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Summary

Implementation of a system for the simula-
tion of the time domain operation of a deter-
ministic digital logic net involves considera-
tion of problems different from those encounter-
ed in simulation of the time domain operation
of a stochastic system. Examination of two dif-
ferent simulation time flow mechanisms 1llus-
trates how each technique may be applied to the
gimulation of logic nets., The design goals for
a general purpose logic simulator are examined
and the implementation techniques used in TEGAS2
are 1llustrated.

Introduction

Implementation of a system for the simula-~
tion of the time domain operation of a deter-
ministic digital logic net involves consideration
of problems different from those encountered in
simulation of the time domain operation of a
stochastic system.” Most general purpose simu-
lation systems designed for simulation of sto-
chastic systems cannot take advantage of the
deterministic restrictions inherent in the opera-
tion of digital logic nets. The operation of a
digital logic net is determined by the para-
meters of the net itself. Hence, some foreknow-
ledge of the operation of the net may be gained
by examination of the net's parameters. -This
knowledge of the net's operation may possibly in~
fluence the design of a logic net simulator.

This influence is especially felt in the area of
algorithms for the movement and control of time
in a simulation model. In this paper, we ex-
amine some of the aspects of time domain simu-
lation of digital logic nets.

I. Digital Logic Net Simulation

A digital logic net will be defined to be a
set of digital logic elements interconnected by
signal paths known as lines, A digital logic
element is a device whose output or outputs is a
function of either its inputs or current state
history or both. These signals can possess dif-
ferent discrete values from a finite set of
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values. The set of values depends on the type
of medel used for simulation. For example, in
a simple two-valued simulation of a logic net,
signals may take on values of either zero
(false) or one (true). In a three-valued simu-
lation signals may take on values of zero
(false), indeterminate (unknown), or one (true).
Other simulation models have different sets of
values for the signals.

The system being simulated is defined as
the digital logic net itself. Any logic element
input line that does not originate as the out-
put of a logic element in the system is known
as a primary input. Any output line of a logic
element that is not used for input to a logic
element in the system is known as a primary
output. The state of the system is defined by
the values of the lines and the states of the
logic elements,

In discussing further concepts of logic
net simulation the terminology defined by
Pritsker and Kiviat will be used.l An event is
an action which describes how the simulation
system changes state, The occurrence of an
event causes the system to instantaneously
change state. An activity is an action engaged
in by an entity or entities as the system -
changes from state to state. Activities are
started and ended by the occurrence of events.

An event in a digital logic net occurs
when a line in the net changes to a value dif-
ferent from the value it possessed before the
event occurred. Events can originate either
internally or externally to the logic net simu-
lation model. Internally created events are
originated by changes in the outputs of a logic
element in the.net. Externally created events
are originated by lines in the nets having their
values changed at specific times to new values
by the person controlling the simulation.

The logic elements in the net can be
thought of as permanent entities in SIMSCRIPT
113 terminology or as facilities in GPSS
terminology. The events in the logic net mark



the commencement and termination of activities in
the logic net. 'The logic elements in the nets
are the only entities that can support activi-~
ties. An activity in a logic net is the opera-
tion of a logic element evaluating the value of
its output or outputs on the basis of its current
input or inputs and the current state of the
logic element., This activity of evaluation is
the only process inherent to the logic element.
Activity in a logic element is always initiated
by a value change on one of the input lines~--an
event-~-and is terminated by the logic element
pregenting its newly evaluated output value or
values, after some increment of simulated time
has passed. If the new output values differ
from the current values, then the activity ter-
minates by causing an event or events to occur,
since it may cause a line or lines to change to
a new value. If none of the new output values
differ from the current output values, then the
activity in the logic element terminates without
causing an event to occur.

Hence, the operation of the logic net con-
sists of events and activities which occur in
relation to the passage of time. Simulation of
the operation of the digital logic net requires
the ereation and monitoring of these events and
activities.

II. An Examination of Two Simulation Time Flow
Mechanisms

The implementation for driving a simulation
model through the time domain 1s the time flow
a1gorithm.5 Often the algorithm is referred to
as an implementation of the time flow mecha-
nism. It is known that algorithms combining
properties of several mechanisms produce more
efficient results in certain instances.d We
return to this point later.

