Identification of Viable Biological Strategies

for

Pest Management by Simulation Studies

W. W. Menke

Associate Professor of Management College of Business Administration

Matherly 325

University of Florida

Gainesville, Florida 32601

Abstract

Interdisciplinary research by management scientists and entomologists at the University of Florida has developed a stochastic computer model for studying interactions between an insect population, its host food crop, and other variables. This population growth model, highly adaptable to any insect and any host crop, is technically characterized by discrete arrivals, infinite servers and multi-stage, continuous service-time distribution functions.

Because steady state is seldom achieved in nature, this paper identifies combinations of critical starting conditions (number of insects, disparate start times for insects

and host crops) and critical stages for induced survival rate reductions to minimize
crop damage. Sensitivity analyses serve to
identify the most promising areas for future
entomological research in pest management
strategies.

I. Introduction

This research was initiated in the belief that management science could and should contribute to the solution of ecological problems. One of the most serious of these is the ecological consequences of the unrestricted use of pesticides. Pest management addresses the problem by identifying and testing alternate strategies which would minimize the use of pesticides for crop protection while maintaining the crop's economic worth.

The experiments reported here were performed in response to the following general questions.

If one has a simulation model of the damage caused by a specific pest on a specific valuable food crop, is there a stage in the pest's life cycle where a fixed decrease in pest population is most effective in minimizing crop damage?

Would the implications of the results of the simulations identify useful strategies for minimizing the application of ecologically dangerous pesticidal materials?

II. The Ecosystem Being Simulated

The ecosystem simulated for the experiments of this report is that of a soybean host crop infested by the velvet bean caterpillar (VBC), one of the major pests for soybeans in North Florida.

Soybeans were selected as a host crop because of their worldwide economic importance as a high protein food. [1]

The VBC moth overwinters in South

Florida and is suspected of invading

Florida from the Caribbean area each

year. The adult female moth lays its

eggs and about two generations of insects

develop during the year until death in

late fall (or out-migration of the adult

moth) reduces the population to essen-

tially zero in North Florida soybean fields.

The eggs, 800 on the average per female, are laid individually by the adult over a period of about eight days. After hatching, the insect passes through six stages of growth (instars) as caterpillars and a pupae stage before emerging as an adult moth to mate, disperse, and lay eggs for the next generation. The length of time the caterpillar remains in an instar (dwell time) is a stochastic variable influenced by the environmental conditions during the stage. Available field experimental data indicate the dwell time probability distribution to be normal for all instars. Each, however, has a different average and standard deviation. The VBC causes damage by defoliation of the soybean plant, the amount varying with the instar.

The soybean plant was considered to have ten stages of development from emergence to unifoliate leaves through maturity. The plant's leaf development between the critical stages in plant maturity, podset to podfill, and the per cent defoliation by the pest during this period was of primary interest in the

model since economic crop damage occurs when threshold defollation levels are exceeded here.

III. The Ecosystem Model

The simulation model of the insect population dynamics, the growth of the moybean crop, and the damage by defoliation caused by the VBC was developed through the interdisciplinary efforts of a management scientist and three entomologists. Initially knowledge about each others' discipline was minimal. General concepts of model structure emerged during repeated conferences which were mutually educational in biology, agronomy, entomology, management science, and modeling techniques. Specific concepts used in the model structure are described below.

