GPDS - A NEW SIMULATION LANGUAGE

Philip S. Becker, Jr.
Scientific/Systems Products Section
Program Products & Services Department
Xerox Data Systems

ABSTRACT

XDS has developed the General Purpose Discrete Simula-
tor (GPDS) System which runs on its Sigma computing sys~
tems in either a time-shared or batch environment. GPDS
is an extension of GPSS. Enhancements include a matrix
library feature and the capability of automatically seg-
menfing a model into overlay sections and storing these
sections on a direct-access device, Other improvements
to GPSS include the ability to use indirect addressing with
any entity instead of just parameters, two new blocks that
can locate other transactions and access data from them,
and the ability fo terminate a simulation when a steady -
state condition is reached. This paper briefly discusses
the design philosophy behind GPDS and then examines
the enhancements incorporated in the language. The dis-
cussion includes some examples that illustrate the use of
these new features and suggests some new modeling tech-
niques which are now available to the user,

DESIGN PHILOSOPHY BEHIND GPDS

In designing a discrete simulation language, the following
criteria were considered:

1) GPDS must be easy for nonprogrammers to use. The
language should be directed to the ultimate user - the
person who is to do the simulation ~ not foward a pro~
grammer who must interpret the modeler's intentions.

2) The language should be tightly structured. The lan-
guage structure should define a solid framework for
simulafions and necessitate a minimum knowledge of
advanced programming techniques. This was deemed
more important than a more flexible language which
would be more difficult to use. The language should
also automatically perform such basic functions as
keeping frack of simulated time, sequencing of con-
flicting events, and recording statfistics about the run.

3) The language should be compatible with existing lan-
guages, The language should minimize the conver-
sion problems often associated with installing a new
system. Also, the cost to XDS of designing, teach-
ing,and selling a compatible language should be con-
siderably below the cost of starting from scratch.

The language that we felt best fit these criteria was GPSS.
It has been designed to be consistent with the analytic ap-
proach taken by the people who will be using the program
to solve problems with simulation analysis. GPSS, of
course, is a tightly structured language and it is the most
widely used and best known of the existing discrete simu-

483

lation languages. Almost every producer of computer
mainframes has implemented some version of the language.
For the best possible market penetration, it was decided
to make GPDS completely compatible with GPSS/360.
Any job that would run on GPSS/360 would run with no
change under GPDS and the cost of the GPDS run would
be significantly less.

IMPROVEMENTS TO THE LANGUAGE

As has been already mentioned in this paper, GPDS is
fully compatible with the existing industry standard, How-
ever, it is the new features incorporated in GPDS that
make it a valuable and unique tool. The rest of this
paper details these new features and how they can be

used,

Probably the most significant feature designed into GPDS
is its ability to run under the Batch Time-Sharing Monitor
(BTM) and under the Universal Time-Sharing System (UTS),
the two XDS time~sharing operating systems, A GPDS
user can build, debug,and run his model directly from any
standard remote terminal, thereby eliminating the delays
in turnaround that are typical of a normal batch-oriented
operation.

Discrete simulation models can run for a long time with
no indication of whether the model is looping or proceed-
ing properly toward completion. During the execution
phase of GPDS the remote user can check on the progress
of his simulation by simply pressing the Interrupt button
on this terminal, GPDS will respond by printing the sim-
ulated clock time and the number of terminations to go,
and then continue the simulafion. If either the clock or
the terminations counter are not changing at approximately
the rate expected by the user, he can terminate the sim-
ulation and check for logical loops or similar errors in

the code. This allows him to abort a simulation with-
out wasting machine time if the model "hangs up" un-
expectedly at some time during the run. This interroga-
tion feature may also be invoked from the operator's con-
sole to check the status of jobs run in a baich environ=
ment,

Since listing the output of a large run at a terminal can
be a time-consuming process, if the user does not want to
wait while all of his output is printed, he may assign most
of his output to a disk file and direct only the output

from the report generator to the terminal. He may then
use the editing option of the time-sharing monitor to ex~
amine portions of the large listing file on the disk. If
necessary, he may also use the terminal to cause that out-
put file to be listed off~line on a high-speed printer.

The ability to run GPDS under the time~sharing systems
has already greatly reduced the time and cost required

to develop working models at XDS. We have also dis-
covered that teaching simulation with GPDS is more
effective when a student has direct access to the system
via a remote terminal, With the "instant turnaround" of-
forded by a terminal, a student can try a new technique,
find out if it works, and then modify it if necessary, all
in the space of a few minutes instead of a few days.