The time flow mechanism governs the simula-
tion of events in the system and controls the
flow of simulated time. As a result, the time
flow mechanism influences many aspects of the
simulation. For example, if the time flow mecha~
nism restricts when events can occur in thé time
domain, then the simulation model may not present
a realistic picture of the system being simulated.
Another aspect influenced by the choice of time
flow mechanisms is the simulator efficiency.

Some time flow mechanisms may execute in less
time for a given simulation than other time flow
mechanisms because of implementation or computa-
tional requirements. For these reasons, we will
examine two different time flow mechanisms and
their relation to digital logic net simulation.

The first time flow mechanism to be consider-

ed is the "next event" mechanism. This can be
represented by the algorithm below:

Let ey, €9, +«., €p be the events which are
scheduled to occur in the system.
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Let tj be the time at which event ey is
scheduled to occur,

Define E = [(eq, ty), (ep, t), ...,
(ens ty)] to be the set of pairs (ey, ty) order-
ed on the value of ty, in each pair, such that
the t;'s are in ascending order. That is, the
first member in the set is scheduled to occur at
the smallest time ty, of all the ty's in the set
of pairs. Let X be the current event being
simulated. Let T be the current time in the
simulated system. Then the next event algorithm
is as follows:

1. If the set E is empty, terminate the
algorithm,

2. T = £(E) where £ is a function that
ylelds the value of the ty in the
first pair in the set E. (Note that
this may advance the simulation time
T.)

3. X = g(E) where g is a function that
yields the identification of the
event ey in the first pair of the
set E.

4, Delete the first pair in set E and
deallocate storage used for that pair.

5. Simulate the event identified by X.

6. Go to step 1.

Figure 1 illustrates how an implementation
of the next event algorithm might appear. In
many implementations, the set E of events is
maintained in some form of a linked list to
allow for easy manipulation of the members. The
next event algorithm possesses an attribute
conducive to an accurate simulation of a real
system. No restriction is placed on the time
when an event may occur in the system. The
simulation time T is, in effect, driven by the
occurrence of events. In step 2 of the algo-
rithm we see that the simulation time is up-
dated from the time of occurrence of the event.
Hence, an event can occur at any arbitrary time.
0f great implementational importance is that the
storage requirement for the algorithm is propor-
tional only to the number of members in the set
E. The major drawback to the next event algo-
rithm involves the insertion of new pairs into
the set E,

Insertion of a new pair into the set E is
an action known as scheduling. Scheduling is
used to cause the simulation of a given event
at a given time. In the next event algorithm it
1s necessary that the event~time pair (eg, ty)
be inserted in set E such that the ordering of
set E on the t, 's be preserved. If set E is
maintained as a linked 1list structure as in
Figure 1, insertion of the pair involves search-
ing the set E in a linear manner to determine
where to insert the event-time pair in the set.
For example, in Figure 1, we would search the
set E starting from the list head. If we
desired to insert the event-time pair (ek’ tk)
and set E contained N event-time pairs
such that in each of the N pairs the relatfon




ty < tg existed, then, we would be forced to
search through N pairs before determining the
point in set E to insert the pair (ey, t). In
the case of digital logic net simulation for the
next event algorithm it can be shown that the
probability of having a search length greater
than one to determine where to insert an event-
time pair in set E is nonzero except for trivial
cases. The proof of this is found in Appendix A.
If this probability were zero, then scheduling in
the next event algorithm would always allow
placing the event-time pair in the same place in
set E for every event scheduled. Hence, no
gearching would be involved in scheduling an
event. Since the probability is nonzero, search-
ing 18 required in scheduling an event. If many
events are scheduled to occur during the simula-
tion, intuitively we can expect to search through
a number of events to insert a new event, In
digital logic net simulation, this searching
overhead is critical due to the large number of
events that may occur in the net.

The second time flow mechanism to be con-
sidered is the fixed time increment mechanism.
Using the notation introduced above, the repre-
gentation of the algorithm is as follows:

_ Let At be a fixed increment. (The size of
At is designated by the designer of the simula-
tion).

1. 1If the set E is empty, the algorithm
terminates.

2. T=T+ At. .

3. If T is not equal to f£(E) go to step 1.

4, X = g(E).

