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Absgtract
A computer simulation model, SIDIP (Simulation of Individual Decisions
through Information Processing), of a person making nine decisions
under uncertainty is sketchea. Eight of a subject's (S's) choices are
consistent with the Laplace or maximize expected value criteria and
S's other is consistent with the Savage (minimax regret) criterion
(see Lugg and Raiffa, 1957). SLDIP“implies that the subject does not
use,the conventional computational processes dictated by those cri-
terin. SIDIP reproduces S's articulated choice behavior: inconsistent
use of choice criteria, rejection of some alternatives, and eventual
choice from the preferred alternatives. Analysis of information proe- |
essing models of suboptimal decision behavior suggests operational

techniques by which decision raking can be improved.

have been classified by Luce and Raiffa (1957)

as decision making under (1) certalaty, (2) risk,

The problems of individual decision making (3} uncertainty, and (4) partial ignorance (a
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combination of risk and uncertainty). These four
claeses of decision protlems are defined in terms
of knowledge of the probability distribution over
the states of nature, given the usual decision
theoretic formulation (decision maker; choices,
sctg, or alternatives; states of nature; payoffs)
of a decision zituation. Thus, decision making
under certainty is trivial from a decision the-
oretic point of view.

Normative decision theory prescribes choice

for a given structure and classigication (risk,

uncertainty, or partial ignorancé)uby specifying -

a criterion of choice. Normative theory pre-
.scribes in the eense that, if the criterion and
formulation are accepted, choice is unambiguous.
There are several decision theories -— meaning
that for certain conditione there are several
“reascnable” choice criteria.

It is well known that people do not aiways
bekave in a manner consistent witﬁ various nor-
mative decision theories. The descriptive fail-
ures of,normative‘criteria are documented else-
where (e.g., under risk;-HACCrimmon, 1969; under
uncertainty, Tuggle, 1972; under partial igno-
rance, Barron, 1270). Since these experimental
results were derived from 1abqratory studies.
uging ceasonably artificial pioblems, it is
likely that actual decisions made daily by de-
cision makers facing complex real-world problems

would also exhibit inconsistencies with norma-

tive theory.
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In this paper we choose to étudy decizion
making under uncertainty. We believe partial ig-
norance is a reasonable represéntation of real

world decision problens; however, several pro-

posed approaches for dealing with partial igno-

runce first reformulgte the problex as decision
making under uncertainty; (Those who subscribe
to a subjecrive or personalistic the?;y of proba-
bility would convert partial ignurancebto risk.
We temporarily reject risk since in many problems

the probabilities are, at best, vaguely known and

{ the decision maker is unwilling to accept the

probability estimates for decision making pur-
noges.) Other possible approaches to partial ig-
norance include deciding "as if" it were an un~-

certainty situation or deciding "as if" it were

yigk (i.e., maximize expected value or expected

utility), but first rejecting (or considering)

alternatives based on uncertainty criteria.
These approaches place heavy emphasis on.

éecisioﬁ-making undeyr uncertainty.

B. Proposal

Our aim is to study individual human
decision-making under uncertainty so as to learn
how decision processes are used and how to intro-
duce realistic modifications into a person's cog-
nitivé behavioral\repertcire so that he mekes an
optimal decision. This paper puts heaviest
weight on unravelling and simulating nonoptimal

decision processes; later papers will address

the zecond subgoal of internaiizing different

‘cognitive processes.
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In order to ensurc that our umders;ahding of
curtent (suboptimal) human decision-making proc-
esses is explicit, operational, and falsifiable,
we havg,encoded our model as a coumputer simule-
tion yrogram. Our program, entitled SIDiP for
Simulacion of }pdividﬁal Decision-making through
Information Processing, is described in detail
in Section IV and 1s tested and analyzed in
Section V.

In ordgr to bave a framework in which to ex~
press our médel, w;‘chose the Information Proces-
ing System (IPS) approach of Newell and Simon
(1972). Accordingly, our mode of opera;ion is
as follows: first, we take verbal protocols from
a subject whiie hg is msking decisions (see
_Sections II and III). Second, we construct an
IPS model of the subject's cognitive processes
(see Section 1V). Third, we examine, both quali-
tatively and empir1ca11y, the adequacy of the IPS
model (see Section V), Fourth, we use an IPS
model assumed to be validated and from it infer
reasons why the subject did not comply with the
set of normative decision processes (see Section
VI, Part B). Fifth, knowing the subject's IPS,
we suggest chenges in his information processing
to get conformity to normative theory (Section
VI, Part B); and last, we suggest how actually

to implement the modified processes (Section VI,

Part B).