Technically, the insect population

dynamics is modelled in terms of stochastic variates characterized by discrete

arrival times (the adult moth invasion),

a discrete starting population (the eggs),

infinite servers (the life cycle for each

insect) and multi-stage service time (the

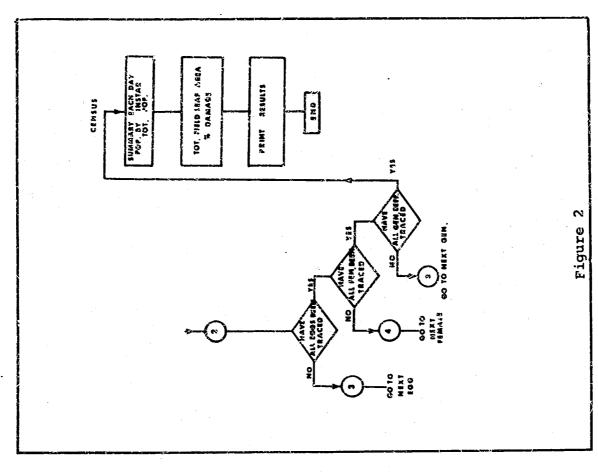
continuous distributions for dwell time

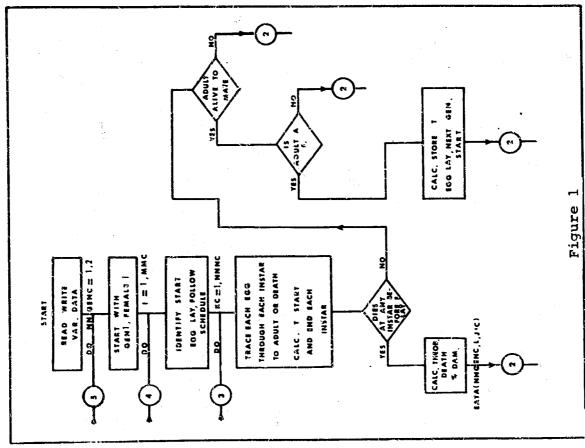
at each instar.)

The crop development portion of the

model is a deterministic function of time using EV [leaf area] since the leaf area per acre is so large (even at the seedling stage, leaf area is approximately 1×10^6 cm²/acre). Critical points for the functional relation are seedling, midbloom, podset and podfill. All soybean leaf area growth and defoliation by the VBC are expressed in cm² per acre. Insect population counts and leaf damage are calculated at weekly intervals after the date of simular planting.

The model is presently one-dimensional in that it does not consider inmigration or out-migration of the VBC after the starting moth invasion. Nor does it consider the spread or diffusion of the insect population within the field from the point of contact of the initial invading moths. Therefore, simulated population counts and leaf defoliation calculations are average values per acre, ignoring localized hot spots which are expected in the real situation.


er language for the simulation in the belief that it would be more flexible in permitting future expansion of the model to include the above considerations. In addition FORTRAN Exibility


would be useful when non-ideal environmental effects (temperature, humidity,
day length, rainfall, surround, etc.)
were included. It is anticipated that
SIMSCRIPT would be used at a more refined stage in the model development.

Biological and entomological data needs emerged as the model was developed. These data were collected in a variety of ways. In some cases, e.g., dwell time per instar, literature search combined with recent experimental results provided the answer; in some cases, e.g., average leaf area eaten per instar per caterpillar, private communications with researchers yielded unpublished results; in other cases, e.g., typical moth invasion dates and crop development data, PERT type "min. - expected - max." questions [2] were posed to the entomologists; in a few cases, e.g., survival rate per instar, little hard experimental information was available and reliance was placed upon general knowledge and intuition for reasonable values.

IV. Operation of the Model

Figures 1 and 2 show simplified flow chart descriptions of the operation of the model.

The model traces the development of each egg from each female adult through the instar in which death occurs or until the larva becomes an adult moth. If the adult is a female, the time of egg laying for the next generation of progeny is calculated and recorded.

After all eggs from all females of one generation are traced, the program automatically repeats the calculations for the next generation of caterpillars until the required number of generations have been traced.

Monte Carlo techniques are used to calculate survival at each stage of development from egg through adult moth, the time duration a particular individual remains in a particular instar (dwell time), as well as whether the adult is a male or female. Thus 20 different random number series were identified and used for each simulation run. Subsequent simulation runs used different random number seeds, themselves chosen from random number tables for each of the 20 random number series of the run.

After all eggs from all females for all generations have been traced, the

program prints out a census calculated at weekly intervals from the starting date for egg laying for the first generation. The census details for each day of count:

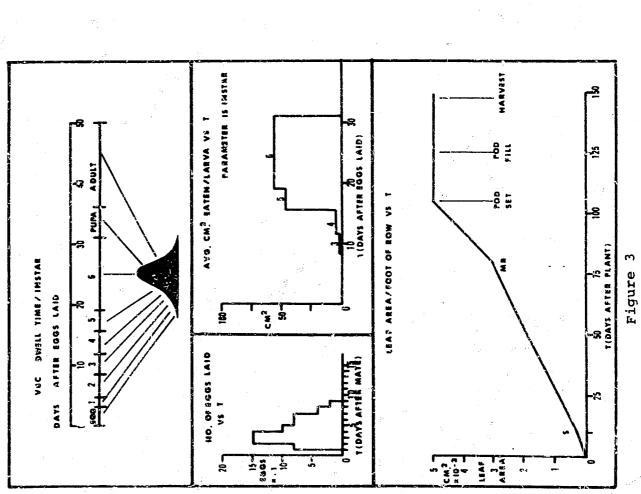
- 1. the population in each instar,
- the total population including eggs.
- the total population of larvae only,
- the cumulated soybean leaf area eaten by all the caterpillars through this day,
- 5. the crop leaf area available,
- the per cent of the available leaf area eaten.

Table 1 describes the variables of the model. These are classified according to type (dependent or independent), description, source for numerical values, and if data, the basis for the data.

dwell-time distributions, the egg laying schedule and the eating habits used in the model for the velvet bean caterpillar. The dwell time distribution for the VBC is based on experimental data as are the data for the eating habits of the caterpiller. [3, 4, 5] Also shown on Figure

Table 1

INDEPENDENT VARIABLES


Source For

Variable Description	Used For	Numerical Values	3	Data Basis
1. Start time, gen. 1	Pests	Data	Watson,	1916; Greene, 1970
2. No. init. females/acre	Pests	Data	Greene,	Kerr, Whitcomb, 1971
3. R. N. series	Pests	Data		
4. P(survival) - ea. instar	Pests	Data	P. Lawr	ence, 1971
5. Avg. Gwell time -ea. instar	Pests	Data	•	e de la companya del companya de la companya del companya de la co
6. of, dwell time - ea. instar	Pests	Data	Watson,	1916; Greene, 1971
7. P(adult = female)	Pests	Data		
8. Egg laying discribation	Pests	Data	Greene,	1971
9. Leaf area/cat./instar	Pests	Data	Greene,	1971
10. Day of count	Pests	Program		
11. Females forced at gen. end.	Pests	Program		
12. Day of planting	Crop	Data	Greene,	, 1971
13. Plant growth	Crop	Program	Greene	, 1971
14. Leaf area	Crop	Program	Turnip	seed, 1972

DEPENDENT VARIABLES

Calculated at Each Day of Count

- Tot. pop/instar including eggs
 Tot. crop leaf area available
 Tot. insect population
 in cm²
- 3. Cumulated defoliation in cm 2 5. % defoliation

RANDOM SERIES 15. 4.00 DAY OF PLANTING 15. 127 43,30 START GEN 1 15 199,0000 DAYS AFTER JAN. 1 ORIG. START FEMALES ARE 60 KMEANC 2.0000 3.0000 3.0000 3.0000 12.0000 14.0000 14.0000 8.25 3.05 0.64 295.1995 340.9487 339.0483 0.16 0.0 - DEE HERE2 I HATCH HERE1 HERE2 HERE2 IMMC HERE1 HERE2 HERE2 HERE 1 HERE2 HEREJ

Figure 4

3 is the assumed development for the soybean crop, in leaf area per goot of row in the field.

Figure 4 is a typical computer printout showing the data used in the simulation run and the resultant egg laying dates for females from each generation.

Figure 5 is a typical census printout showing the six census responses enumerated previously.

Preliminary runs with the model confirmed it was following the entomologist's bolief that about two generations of the VBC propagated during the time period from the initial moth invasion to the final stage in soybean development where the host crop was sensitive to economic damage caused by defoliation. It was observed that the survive al rates at each instar and the differing stechastic dwell-times in each instar combined to produce a mixed response for population as a function of time. That is, the two random variables, the early peak population for each generation and the population in the latter instars including the number of females laying eggs for the next generation, both exhibited large variances from run to run. However, the population counts for time periods when most of the population was in the central instars (roughly instar 3 through instar 5) approached closely EV calculations in these regions. The slope of the population with time in this region was exponential as expected.

This mixed response model therefore does not appear to fit any simple analytical model but does follow the trends predicted by the analytical population models of Watt [6], Pielou [7], Ross [8] and others.