5. Simulate the event identified by X.

6. Delete the first pair in set E and
deallocaté storage used for it.

7. Go to step 3.

Figure 2 i1llustrates a common manner of
implementing the fixed time increment algorithm.
Since the fixed timé increment algorithm only
has knowledge of points in time that are integral
multiples of At, the structure reflects this., A
gingle dimensioned array TQ of pointers is main-
tained. The pointers point to lists of event
fdentification information. Each location in
array TQ represents a distinct point in time.

For example, the location indexed by I in TQ
represents a simulation time equal to I*At., I is
an integer by definition of the algorithm., In
this manner, set E can easily be maintained for
the fixed time increment algorithm, The time
flow algorithm and the scheduling mechanism can
then make use of set E.

The fixed time increment mechanism possesses
a property that can seriously degrade the valid-
ity of the simulation. Since events can occur
only at points in time that are integral multi-
ples of At, if the model requires a relative con-
tinuum of time in order to present an accurate
real world view then At must be very small for
simulation accuracy. A very important implemen-
tational consideration (factor) is that the
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storage requirements are proportional to the
sum of two quantities. The first quantity is
the number of members in set E.- The second
quantity is the total time interval being simu-
lated divided by At. This is due to the fact
that the length of array TQ is proportional not
only to the total time length being simulated
but also to the inverse of At. However, the
fixed time increment algorithm possesses an
important advantage in the area of scheduling
events, To insert an event-time pair (ej, ty)-
into set E, one need only add the event identi-
fication information for e, to the list pointed
to by the array TQ location indexed by t..
Hence, scheduling events requires a fixed over~
head in time and involves no searching, unlike
the next event algorithm. In a simulation with
a high number of events occurring with respect
to the passage of simulated time, the fixed
overhead involved with scheduling in the fixed
time increment algorithm is conducive to a
rapid simulation.

The integral approximation to a time con-
tinuum imposed by the fixed time increment algo-
rithm may not be as serious as it seems, for
information concerning the time it takes a
given real logic element to evaluate its output
from its input-~-the propagation delay--is not
usually proyided as an exact figure. Delays
through actual logic elements are usually speci-
fied to fall within some minimum and maximum
values by the manufacturer. Hence, careful
gselection of At for the fixed time increment
simulation can lead to accurate results without
the scheduling overhead that can be incurred in
the next event algorithm.

Event Occurrence in Digital Logic Nets

Before a meaningful simulation can be per-
formed, one must consider the real-world item
that is being modeled in the simulation. 1In
this case, our interest is centered on digital
logic nets. Let us first consider the charac~
teristics of individual types of logic nets.

A combinational logic met is one in which
the outputs are determined solely by the present
value of the inputs. Combinational nets tend
to settle to a final state within a finite time
after excitation of the inputs to the net.

Since all of the events in the net may occur in
a relatively short period of time, it is pos-
sible to find a rather high density of events
occurring in a logic net, in relation to time.

A sequential logic net is one whose outputs
are dependent on the past history of the net as
well as the current inputs to the net. A syn~
chronous sequential system employs clocks to
gynchronize the time at which the system transi-
tions from one stable state to another. All
internal combinational values are assumed to be
stable at each clock transition providing syn-
chronization. An asynchronous sequential ne
has no synchronization and thus "free runs."



Since in a synchronous sequential logic net
all changes occur with the "clock" all events
occur within some finite time after the "clock"
occurs. Hence, in a synchronous sequential net,
event occurrence tends to cluster around occur-
rence of the "elock."

In an asynchronous sequential logic net,
event occurrence is determined solely from the
structure of the logic met. Thus very little
can be said in general about event occurrence
in such nets.

IV. The Design Goal of a General Purpose
Loglic Net Simulator

Thére are several important goals to be
achieved in a general purpose logic net simula-
tor. TFirst, the simulator should place no re-~
strictions on the length of the time interval
being simulated. Second, it should employ a
time flow mechanism strategy that will allow for
efficient scheduling of a high density of events
with respect to time. The simulator should
make efficient use of storage and should have
small overhead in the setup time for execution
of each event.