II. Method
A single subject (S) was enjoined to make

' decisions under uncertaiaty and to verbalize as

‘much of his thought ﬁrocess &8 possibie. His
utterances were recorded on audio tape and later
transcribed to paper. S's protocol is analyzed
in the next section. A computer program tSIDIP)
was written {see Section IV) tc simulate the
easential parts of 5's decision-making behavior.
Goodneﬁs-of—fit tests of SIDIP's behavior toc S's
behavior are performed in Sectlon V. Action
recomnendations are made iﬁﬁSection vi.

The subject was faced by nine decision situ-
agicns, which were sequentially presented to him.
Tﬁe nine decision situationé are independent; S
was not permitted to see the next situation until

he had made a final choice on the previous one.

After all nine choices had been made, & single

'?ﬁsiﬁuation was selected by the experimenter (E) to
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be played for real money. The entire session

with S lasted about 50 minutes.

A. Decision Problems

The nine situations faced by S were tabu-
lated as nine different payoff matrices for un-
certain decisions. Table 1 exhibits the first
matrix that S was given. (Copies of all instru-
ments used in this work are available from the
authors.) Each matrix contains eight rows, cor-
responding to the strategies or actions available
to §, who had to selec; one of them. The fpur
columns correspond to the possible states of
nature that could occur. S did not know what

process was to be used for generating the states

of nature: uniform random, friendly (ﬁaximax)tfuf

:antagonistic (minimax), or same other process.




States
ZEJ XEQ WUH QUG
Sl 12 o 4 4
v 6
52 2 7 b 5
S3 0 11 3 4
Si 4 6 6 4
Decision -
Strategies Ss 10 4 4 2
SG 4 5 4 5
S7 4 9 2 3
- SB 8 2 6 6

Table 1: First Decision Situation

To prevent learning S was never told what state
of nature occurred after his row choice.

Each of the nine decision matrices w plel Ay
structed as follows: four of the eight rc are
ronsistent with four major decision theoretic
ériteria —- maximax, waximin, expected value (in
the Laplace sense), and minimex regre’” (gee Luce
and Raiffa, 1957). For example, in Tabl@ 1, row
51’ since it has o payoff of 12 (larger than all
other payoffs in that table), corresponds to the
maximax strategy. Row 54 correspondé to the
maxiain strategy, row 88 to ;he expected value
strategy (again, aséuming a uniform probability
distribution), and row SS to the minimax regret
strategy. The other four rows correspond to
' éﬁboptimal choices: each of -these rows is domi-
nated by at least one of the four optimal rows.
In Table 1, row S1 dominates row 33 (12 > i1,

4 » 4, 4> 3, and 0 = 0), S, dominates S

(6>5,6>5, 4=14, and 4 = 4), Sg dominates

S.,, and S

2 dominates S

5 7°

The order of appearance of the eightrtypes
of rows in each of the nine matrices was ran—
domized as was tﬁ; order of payoffs within each
row, (An exception is t;he minimax regret row
and its asscclated dominated row, since the re-
gret calculation depends upon other payoffs that
appesr in the same column.) The order of presen-
tation to S of the nine decision matrices was se-
quential: 1, 2, ..., 9. Matrices 1, 4, and 7
had_ali positive payoffs; matrices 2, 5, and 8
had both positive and negafive payoffs; and
matrices 3, 6, and 9 had all negative payoffs.
Additionally, matrices 7, 8, and 9 had signifi-
cantly larger numeric entries than matrices 1
through 6 (an average of 9.23 versus 5.29, re-
spectively).

The subject ggglg_eiﬁibit inconsistent
choice behavior using these matrices (he could
select a row corresponding to one decision cri-
terion on one matrix and corresponding tc a dif-
ferent decision criterion on another matrix)
and/or subeptimal choice behavior (he could se-
lect a row domin#te&,by another). Previous ex-
perimentation (Tuggle, 1972) shows that subjects
(undergraduate and graduate students and practic-
ing managers) exhibit both of these behaviors on
these very problems. However, this S, in fact,
makes no suboptimal choices and evidences only

one inconsistency (see Section III). Yet, as

Sectiocas III, IV, and V will detail, tis choice




processes differ substantially from those dic-
tated by decision theory. (See Luce and Raiffa,

1957, for a statement of normalive decision the-

cry.)