Possibly the most severe limitation on the use of previous
GPDS-type simulators was the large amount of core re~
quired for their operation. Running time - the other prob-
lem of large simulations - may inhibit repetitive runs of
a large model but it is not the absolute restriction that
size is. A long~running model can be used when suf~
ficient machine time becomes available, but if a model
is too big to fit in a computer, it must somehow be mod-
ified or it simply can never be used. Moderate-sized
hardware is required for any significant modeis and it is
not unusual to have to code models carefully to fit a
large model into even 100, 000 word machines, GPDS
has incorporated features that help minimize this problem.

We found that normally in large models the majority of
core required for simulation was devoted to blocks, param=
eters, and matrix savevalues. Therefore, GPDS allows
the user fo segment these entity-types into individual load
sections that will be stored on a fixed-head, direct-access
device known as a RAD, GPDS rolls individual load sec-
tions into core only as they are needed. New reallocation
mnemonics for each entity allow the user to specify the
number of that entity that will remain permanently in
core and the number of each entity that comprises a sin~
gle load section. Thereafter, the process is invisible to
the user since GPDS automatically swaps the load sec~
tions as needed. For example, a user could allocate the
first one hundred blocks as permanently core-resident and
segment the rest of his model into load sections of fifty
blocks each. No matter how large the model actudlly is,
it will only require core for one hundred and fifty blocks.
By properly coding his model so that-the most frequently
used blocks are the ones that are permanently in core and
so that transaction movement between blocks in different
load sections is minimized, a user could put a very large
model into core space required for only one hundred and
fifty blocks, yet pay a minimum in I/O overhead. To con=-
serve more core, the user could also elect to store param-
eters for all fransactions in load sections, To minimize.
1/O time,the user can also specify that a few of the more
frequently used parameters in each transaction remain
permanently resident in core. For a given transaction,

its parameter load section would only be loaded when

the model references a nonresident parameter, Likewise,
the user can store both halfword dnd fullword matrices on
separate load sections. In both cases, reallocation mne-
monics are used to select which mairices are permanently
core-resident and in what combination the others are
stored on a RAD.

All four load section features - blocks, parameters, and
the two Matrix Savevalue types - are completely inde~
pendent. Therefore they may all be used without inter-
ference in one model to minimize core requirements and
permit the use of large models on moderate~sized hard-
ware.

GPDS also incorporates a library feature for Mairix Save-
values, This means that the user can produce a general~
ized model and define all system characters in terms of
the matrices. He then builds up a library of data ma~-
trices for various systems, either directly from previous
GPDS runs, or as the output of user-written FORTRAN or
COBOL programs. The user then calls in the proper ma-
trix at run time by issuing o GET directive, thereby allow~
ing him to configure his general model to a specific situ~
ation. This feature can also be used to produce snapshots
during o run by dumping data o the matrix library and
analyzing it with a post-processor program.

We are already using this feature at XDS, In simulations
of advanced hardware systems, we defined the various
components ~ peripherals, processors, memory banks,
and software mixes ~ in terms of matrices. We could
then configure a specific system by calling in the proper
combinations of matrices.

We are also exploring the use of the library feature in
another model. This would involve defining a general -
ized PERT processor in terms of a GPDS model. Trans-
actions would be generated at the start of the network,
and the nodes would be simulated with SPLIT and ASSEM-
BLE blocks. Activity times would be ADVANCE. blocks.
However, the delay times would be stated as distributions
which would be defined by a matrix. Enough transactions
would be sent through'the network to generate a series of
probabilities of start and completion times for each ac~
tivity. The output would be to a second matrix that
would be saved for analysis and listing by a report pro-
cessor to enter the data for the network and dump the re-
sults for further processing.,

Many discrete simulations are primarily designed to learn
the behavior during the dynamic portion of a run. When
a system staris to smooth out and approach a steady-state
condition,. the important part of the run is complete and
processing can be terminated. GPDS has introduced the
SSTATE card fo accomplish this. The SSTATE card allows
the user to select any Standard Numerical Attribute and
specify a high and low limit for this entity. When the
SNA has stayed between these two values for a time per-
iod which has also been defined with the SSTATE card,
processing will be terminated just as if the termination
count hos been.decremented to zero. For example, using
this command, a modeler could halt a simulation when a
queue length remains within a specified range or when a
uvtilization stays within selected limits for some desired
time span.