V. TEGASZ——A General Purpose Logic
Net Simula;or

The time flow algorithm of TEGAS2 repreg ; g
sents an extension of the one used in TEGAS. *'?
The basic simulator driving time flow mechanism
is the fixed time increment mechanism. Immedi-
ately, the observation is made that storage
limitations severely restrict the time interval
over which a simulation can be performed using
the pure fixed time increment strategy. TEGAS2
employs a combination of fixed time increment
and next event strategies to circumvent the time
interval problen encountered in the pure fixed
time increment mechanism. The fixed time incre-
ment algorithm implemented in TEGAS2, used to
drive the execution of events, utilizes a single
dimension array Z that is N locations long.
Figure 3 details much of this description. In
the current version N is equal to 100. Array Z
contains pointers to the lists of events sched-
uled to occur. Array Z is indexed from zero
using the simulation time T medulo N. Another
variable is used to represent the current time
cycle contained in the array. This variable will
be called S. Hence the time interval being sim-
ulated is from A to B where A = S*N and
B = (S+1)*N-1., So that an event found by the
pointer X into the array Z is occurring at simu-
lation time T = (S*N)4+X. Any event scheduled for
time less than or equal to B is scheduled in
array Z in the standard fixed time increment
scheduling method. All events scheduled to ocecur
after time B are stored in a linked list ordered
on time. This list structure constitutes the
next event algorithm portion of TEGAS2. Always
at time B an event is scheduled which in effect

advances the simulated time interval held in
array Z. This event is known as the event list

update. This event increments S by one and re-
moves all events from the ordered linked list
that will occur within the new time interval from
A to B. These events are linked to array Z so
they may be executed by the fixed time increment
portion of TEGAS2.

. This mixed set of time flow mechanisms pro-
vides an algorithm for a simulation time inter-
val of 34359738637 units with storage used
proportional only to the number of events sched-
uled. TEGAS2 has been used to simulate logic
nets of size greater than five hundred gates with
very reasonable execution times. Experience with
TEGAS2 indicates that this approach to a time
flow mechanism for a general purpose logi% net
simulator is wvalid. The original TEGAS®» »8 had
a simulation time interval limitation of 10000
and storage requirements were proportional to
both the number of events scheduled and the
maximum time interval that could be simulated.
The strategy used in TEGAS2 has overcome these
problems. Appendix B details typical simulator
execution times,

APPENDIX A

Theorems Concerning
Proofs of Scheduling in the Next Event Algorithm

Let U = [ul, Uy, ... up] be the set of all
types of events that can occur in the logic net
being simulated.

€ondition A,l--Given the set E from the
Next Event Algorithm.

Condition A.2-~Let all events in the deter-
minigtic logic net simulation be scheduled in
the following deterministic manner:

Let d; be a quantity > O associated with
each ug.

When an event of type uj is scheduled, it
may only be scheduled to occur at time X where
X is defined as follows:

X = T + dy where T is the current time of
gimulation.

Condition A.3~~Let P(uy) be the probability
that an event of the type uj will be scheduled
during the simulation.

Then P(uy) >0 ¥ ugy €U

Theorem 1--Given conditions A.l, A.2, and
A3, If dy = dj, 14$31%uy,u el
then for the nekxt event algorithm to insert an
event-time pair (e;, ty) into set E and to re-
tain the ordering of set E one need only insert
(ei, ti) after the current last member in set E.

Proof-~Set E 1s ordered in ascending order
on the t, in each pair. In order to insert the
pair (ei, ti) at the end of set E and to retain
the ordering of set E one must insure that t; is



always greater than or equal to t;, where t is
the time of the last event-time pair in set E.
To prove this theorem we need only prove that t;
is never greater than ty. We can prove this as
follows®

By condition A.2 all-&vents scheduled are
scheduled in the same manner. Also, all dy’s
are greater than zero so the time in ‘the simula-
tor always advances., As a consequence, the
largest value tj could have is equal to T + dy
where T is the current simulation time. The
value t; is equal to T + dj. Since dy = &
then t; = t;. This value of ty can only occur
if the"event e, was scheduled at the same simu-
lation time as event e;. If the event e, was
scheduled at simulation time X less than the
current simulation time T then the relation
t =X+d <T+dy =t would hold. This re~
lation is also allowable under our theorem. The
event e, cannot have been scheduled at a simula-
tion time X greater than current simulation time
T since the simulation time always advances.
Hence, the event-time pair (ei, t,) would have
been placed in the set E befo¥e the event-time
vair (e, tk). 0.E.D.