B. The Subject

The only subject studied in this paper was
a wale, first-year M.B.A. candidate at the Uni-
versity of Kansas who had not had courses in
operations research or in decisica theory. He
was invited directly by one of the authors (FHB)
to participaté in an a2xperiment on decision-
making, and S was promised that he could either
receive a flat paymént of $2 for participation
or gamble based on the decisions he would make.
We informed S, if he chose to gamble, that after
he had made his nine decisions, we would apply
some unspecified generating processes to select
oné of the matrices and to select a state oI
nature. He did not have to announce whetiiex he
wanted to gamble or not until he had seen all
nine tables and made his choices.

(The subject

did decide to gawble and won an additional $16.)

I1I. Protocol Analyeis

Limits to the space available here prchibit
us from presenting and analyzing S's entire pro-
tocol and Problem Behavior Graph (E3G), a time-
ordered graph of S's verbal behaviors that are
then to be simulated by the IPS (Newell and

Simon, 1972). The complete prctocol and PBG are

available from the authors. Excerpts from S's

protocol and his PBG are presented in Figure 1,

never verbalized one that was

primarily on payoff matrix 1 as illustrated in

Table 1.

A. Crude Generzlizations

Roughly, thé behavior of S over all aine
catrices seemed to be as followé: He first
labeled the tsble as to whether it is all posi-
tive, mixed, or all negative (presumably doing a
quick scan of the payoffs);.aléheugh his later
actions are not differentiable based on the label
given.

Second, he sequentially searched the action
alternatives open to him, fixsating on those that
have a distinguishing characteristié (e.g., one
very large or very small payoff, or a numbef of
"strong" or "weak' payoffs).

Third, he partitioned, explicitly -and im-
plicitly, his‘eight action alternatives inte
three sets (while sequentially examining them):
ﬂysse that he dislikes (a "reject" list), those
that appeal to him (a "considér" list), and
those that received no verbal indications (an
"ignore" 1list).

Fourth, a choice was made from those alter-

natives that are present on the '"consider" list.

In the case of numerous alternatives, a pairwise
comparison and rejecting process is used. From
S's protocol, the data led us to infer the fol-
lowing comparison process:
(1) S never talked about compuging a sum
(row sum or column sum) or an expected value.
(2) O0f all the numbers S verhaiized, he

close to a sum or



an expected value,
{3) S did verbalize on several occasions
about comparing "... these possibilities across

the board" (emphasis idded).

From these data, we infer that S was doing
some sort of column-by-column comparison of the
two rows in question. Simply to have. sore defi-
nite procedure to follow, we devised a process
that compares corresponding payoffs in each of
two rows and that réjects the row that has fewer
dominating payoffs. (This process is explicated
later in Section Iv; Part C, where SIDIP's
CHOICE subroutine is discussed.)

Finally, it is instructive to mention the
other types of verbal behavior present in S's
protocol. Besides the anticipated vague state-
ments, expressed confusions, and o?ert cathar-
ses, S did engage in a singular behavioral pat-
tern, from time to time. Particularly on matrix
7 and to a lesser exteant on matrices 1, 2; and
8, S speut some time (2, 5, 10, and 6 protocol
lines on matrices 1, 2, 7, and 8, respectively)
attempting to isolate identifying characteris-
tics of the four columns so as to be able to
assiga subjective probability estimates to them.
For example, on matrix 7, S noted that in one
colum there is a larger proportion of the
larger payoffs in the matrix, and he tentatively
conclujed that fhat column had a lesser chance

of occurring. However, in each case, S appar-

ently eventually discarded that "column-
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processing” line of analysis and continued his

original "tow-processing" type of analysis.

B. Exawnination of PRG

Problem Sehaviot Graphs (PBGs) are concise
ways of enceding the dynamics in the probhlem-
solving and decision-making behaviors present in
{See

a protocol. Newell, 1966, for a complete

discussion of the construction and utiiity of
PBGe.) The nodes in such a gieph are the ac—
tions or statements verbalized by the subject,
either presented verbatim or paraphrased. The
nodes are interconnected by lines (ércs or edges
of the graph), which put a time ordering c¢n the
graph: time runs (first) to the right and (then)
downwards. (The reason for allowing tire to run
to the right is to alluw succinct presentation
of episodic exploration on the part of the éub—
ject.)