At XDS, -we have also used this technique in a simulation

of a computing system to interrupt the run when the CPU
finally became overloaded. We defined a-Boolean var-
iable as CPU utilization greater than 97% and message
queuves greater than some constants which were varied
from run to run. The arrival rate for CPU requests was
gradually increased while the SSTATE card monitored the
varicble, When the variable remained "true" for sev—~
eral machine cycles, the CPU was considered overloaded
and the SSTATE card halted processing. The current rate
for CPU requesis at the time processing was halted, there-
fore, becomes the maximum capacity for the CPU,

Transaction-based languages such as GPDS are excellent
tools for simulating problems in which fransactions act
upon equipment. Event-oriented problems where some-
thing happens only when some other event has occutred
«can also be readily simulated by o GENERATE-GATE
block combination, For example, frying to model a
store where a reorder is issued only when a warehouse
becomes empty could be simulated by

GENERATE 1
GATE SE WHSE

This code would cause o new fransaction (order) to be
generated whenever the storage WHSE became empty.
However, transactions can test and react fo the status
of another transaction only in special cases. With most
languages, if transactions are to interact, they must all
be members of the same Group or Assembly Set.

GPDS incorporates some new features that readily endble
one transaction fo "communicate” with another trans~
action, The active fransaction has the ability to access
the parameters or learn the next block address of any other
transaction in the system. By testing the position or param-
eter contents of another transaction, the modelet may now
directly control the behavior of the active transaction. It
is therefore possible for the active transaction in GPDS

to interact directly with other fransactions.

To use the transaction-communication feature, the user must
reference aspecific fransaction by its transaction number.

The number of the active transaction may be found by referenc-
ing the SNA"XNT1". Typically, atransactionwill store its
transaction number in asavevalue, Thereafter, any other
transaction may check the status of the first transaction by us~

ing the contents of the savevalue to identify the first transaction,

The LOCATE block permits an active transaction fo store
the next block address of any other transaction, in either

a savevalue or a parameter of the active transaction. The
USING block allows the active fransaction to copy the
contents of any parameter of any other transaction info a
savevalue or info a parameter of the active transaction.
Also for both blocks, the user can select an alternate ad-
dress for the entering transaction if the selected transaction
is not currently used in the model.

These two blocks allow a variety of new techniques. For

485

example, assume that in o message-switching simulation
with signals arriving from a variety of sources, a signal
would be delayed if the one immediately preceding it
has not stayed far enough ahead at certain key locations,
The LOCATE blocks can be used to check the location
of the preceding transactions in the following manner:
ASSIGN 2, X1 Store transaction
number of preced-
ing fransaction in
parameter two.
SAVEVALUE 1, XN1 Save number of
the transaction
to pick up.
LOCATE P2,P,5 Store the next
block address of
the preceding
transaction in P5.
VARIABLE P5~AAA Calculate number
of blocks the pre~-
ceding transaction
is ahead,
AAA TESTL

V1,7,BBB See if preceding

transaction is less
than 7 blocks
ahead,
ADVANCE 25 If not 7 blocks
ahead, wait 25
time units.
BBB ememmemae Continue process—
ing. :

In a similar fashion, the USING block can be used to
control the flow of a transaction, based on the contents
of a parameter from another transaction, All transactions
can reserve a paramefer for use as a progress flag. As
the transaction completes some simulated process, it
would update the parameter to indicate its new status.
Thereafter, any fransaction can determine the status of
another transaction by examining that paramefer.

Thus with the LOCATE and USING blocks, the number
can now readily base the control logic for one transaction
on the status ~ either the location or contents of a param-
eter - of another transaction.

GPSS-type languages generally permit the user to refer
to entity numbers indirectly addressed by the contents
of some specified parameter. GPDS has expanded this
technique fo allow the modeler to use any entity for in-
direct specification. The operator "#" js ysed to indi-
cate this expanded indirect specification much as the
"*! is used to meon indirect based on the value of
parameter. However, the entity type to be used as the

base is not implicit in the "#", The default is a fullword
savevalue. Thus, if the entity base has not been rede-
fined,

SEIZE #4

would mean "Seize the facility whose number is given in
fullword savevalue four".

The SET directive is used to redefine the implied entity
type (entity base) for the new indirect operator. When
the Assembly phase encounters a SET directive, it re-
places the current entity base with the entity type indi-
cated by the Standard Numerical Attribute given in the
argument field. This new entity~base remains in effect
until the Assembly phase encounters the next SET direc-
tive.

Thus, the code SET \
SEIZE X#2
DEPART X#1
SET FN
ADVANCE XH#3.

would be treated as "Seize the facility whose number is
given in the savevalue indicated by variable two, depart
from the queue whose number is given by the savevalue
whose number is the value of variable number one, then
delay the number of time units given in the halfword save-
value pointed to by function number three".