The above details about the population dynamics are apparent in Figure 6 which displays typical population dynamics as predicted by simulation. Slope validation is indicated by the circled points which are calculated EV (overall fraction survival) plotted at weekly intervals, the first plotted point being fraction survival one week after eggs hatch = middle of 3rd instar = .7³ = .343.

Location of the range in time for the second generation population peaks at Figure 6 may be verified by ordinary statistical calculations when it is realized that the start of the second

```
1-136
POP VS TUMERS AFTER GEN. STARTS.

1-104
POP VS TUMERS AFTER GEN. STARTS.

1-104
POP VS TUMERS AFTER GEN. STARTS.

1-105
POP VS TUMERS AFTER GEN. STARTS.

1-106
POP VS TUMERS AFTER GEN. STARTS.

1-107
POP VS TUMERS AFTER GEN. STARTS.

1-107
POP VS TUMERS AFTER GEN. STARTS.

1-108
```

Figure

Figure

POP- IN INSTAR 2 ON DAY 206 IS POP- IN INSTAR 3 ON DAY 206 IS POP- IN INSTAR 6 ON DAY 206 IS POP- IN INSTAR 5 ON DAY 206 IS POP- IN INSTAR 7 ON DAY 206 IS POP- IN INSTAR 9 ON DAY 206 IS

39900512.0050. CM.

TOTAL LEAF AREA ON DAY 206

390 16 15 10.09 50.CM. generation is not statistically independent of the first generation. The magnitude of the second generation population peak is a stochastic variate strongly dependent on the number of females that survive the first generation through the egg laying stage. The times at which these lay eggs form the starting conditions for the second generation; the number of survivors determines the second generation population characteristic. Thus the model, as in real life, shows highly volatile, or transient, second generation starting populations; individual second generation population counts can be expected to show significant variance around the average of many simulation encounters.

validation of results has to date
been restricted to the Turing Method
both because of the expense involved in
time and money and because of the difficulty of obtaining definite experimental data. Population counts in the
field are to be taken this summer, 1972.
The entomology consultants agree that
the results are reasonable and of the
correct order of magnitude. One set or
population data consisting of three

replications in two separate field areas in North Florida was obtained during the 1971 soybean season and conforms to the simulated predicted shape of the average population vs. time. The agreement encourages the belief that the principles used in model construction are valid and that inferences derived from model results merit serious consideration.

V Description of the Experiment

previous experiments with this model had already determined that the worst possible situation for crop damage occurred for the combination of latest possible planting date for the crop (June 24) and the earliest possible initial invasion date (July 15) for the VBC moth. Note that these two variables are largely uncontrollable and are states of nature, both in the usual sense of these words and in the context of decision making.

Consider the above worst case and rephrase the experimental objective specifically in terms of the following:

- Pj = Normal survival fraction in
 instar j

- k = Fraction of kill induced by
 any method
- j = Instar
- G = Generation in which kill is
 induced

Then define the experimental objectives as follows.

Find a preferred instar, j, in which a fixed fraction kill, k, will minimize the total per cent of defoliation of the soybean crop by the VBC. Find the implications for pest management strategies when the fixed kill is induced in the first generation only, in the second generation only, or is induced in the preferred instar in both the first and second generations. The fixed conditions for the experiment were:

Worst case states of nature

A massive initial VBC moth invasion (60 females/acre)

Experimental responses were:

Fopulation vs. time

Per cent defoliation vs. time

Census counts every seven days

The experimental design for the simu-

The experimental design for the simulation model was a complete factorial experiment with three factors, k (fraction kill at two levels), j (instar) at

three levels and G (generation in which k is induced) at three levels.

Factor levels were chosen as tabulated below:

k = .25, .5

j = 2nd, 4th, 6th instar

G = generation 1 only, generation 2 only, both generations 1 and 2.

Each response was replicated twice, using ordinary then antithetic variate random number series in order to reduce the variance of the average response. It was believed that this experiment was the minimum size permissible, given the expected appreciable variance in the responses. Responses were compared at podset and podfill, critical points in time in the soybean crop development. These points roughly bracket the time period in which the crop is highly sensitive to defoliation effects. Nine sets of randomly selected random number seeds similar to the set of Figure 4 were used as data in order to generate the ordinary and antithetic random variates for the experiment.

