead.

condition, it may even be difficult te find ail
the variables involvad. -

in these ceses, the WAIT UNTIL algorithm
presented is a useful compromise. It ¢entrali-
zes the scheduling process and mekes it system-
atic. "Ad hoc" methods to give equivalent re-
sults are certainly move prone to error and do
not appear likely to result in greater efficien-
cy.

’
CONCLUSIONS

The WAIT UNTIL statement has been shown to
It a2lsc leads

to a natural description of many situations,

be a powerful scheduling tool.

This featurs, precent in older languages, is
absent fron ine modern generation of general

purpose simulation languages.

- WAIT UNTIL has been implemented as a source
language extension to SIMULA 67. It could simi-
larly be added to other languages, although the
implementation might not he as elegant. Efforts
were made to minimize the overhead resulting
The WAIT UNTIL sta-

tement is more suitable to complex decision rules.

from use of this feature.

Simple scheduling can be accomplished more effi-
ciently in other ways. |

The use of the variable TIME as part of the
wait condition was shown to give rise to some
problems which could be eliminated by means of
dummy event called ALARMS.

ACKNOLEDGEMENTS

This work was supported by the National

Research Council of Canada.

{1} Kiviat P.J., Villanueva R., Markowitz
H.M., "The Sfimscript IT programming
langusge', Prentice Hall (1968).

(21} Dahl 0.J., Myhrang B., Nygaard K., "SIMU-
LA 67 comnon base language', Publication
5§22, Norwegian Computing Centre,
Forskningsveien 1B, Oslo 3 Norway.

{3} Dahl 0.J., '"Discrete event simulation
languages" pp. 349-395 in "Programming
Languages™, F. Genuys (Editor), Academic
Press, London (1968}.

[4]1 Vaucher J.G. "Simulation data structures
using SIMULA 67", pp. 255-260, 1971 Winter
Simulation Conference, New York, Spensored
by ACM, AIIE, IEEE, CHARE, SCI, TIMS.