Figure 1 presents the PBG over decision
situation 1 that we developed and used in our
study of S. 1In this PBG, there are behaviors
consisteat with our éeneralizations of Part A,
behaviors inconsistent with those generaliza-
tions (but not necessarily inconmsistent with our
detailed model in the nmext Section), and be-
havicrs not included in those generalizations.

The cousistent behaviors are (1) the matrix
is correctly labeled as being an all-positive
(or, more accurztely, all-noanegative); (2) only

those rows with double~digit entries (Sl‘ SS’

and Ss) are "considered;" the rest are ignored;




All positive here on the first table
?12, $0, $10, $4, and $8
|

- Note 12 in Sl -- Congider

Note 10 in SS -~ Consider

Note ? in 83 -~ Consider
TOte 0 in Sl ~- Note 0 in S3
kEQ_colnmn looks larger

8, == more money —- but has & 0 -- Discard

73 -- also has a large outcome -- but a 0 -~ Discard
TS -- Lias a large outcone
Accept S

5

Figure 1: Problem Behavior Graph Uver Decision Situation 1

.

(3) Sl and S3 are ''rejected" for having the preceding crude generalizations. But this is
table minimum, namely, a payoff of zero. not the point. The question is how well our de-

The inconsistent behaviors are (1) S5 is tailed computer simulation model of Section IV
"considered" before S3,<violating our sequential matches the choices and significant processes of
row-processing hypothesis; (2) column processing the nine PBGs. This question is answered rhe- 5
may be going on when S verbalizes "$§12, $0, $10, torically in Section V., g

$4, and $8", as all of these payoffs are to be
IV. Simulation Program -- SIDIP

; Ve TN s

found in column ZEJ fsee Table 1). Alterna— .
Our computer simulation program (SIDIP, an

tively, S could be reading parts of Sl’ SS’ and
acronym for Simulation of Individual Decisions

SS’ doing a row-processing analysis, or doing
through Information Processing) is written in L6

something altogether different. ‘
. (see Knowlton, 1966, for an explanation of the
A behavior by § not present in our gemneral-
Bell Telephone Laboratory's Low Level Linked-

ization is S's observation that the "XEQ column
‘ List Language) for the Honeywell 635 computer.

loocks larger." 1In fact, it is larger than the
The program and job cards occupy approximately

WUH and QUG celumns, but only equal to the ZEJ :
500 card images, and the data take 40 card

coluun. Our subject apparently did not notice
; images. (Complete listings of both are avail-

or utilize this bit of information.
able from the authors.)

“xamination of all nine PBGs yields some

evidence ~- pro, con, and irrelevant -- tc the




A. Data Structures

The primary reason behind the selection of
Lﬁvés our language was its ability to construct
and manipulate complex data structures. Accord-
ing to Newell and Simon (1972, pp. 19f£f.), there
are three important aspects of a simulation é;o—
gram of hupan thought: a set of symbol struc-~
tures, encoding the information present in S's
short-term, long-term, and external memories
(covered in the remainder of this part of the
paper); a set of Elementary Information Proc-
esses (EIPs) with which to operate on the sym-
bolic information (presented in Part B); and a
program, an ordered collection of EIPs, orga-
nized to accomplish a whole task (presented in
Part C). |

The major symbol structure posited for our
S is an encoding of the payoff matrix, replete
with row, column, andrtable description lists.
The matrix is represented as a 32 node network
(8 rows by 4 columns). Nodes in the same row
are doubly-linked (from a payoff in the matrix,
one uan access its right neighbor or its left
neighbor); likewise, nodes in the zame column
are doubly-linked. Besides the node linkages,
the following nodé information is loaded and is
static throughcut a run: 1its row number, its
column number, its value, and‘its sign.

The following descriptive information is
dynamically created during the execution of
SIDIP:

the matrix is labeled as all positive,

all negative, or mixed; maximum and miuimum pay-

e
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off values for the matrix are computed. The
number of negative values in the table is com-
puted. Nodes are labeled as double~digit 1if
their value is larger than §. Beth rows and
calumns have these attributes created: maximum
value, minimum value, count of the number of
negative numbers, and count of the numbex of
double digit numbers. Finally, each row ie
identified by its status or evaluation during
the decision process: '"Reject,” "Consider,"

"Good," or “Accept."