Table 2 shows the averages of the replicate responses (average per cent

Table 2
Per Cent Defoliation at Podset

	k =	.25		k	= .5		
	j ²	j ⁴	6 j	j ²	j ⁴	j ⁶	
G ₁	30.8	37.0	34.5	22.2	32.1	21.6	
G ₂	33.0	30.7	44.4	22.6	25.9	39.5	
G _{1,2}	23.2	25.7	37.5	12.0	13.7	22.3	
Per Cent Defoliation at Podfill							
	k =	.25		۹.	= .5		
4,	j ²	j ⁴	j ⁶	j ²	j ⁴	j ⁶	
G 1	39.3	46.7	43.6	27.2	41.2	26.8	
G ₂	43.4	38.8	53,2	28.3	31.9	45.6	
G _{1,2}	27.6	31.8	46.1	14.8	17.8	26.1	
k = fraction kill $j = instar in which k is$							
G = generation in which k is induced induced							
Auth Calabras de Calabras (Actual Calabras)			Table 3				
			ANOVA - At Potset	t			
Source o	f Degr	ees of	Sums of	Mean	F	Fsig	
Variatio	on Fr	eedom	Squares	Squares			
Variatio j	on Fr	eedom 2	Squares 532.08	Squares 266.04	2.9	F.05 ^{=3.32}	
	on Fr			_	2.9 3.7	F.05=3.32*	
j	on Fr	2	532.08	266.04			
j G		2	532.08 672.06	266.04 336.03	3.7	F.05=3.32*	
j G k		2 2 1	532.08 672.06 800.89 2752.5 Table 4	266.04 336.03 800.89 91.8	3.7	F.05=3.32*	
j G k		2 2 1	532.08 672.06 800.89 2752.5	266.04 336.03 800.89 91.8	3.7 8.72	F.05=3.32* F.01 ^{=7.56**}	
j G k		2 2 1	532.08 672.06 800.89 2752.5 Table 4	266.04 336.03 800.89 91.8	3.7 8.72	F.05=3.32* F.01 ^{=7.56**}	
j G k Error	of Degr	2 2 1 30	532.08 672.06 800.89 2752.5 Table 4 ANOVA - At Podfi	266.04 336.03 800.89 91.8	3.7 8.72	F.05=3.32* F.01=7.56** Fsig	
j G k Error	of Degr	2 2 1 30	532.08 672.06 800.89 2752.5 Table 4 ANOVA - At Podfi Sums of	266.04 336.03 800.89 91.8	3.7 8.72 F 2.33	F.05=3.32* F.01=7.56** Fsig F.1 =2.52	
G k Error Source G	of Degr	2 2 1 30 ees of	532.08 672.06 800.89 2752.5 Table 4 ANOVA - At Podfi Sums of Squares	266.04 336.03 800.89 91.8 11 Mean Squares	3.7 8.72	F.05=3.32* F.01=7.56** Fsig	
j G k Error Source G Variatio	of Degr	2 2 1 30 ees of eedom 2	532.08 672.06 800.89 2752.5 Table 4 ANOVA - At Podfi Sums of Squares 617.9 1098.8	266.04 336.03 800.89 91.8 11 Mean Squares 309.0	3.7 8.72 F 2.33	F.05=3.32* F.01=7.56** Fsig F.1 =2.52	
G k Error Source G Variation	of Degr	2 2 1 30 ees of eedom 2	532.08 672.06 800.89 2752.5 Table 4 ANOVA - At Podfi Sums of Squares 617.9 1098.8	266.04 336.03 800.89 91.8 11 Mean Squares 309.0 549.4	3.7 8.72 F 2.33 4.13	F.05=3.32* F.01=7.56** Fsig F.1 =2.52 F.05=3.37*	