Condition A.4--The probability is nonzero
‘that the set E will contain at some point in the
gimulation an event-time pair of type u; and an
event-time pair of type uj 3‘di *+ dj =>"Proba-
bility (di < dj v dj < di)> 0.

Theorem 2--Given conditions A.1,A,2,A.3 and
A.4., In the next event algorithm there exists
a nonzero probability that a search of length
greater than one (that is, the first place in
set F inspected is not the correct place of
ingertion for the event-time pair) will be need-
ed to locate the proper place to insert an
event-time pair being scheduled. This assumes
that the initial point of inspection and search
is inftiated from the last member of the set E,

Proof-~For the search length to be greater
than one, the t value of the event—time pair
(ei, t,) being inserted into set E should be such
that making it the last member of set E will
destroy the ordering of set E. This will be true
if the t value of the current last event-time
pair (e, , t,) In set E is such that t_ > t, is
true. %o sf i

state that this occurs with a nonzero
probability, we only need show how it can occur
and then note that condition A.3 and condition
A.4 assign nonzero probabilities to the contri-
buting factors.

From proof and terminology of Theorem 1 we
note that t, = X 4+ and t, = T + d,, where X
is the simuEation<time at w%ich event e, was
scheduled. We only need know that t -kX + dk>
T+d, = ti may occur. We note that if X <. T
then %k must be greater than d, for this relation
to occur. Since the vrobabili%y that d, is not
equal to d, 18 nonzero and the nrobabilitv that
two events e, and e, having di # d,_will be in
set E simult%neously is nonzero thus the proba-
bility that t, > ti is nonzero. O0.E.D.

NOTE: For a search from the first member
of set E, the same theorem can be stated and
proved in a similar manner. It may be possible
that for certain next event simulations given
specific information about event occurrence and
scheduling one might discover a means to predict
search length and thus determine from which di-
rection to search the set E. This might be a
good problem to attack when the di's are known
psuedo~random functions.

In the case of a logic net simulation, it
can be seen intuitively that the search in set E
will often be greater than one in length. This
follows from the large number of different d,'s
and events being scheduled as the logic net
operates. Hence, the distribution of the type
of events in the set E will be varied and ac-
cordingly due to the different d,'s the t, of
each event-time pair (e,, ) wiil vary over a
sufficient range such that i search of greater
than length one will often be necessary.

APPENDIX B

TEGAS2 Execution Times
Synchronous Sequential Networks

33 GATES 85 GATES 497 GATES
Time Units
Simulated 2000 2000 620
Elapsed Time-
Seconds ’ 7 5 7
Seconds/Step .0035 .0025 011
Max Events
At One Step 2 30 197
Total Events 229 1459 6595
Average ’
Events/Step L1144 .7291 10,619
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Set E

FORMAT OF ENTRIES
IN SET E

Link Field -

Event Identification Field -

Time Field -

Link Field - Points to Next Entry in Link List Field and is zero in

last entry

Event Identification Field - Contains Information Describing the event

to occur

Time Field -~ The time at which the Event is to occur

FIGURE 1 - THE NEXT EVENT ALGORITHM-A SIMPLE IMPLEMENTATION
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N-1

Groups of events

- W0 |e——" scheduled to occur

at the same time

Link Field -

Event Identi-
fication Field

Link Field - Pointer to next entry in

list zero for last entry

N
o

Event Identification Field - Information
describing the event to occur

FIGURE 2 - THE FIXED TIME INCREMENT ALGORITHM -
A SIMPLE IMPLEMENTATION
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Event List

Figures 1 and 2 contain
Descriptions of these
structures,

THE EVENT LIST UPDATE EVENT is
always found in the group of
events pointed to by the pointer
at Z(N-1). This event increments
S by one and moves any events from
the event list that are to occur

N R in the next N-1 time intervals
I —> b 0 and places them in event groups.

ARRAY Z

If I is the Index to a Group of Events, the events are to occur at
simulation time equal to (S*N)+I where S is the number of cycles
that have been made through array Z and N is the length of array Z.

FIGURE 3 - TEGAS2 IMPLEMENTATION
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