B. EIPs

In one sense the Elementary Information
Processes we presume are the legal L6 commands,
and in another sense they are the seven types of
EIPs specified by Newell and Simon (1972,
pp. 29-30): Discrimination, Tests and Compari-
sons, Symbol Creatioﬁ, Writing Symbol Struc-
turzs, Reading and Writing Externally, Designat-
ing Symbol Structures, and Stﬁring Svumbol Struc-
turés. More specifically, SIDIP is based upon
(and implicitly, we presume S has the capabili-
ties of) these EIPs: the ability to create at-
tribute information such as described in Pétﬁ A,
the ability to retrieve, compare, and distin-~
guish such information, the ability to input
{hear or read, for S and SIDIP, respectively!
and Eo cutput (speak or print) symbolic informa-
tion, the ability to do simplec numexic proc-
essing (e.g., to add two numbers, to recognize

that 7 > 5 and that -4 < -3, to save interme-

diate results}), and the ability to incerpret a




program of EIPs. These are the only EiPs we re-
quire of SIDIP, and the only ones we posit about
S. The sufficiency of these EIPs for SIDIP will
be empirically demcnstrgted indifectly and im-

plicitly in Section V. The necessity of these

EiPs for S does not violate anything we now know

about the cognitive capabilities of humans.

C. Macroprograms

In this part we shall indicate how SIDIP
operates, primarily by reference to its flow-
charts in Figures 2, 3; &, and 5 and by refer-
ence to the output it produces, éuch as in
Figure 6., SIDIP can be conceptualized as a main
program (Figure 2) and three subroutines:
EVALUATE (Figure 3). CHOICE (Figure 4), aand
COMPARE (Figure S). The main program initial-
izes data areas, reads and echo prints the de-
cision matrices, does some background informa-
tion processing, then calls on EVALUATE to sae-
quentially examine and label each row (as "Con-
sidered," "Rejected," or ignored), and finally
calls on CHOICE to determine the row to be "Ac-
cepted."”

The EVALUATE subroutine examines each row
in sequence for the properties liséed in ?igure
3 and makes an evaluation based cn the presence
or absence of those properties, Like our human
subject, EVALUATE "states" (prints) what its
evaluation of a row is (as soon as one is made)

and alsc "states" (prints) what the reasons for

the evaluation are. (If both a "consider" and a
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"reject” evaluation is made about a row., omly
the one made rarlier is retained.)

Two of the terms in Figure 3 are vague:
"strong entry" and "weak eﬁtry." Our opera-
tional definitiun of these terms, based upon S's
verbalizations, follow. A "strong entry" is a
double-digit payoff, when the matrix is.not all
negative and when the proportion of double-digit

payoffs in the tahle is 25% or less. In all

other cases, a paﬁoff is "strong" if it is one
of the top three payoffs just below the maximum
of the matrix.

A "weak entry" is a negative payoff, in the
case of a mired matrix. Otherwise, a pavoff is
"weak" if it is one of the two pavoffs just im-
mediately above the minimum of the matrix. The
CHOICE subroutine simply reorders the payoffs in
each row and confinues to call COMPARE until

' The remain-

only one row remains "considered.”
ing vow is "accepted."

The COMPARE subroutine performs a pairwise
comparison of two (internally ordered) rows. 'A
count is kept of the rumber of times one row's

entries dominate the other row's. The row whose

‘total coun’ is smalier {if either is) is labeled

"reject" and contrel returns hack to the CHOICE
subroutine.

(One may inquire what action SIDIP takes
when two rows are labeled "consider" and neither
one dominates the other. . In this case, SIDIP
would apparently te in an infinite loop; noting

such cases, SIDIP "accepts" all such rows, Our




< START )
Define Data Area

l

Buiid Data Structure

|

Read Next Decision none R

Table STOP
Print Ouvt; Current
l Decision Table

1

Initialize Attxwibutes for the Table

and its sodes, xows, and columns

Label the Table
(positive, negative, mixed)

i

CROICE )

%

Figure 2: Main Flowchart of SIDIP
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@nt ry EVALUAT@

@tain the next xow to p&oi:e;s\

N

mone . ,{\ RETUWN )

no !

4
ﬁoes the row have the maximuh yes Evaluate as
g table entry? / “Good™

Print

{

evaluation

Does the row have a strohg yes o Evaluate as
entry? - J ' “Good"
no
Print { ]
evaluation
& ’ ’ \/
Goes the row have the minimum table en:r&. yes ; «| Reject

no

Print |

evaluation [&

N

Goes the row have > 2 strong entriesﬁ

J

no

-YES. o Consider

Print ]

evaluzation

/\/

@es the row have > 2 weak entriesh

no

yes 2 Reject

Print |

lﬂ%q

yes _»| Consider

@a the row labeled "gocii" twicg

no L

e e

Print

5

evalustion

Gﬁas the row labeled "good” and rejactei’.’/ )

no

yes > Consider
Print N
evalustion

Figure 3: SIDIP Subroutine EVALUATE
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i !