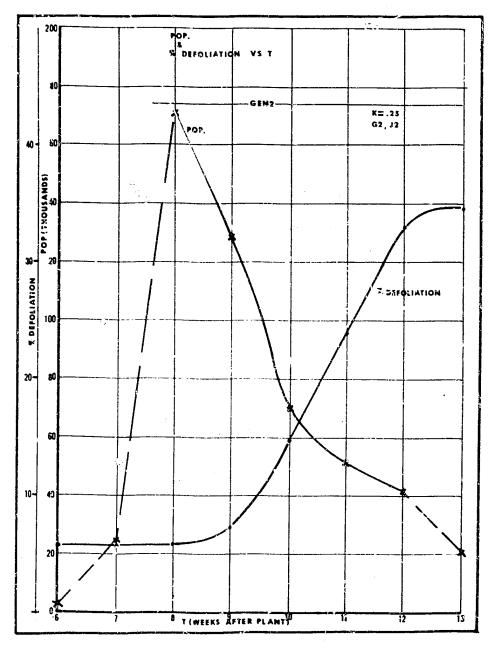


Figure 7

defoliation) for each cell of the experimental design at both podset (Oct. 10) and podfill (Oct. 30).

Figure 7 presents superimposed results for the variables, insect population and cumulative damage, (per cent defoliation) vs. time. The time phasing between the two response variables as well as the complex functional relationships that must relate them is clearly indicated.

Figure 6 is provided to indicate the order of magnitude of the population variances generated by the model. The data of Figure 6 were obtained in previous experiments with this model and are the results of six replicate simulations each using a different set of random number series. The 95% confidence limits are indicated by the horizontal lines bracketing the averages for the six runs. It can be noted that the spread of the 95% confidence limits is highly time dependent.

VI. Analysis and Discussion of Results

Analyses of variance for the results of the experiment are shown in Table 3 for podset and Table 4 for podfill.

Both sets show consistent results im-

plying that similar relations between k,

j, and G exist at these to points in

time. There is no reason to believe the

relations change at points in time be
tween these end points.

As expected, fraction kill, k, is a highly significant factor of the experiment. Ever with the minimal data of these runs, k was significant at the 1% level. The generation at which kill takes place, G, the next most important factor was significant at the 5% level. The instar at which k occurred, j, was significant at only the 10% level. It is believed that additional replications would show this factor to have a greater effect.

The experimental data were further analyzed at podfill by burying the effects of all levels of the instar and kill factors in order to determine which of the generation factor levels were significantly different. The significance of the difference between generation means was tested by the t test described below.

Mean response

G ₁ kill	G ₂ kill	Gl,2 kill
u1	u2	u both
37 48%	40.23%	27 369/

u = average response

n = 12 responses/column

d. of f. = 22 for any 2 column comparisons

 \hat{s} = estimated $\sigma_{e} = \sqrt{133}$ (from ANOVA)

 $t = (\bar{y}_C - \bar{y}_{\dot{1}})/\hat{s} \sqrt{2/n}$

 $= (\bar{y}_{c} - \bar{y}_{\dot{1}})/4.71$

where \overline{y}_{c} = control column mean \overline{y}_{c} = test column mean

t for α = .05, d. of f. = 22: t_c
= 2.074

Test 1

 $H_0: u_1 = u both$

t = (27.4 - 37.4)/4.71 = -2.12

Therefore reject $\mathbf{H}_{\mathbf{O}}$ and accept

H1: $u_1 \neq u$ both at 95% C.L.

Therefore % defoliation for kill at

both (G_{1,2}) is significantly

lower than that for G, only.

Test 2

 H_0 : $u_2 = u$ both

t = (27.4 - 40.2)/4.71 = -2.72

Therefore, reject H and accept

 $H_1: u_2 \neq u$ both at 95% C.L.

Thus per cent defoliation for kill at

G_{1,2} is also significantly high-

than that for G₂ only.

Test 3

 $H_0: u_1 = u_2$

By inspection it can be seen that there is no significant difference between per cent defoliation for G, and G2.

This series of tests appears to indicate that a one time kill is equally effective at either generation one or generation wo. As anticipated, a kill applied in both generations results in significantly lower defoliation than a one time kill.

A similar set of tests was made by burying the effects of all levels of the kill and generation factors and comparing mean response for the instars to detect significant instar levels.

Mean response

$$j = 2$$
 $j = 4$ $j = 6$

u = average response

n = 12 responses/column

d. of f. = 22 for any 2 column comparison

$$t_{crit}$$
 for $\alpha = .05$, d. of f. = 22: t_{c}

Test 4

 H_0 : uj4 = uj2

t = (30.1 - 34.4)/4.71= -.98

Therefore accept H_O at 95% C.L.