Qntry CHOICE )

-

Reorder all nodes in
“Consider” rows frem
highest to lowest

Are there > 2 rows
© labeled *Consider™?

|

i yes

Choose first pair
of rows fabeled
"Consider"

CCHMPARE
(x,y)

D____

Is there
—#{ only one
row?

no

Report it
as "Acvept”

Figure 4: SIDIP Subroutine CHOLCE
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QEntry COMPARE (x,y) )

sun(x), sum(y)<e—0

:

.

Get next column s nene
§ peinter N
T
.\ yes sum(x) ©—
colum(xz) > column\y)?J 1 sum(x) + 1
. ; \_ yes sum(y) €——
column(y) > calumn(x)?/ > sum(y} + 1
v ¢
é¢ T
~ 2 !
B T yes B
sum(x) > sum(y/?J, i Label y a8 {— —g»
. - » "Reject"
' esg bel
Gnm(y) > sum(x)?J\ 4 <+ Lﬁkzjeztis‘

{ RETURN

Figure 5: SIDIP Subroutine COMPARE



human subject never mentioned facing such a sit-
uvation, but SIDIP encowntered it in four cases.)
Finally, in Figure 6, one can sée what is
printed out by the computer as it processed de-
cision situation 1: an echo print of the
matrix, a lsbeling of the matrix, an evaluatien
of the rows, and a final choice. These latter
tﬁtee elements effectivaly constitute a trace or
a protocol of SIDIP's behavior, which will be
compared with S's protocol (PBG, really) in the

next section.

V. Results and Analysis

A. Performance of SIDIP

When confronted with the same nine decision

matrices as the subject, SIDIP made exactly the

same choices on four matrices, made an incorrect

choice on one matrix, and could not chocse be-

tween two rows on each of four matrices - but
in these four cases, one of the two undecided
TOWS was alwaysvthe one selecuted by the subject.
In a sense, then, SIDIP wac “right" four times,

"yrong" cace, and "half-right" four times. The

This tabie is all positive

Row Sl looks

S, locks

Row 1

Tow S3 looks
Tow

?uu S1 locks
1]1001 S 3' looks

My choice is S

55 looks

5

Figure 6:
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significance of these findings is examined in

Part B. A report of the test of the decision
process appears in Part C.
It way interest the reader to kinow that

SIDIP's wrong choice occurred on decision situa-
tion 5 {mixed pavoffs) where S chose the expected
value raw* and SIDIP chose the maxiwin row. 1In
this case S explicitly did not reject the row
huving the minirum tabie value. Thev"half—right“
choices occurréd on matrices 3 (all negative), 7
(atl pbsitive), 8 {mixed), and 9 (all negative).
S chése thé expected value row in these four
cases; SIDIP also chose the expected value row
and respectively chose the regret row, the maxi-

min row, the maximax row, and the maximin row in

addition.

B. Terformance Tests
To gain insight into the ability of SIDIP

to simulate S's decisions, we shall compare its

*wg shall continue to confuse the maximum
expected valuve criterion and the Laplacian cri-
terion ~—~ which presumes a uniform probability
distribution.

good because of the maximum table value
pretty good, large numbers

prétty good, large numbers

pretty good, large numbers

bad since minimum table value

bad since minimum tabie value

PBG of SIDIP Over Matrix 1




choices to those of two models with random selec-
. tion mechanisms,
The first mcdei presumes cholces are made

by a random selection from the eight rows on s
matrix with a uniform probability of p = 1/8.
Since there are nine independent trials {decision
situations), the Berﬁoulli assumptions spply, and
we can derive two essential characte;@g;ics about
our model: :

n=9,p=1/8, end g =1 ~«p = 7/8

therefore, the mean number of correct

choices would be ‘
p=np=9.1/8=1 1/87v\

with a standard deviation of

o =vnpg =v9 - 1/8 . 7/8 = 1.

But SIDIP makes either 6 correct choices (4
fully correct plus 4 half-correct) or 4 correct
choices, depending on how one chooses to t:eéi

the four "half-right" cholces. This vields a 2

i )
score (Z = ———:;—-0 of either
- 6-11/8
26 : 1 4.875 or
A gi_l_;__ugg 2.875
4 1

The interpretations are that the 26 score is
4.875 standard deviations better than the random
model (statistically significant at p < .001),

and the Z, score is 2.875 standard deviations

4
better (significant at p < .003). A similar

analysis assuming random choice only occurs
among rhe four nondominated altermatives yields

n=09, p' =1/4, g' = lt- p' = 3/4
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with resulting changes in p = np' = 9 * 1/4 =

2 1/4 and ¢' = /np'q’ = v9 - 1/4 . 2/4 % 1.3
with corresponding Z scores of

Z6 -——3:3~“ 2.88 and

gt o A =2 1/4

&
2”13 1.35.

zé is significant at p < .003,; and Za is signifi-
cant st p < .1.

Since we feel that it is too harsh to assume
that a "half-right" choice is entirely wrorg, we
are forced to judge SIPIP's choices based on the

Z, aud Zé scores. Consequently, we conclude that

€
SIDIP's performance is significgntly superior to
the choices generated by these two random models
of decision-making.

Next we could test "as if" choice behavior.

The null hypotheses become S chooses "as if" he
is using a maximax {or maximin, or minimax re-
gret, or Laplace —- expected value) criterion.
We cannot reject such hypotheses on a purely
statistical basis (unless something like a strong
1nference‘poiﬁt of view is accepted as in Barron,
1970) since we have no appropriate error theory

and thus, no acééptable statistical methecdology.

Rather than argue on a statistical basis wa

- would suggest that S's protocols clearly show

that since none of these decision models {random,
maximax, etc.) is determining S's choices a more

c&mplex model such as SIDIP is required.




C. Test of Process Similarity

Turing®s t¢3t (Turing, 1963} is a classical
technique in the field of artificial intelli-
gence by which one tests the processes in a pro—~

gram that ‘3llegedly simulates & part of human

cognitiou.k For reasons best, illustrated by ref-
ererice to Table 2, Turing's test is not com-
pletely applicabie in this situation: S'sﬁpro—
tocol omits inarticulated processes. Thus, S's
PBG ie necessarily incomplete. In addition, S's
PBG includes unnecessary or irrelevant behaviors
as well as inconsistencies {(errors). SIDIP is
neces;arily consistent, thus introducing perhaps
insignificant processes (from a decision theo-
retic point of view). Tc test for conéruencé in
the structurés of the two PBG's, we quite arbi-
trarily aggregated all row evaiuations and com-—
parisons (calling them the "¢otal behaviors" in
Tabla 2), ignored all other hLehaviors, and then
compared all of the 'total behaviors" of SIDIP

to the "total behaviors" of S. Since presumably

Total
SIDIP

Matrix Behaviors

Agreement

9
19
9
14
9
10
24
11
_u

O 00~ OYUS O N
lbwomsrwd

116

W
o

Total

% of column 1 23.6%Z

Tahla 2:

- SIDIP's PBG Comparad to S's PBG
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haviors by S and 11 disagree.

€ neglected to mention some of his thoughts, his
"total behavior" is necessarfly less than thac
of SIDIP, which we can force to be completely:
verbal. This does mean, though, that for many
of SIDIP's behaviors, there will be neither col-
laborative nor disconfirming evidence present -in
S's (skimpy) PBG. Of the 50 row evaluations and
comparisons by SIDIP which can be tested by be-
haviors of S, 39 of them (78%) agree with be-
There are more
behaviors by SIDIP that agree with behaviors of
S than disagree in each of those nine cases, 8o
SIDIP seems to be uniformly good. To get some
feeling for the siguificance of the 78% correct
figure, exarine the following naive random model:
suppose that this model either emits a correct
behavior ¢+ an incorrect behavior with a uniform
‘probability of 1/2. .This is very conservative,
because there are so many ways a row evaluation
can be wrong (SIDIP's evaluation of a row camn

agree or disagree with S's evaluation; even if

iotal
_ S
Disagreement Abgent Bshaviors
0 1 8
3 9 10
1 6 5
1 10 4
2 3 9
e 9 4
3 13 12
1 .7 4
2 8 5
11 . 66 61
"~ 9.5% 56.9% 52.6%




there is agreement, SIDIP is wrong Lf its rea-

soning differs from S's) and because there are
three -~ not two -- possible resulfs from a com-
parison (a preferred to b, b’preférred to a, in-
difference between a and b). Neverthzaless, with
-fhat assumption and by assuming that the 50 be-
haviors are independent, we can again apply the
Berroulli model to derivg vhe mean number cor-
rect (from the random model). This mean is
u=np= 50+ 1/2 = 25 with a staudard deviation

of

in

~[3)

o = Japg = /50 - 172 - 1/2 =

7/2 = 3 1/2.