Therefore there is no significant

difference in the effects of instars 2 and 4 upon per cent defoliation.

Test 5

 H_{C} : uj6 = uj2

t = (30.1 - 40.2)/4.71 = -2.14

Therefore, reject H and accept

H₁: uj6 \neq uj2 at 95% C.I.

Therefore per cent defoliation caused

by a fixed k at instar 6 is significantly higher than that for

the same k at instar 2 or 4.

In summary, the two sets of tests reported above indicate:

- A. A one time fixed-fraction kill.

 induced at the same instar in

 either the first or second gen
 eration, is equally effective in

 controlling per cent defoliation

 that occurs during the second

 generation.
- B. Early instars (2 through 4) are preferred for application of the induced kill.

C. Kills at both generations, at the same instar, are more effective in minimizing per cent defoliation than one generation kills.

Reference to Figure 6 shows that the second generation population of the VBC is about an order of magnitude larger than that of the first generation. Assume, as a first approximation, that the amount of the factor inducing the kill is proportional to the number of caterpillars to be killed. The fixed fraction kill at the second generation will then require an order of magnitude greater amount of the kill factor, be it insecticide, predator, parasite, etc., than that for the same fraction kill at the first generation. Thus, result A above must be modified to indicate that generation one is preferred in view of the original objective to keep the amount of kill factor at a minimum. VIII - Conclusions

The above analyses suggest the following biological control strategies should be investigated in the real life situation.

- 1 Apply kill factor early in the first generation. This implies a payoff exists for emphasizing early detection of the first generation larvae.
- 2 A period of about two weeks is available during each generation's life cycle (Result B above) in which the strategy of l above can be used. That is make haste slowly; time is available for careful planning for the most useful strategy.
- 3 If the early instars of the first generation are undetected, concentrate on the early instars of the second generation. (The last instars in any generation of the VBC are nearly impossible to kill, per the practicing entomologists). The penalty for having to use this approach is a large increase in the amount of kill factor employed during the favorable two week period.

One has indeed been able to identify viable biological strategies by enalysis of the results of a designed experiment for the simulation model. The relative

factor effects of instar (j), fixed faction kill (k), and generation (G) at which the kill is induced have been evaluated.

gest that future experiments should include fraction kills at the egg stage.

Should the egg fraction kill be signicantly effective, experimental efforts on pest controls by specific parasites and predators should be increased. It is anticipated that future research will extend the model design to include environmental effects, pest-predator-parasite-fungi relations, economic damage caused by multiple pests, and consideration of pollution or poisoning effects of alternate management strategies.

TX - Technical Note

Average cost/simulation run = \$15. (IBM 360/65).

X - Acknowledgements

This work could not have been accomplished without the cooperation, advice, criticism, and the continual education of a management scientist in biological principles by the University of Florida's consulting entomologists, Dr. Gerald

Greene, Dr. Stratton H Kerr, and Dr. Willard H. Whitcomb. Many thanks, gentlemen.

BIBILOGRAPHY

- Majumder, S. K., Vegetarianism: Fad,
 Faith, or Fact? <u>American Scientist</u>,
 Vol. 60, No. 2, March-April 1972,
 p. 178.
- 2. Hillier, F. S., Lieberman, G. H.,

 Introduction to Operations Re
 search, Holden-Day, San Francisco

 1968, pp. 228-229.
- 3. Drake, C J., The Southern Green

 Stink Bug in Florida, The Quarterly Bulletin, State Plant Board of

 Florida, Vol. IV, No. 3, April '20.
- 4. Watson, J. R., Life History of the

 Velvet Bean Caterpillar, <u>Journal</u>

 of Economic Entomology, Vol. 9,

 December '16.
- 5. Greene, G., Private Communication, 1971-72.
- 6. Watt, K. E. F., Mathematical Population Models for Five Agricultural

 Crop Pests, Entomology Soc. Can.

 Memoirs, No. 32, 1963.

- 7. pielou, E. C., An Introduction to

 Mathematical Ecology, New York,

 Wiley-Interscience, 1969, p. 1-65.
- 8. Ross, S. M., <u>Applied Probability</u>

 <u>Models With Optimization Applications</u>, Sas Francisco, Molden-Day

 pp. 18, 55.