The score for the behaviors of SIDIP is

g -39 -25_ 14
3172 3 172

significant at p < .00i. - Thus, SIDIP's inter-

= 4, which is statistically

mediary behaviors were significantly-closer to

S's behaviocrs than this simple random model.

VI. Discussion

A. Corclusions

Accerding to Van Hern (1971), there are
several ways by which one can validate a com-
puter simulation experiment: use models with

high face validity, run "Turing"

type tests,
etc., (Van Horn lists several other techniques).
The statistical tests that have been run so far
on SIDIP suggest our simulation is significantly
better than random decision models. The numbers
and kinds of articulated behaviors summarized in

Table 2 suggest that simple decision models such

as maximax, Laplace, etc., are ilnadequate. As

indicated SIDIP's intermediary behaviors are sig-
nificantly closer to S's behaviors.

Mihran (1972) presents several procedures
for verifying and validating both deterministic
and stochastic computer simulation programs.
However, none of these tests are really appro-
priate for protocol simulations. ‘For this rea-
son we have not further tested the structural '4£*
congruence of the PBGs of SIDIP ﬁnd our S. - |

There are some deficiencie§ai9~§}DIP.
SIDIP makes one wholly incorrect choice, and
four others are only partially correct. Eleven
of SIDIP's 50 applicable behaviors are wrong, N
and 22 of S's 61 decision-making behaviors (36%)
remain unexplained by this version of SIDIP. 53,
Thus we conclude ;hat SIDIP explains reasonably
well the nucleus of our suﬁject's decision-
making procresses, but that there are stiil pe~
ripheral processes of importance by S that the
current SIDIP does not capture.

B. Incremental Improvement in

Decision-Making

Given the cé@eats-in_the previcus part, it
is obviously premature to press forward strongly
in the area of improving decision-making proc-
esses by studying simulations of iandividuals.
In ordecz to conclude the research thrust begun
in this paper, though, we shall preteﬁd that
SIDIP is near 100% successful to sketch the re-
maining work to be accumplished.

Assuming (hercically) that SIDIP adequately

simulates the decision processes of S, we can



now petform experiments upon the computer simu-
lation program. Suppose, by §ay of illustra-
tion, that S articulates a desire to behave in a
manner consistent with the maximize expected
valuve critericn, but S does not consistently do
so. Then an easy way t¢oc change SIDIP so fhat it
behaves in that manner is to alter the COMPARE
subroutire: afrer reordering the columns within
the two rows (from highest payoff to lowést), do
not compare the columns by simply noting

' or "equal." Instead, deter-

"above," "below,'
mine and record how much above or below one
row's column is cover the other. Total these
differences, and the row yith the higher\sum is
then the row with larger expected valua.

Once it is 1ea¥ned that the suggested
changes in COMPARE cause SIDIP tc behave in the
desired manner, then this information can ve
presented to S. By allowing S to learn of his
shortcomings or through some similar procedure,
improvements in S's decision-making behavior may
be incrementally introduced. (The design of an
acceptable trg}ning procedure is still an un-
settled issué.) He retains the familiar and
comfortable essentials of his decision-making

process, but his decision-making ability is now

improved.

C. Future Work
There are basically four avenues along

which this ressarch should be continued: First,

improvements in SIDIP need to be made so that it

simulates $'s behavicrs even more closely. For

example, S clearly expends much effort in at-
tempting to differentiate ¢ .umns. SIDiP should
also lack for regularities or peculiarities in
cblumngnand then introduce corresponding changééfl
intc the subjective probabilities associated with
those columns.

Seéond, protocols from more subjects should
be collected so that more can be learned about
the actual decision-making processes of humans.

- Third, experiﬁ;ﬁts should be conducted to
learn a Ftaining procedure that is successful at
modifying decision-making pracesses.

Fourth, this entire paradigm should even-
tually be moved out of the laboratory and into
the real world. Ultimately, it is not the
decision-making processes of college students
that one is interested in studying, simulating,
and improving, but rather the decision proceéses

of military leaders, government officials, and

business executives.
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