Expanded indirect addressing greatly simplifies the devel-
opment of GPDS models. The previous procedure to cre~
ate the effect of indirect addressing with entities other
than a parameter would be first to use an ASSIGN block
in order to store the value of the other entity in a param~
eter and then to address from that parameter. Such a pro-
cedure would add just one more small but unnecessary com-
plication to a simulation. This technique also usually re~-
quired that the programmer reserve an éxira parameter for
this step in every transaction that might require that type
of indirect addressing. In addition, it mednt that each
time that code was executed, the transaction would have
to pass through an extra block, By eliminating the need
for the extra parameter for every transaction and the ex-
tra block for each case of indirect addressing, expanded
indirect addressing can yield a substantial decrease in
both the core requirement and the processing time for a
moderate-sized model.

GPDS has'some other new features. The modeler may now
use the REALLOCATE mnemonic "RND" to allocate up to

ninety-nine random generators. This feature is important
in large models where random distributions are used in

many blocks and each use must be independent of all others.

A large number of generators must be available so that the

486

model may be rerun with different orders of calls to the
generators without interfering with the sequence of num-
bers returned from a single generator,

Since random number sequences are such an important
part of GPDS simulation, considerable effort went into
the development of an effective random number generator,
The algorithm that is used in GPDS is deicribed in The
Art of Computer Programming, Volume 2\'/ by Donald

C. Knuth, It is of the form R2 = R1 A + B where R1 is

the previous nuimber or the seed and A and B are consfants
that were selected based on criteria specified in Knuth's

book,

This algorithm will produce 2311 humbers before re-
peating. A variety of checks were made to assume ran-
dom sequences. These include the equidistribution test
to assure a uniform distribution, serial tests of pairs, tri-
ples,and quadruples to assure that subsequent sets of num~
bers are independent, and a version of the chi~square
test to verify randomness of the sequences. Standard cor-
relation tests were also used to check that the correlation
between a number and any of the next three was low.

The normal and negative exponential distributions are
now built into GPDS in the form of two twenty-eight -
point functions, They are defined by standard FUNC-
TION cards, but require no follower cards. They are in=~
dicated by the mnemonics "BN" and "BE" respectively

in the B-field. The normal curve has a mean of zero

and standard deviation of one. The negative exponential
has both a mean and a standard deviation of ten. The
formula used to calculate the exponeritial curve is

f(x) =0. Ie-0° 1x

where x is the value of each point, The functions are
usually referenced in a variable statement to transform
its characteristics. For example, to create a normal
distribution with a mean of seventy~five and a standard
deviation of sixty would require:

NORM VARIABLE 60*FN1 + 75
1 FUNCTION RNT, BN

Thereafter, references to VSNORM would produce sam~
ple values from a normally distributed random set of num~
bers with @ mean of seventy-five and a standard devia-
tion of sixty.

The GPDS Variable Statement itself has been expanded.
The exponential operator ":" and the square root operator
" | " have been added fo aid in defining involved math-
ematical relationships. These two operators are processed

References

(1) Donald E. Knuth, The Art of Computer Programming,
Volume 2/Seminumerical Algorithms (Menlo Park:
Addison Wesley, 1969), Chapter 3.

in the same order as is the exponential operator in FOR~
TRAN. That is, they have identical prioritjes that are
higher than those of all other operators. Among other
benefits, the new operators allow the user to express non-
linear relationships in terms of exact mathematical state-
ments instead of approximating them with FUNCTION
statements.

Also, all varidble statements are now calculated using
Reverse Polish Notation. The Assembly phase of GPDS
produces strings of parenthesis—free data using this nota-
tion. The stack hardware on the XDS Sigma equipment
is used to store the strings during assembly and later to
retrieve them during the Execution phase. This results
in faster calculations and smaller core requirements than
with previous techniques. It also eliminates the restric~
tion on the number of pairs of parentheses allowed in a
variable statement.

GPDS has three HELP blocks to simplify the interface
with FORTRAN, COBOL,and Meta-Symbol, the XDS
assembly language, HELPF and HELPC allow direct calls
to FORTRAN and COBOL respectively. The A-field of
each HELPF or HELPC block contains the name of the
subroutine and the B through G fields contain the data to be
passed to the subroutine. Any Standard Numerical At-
tribute can be passed to a subroutine and the subroutine
can directly alter savevalues, matrix savevalues,and pa-
rameters, The standard report writer DCB is directly
callable by any HELP block,so all special reports can be
directed to a single output device or file if the user so
desires.

The basic HELP block is used to transfer control to Meta-~
Symbol routines. The user may share data with a Meta-
Symbol routine in two ways. He may Use the B through
G fields of the HELP block,letting GPDS set up an argu~
ment }ist for him to simplify passing data to the subrou-
tine, Toaccommodate more complex interactions between
GPDS and a subroutine, the pointers to all GPDS entities
and infernal tables are kept in a single DSECT. A Meta-
Symbol user can create a copy of the DSECT in his own
program simply by using the command SYSTEM CNTRLWRDS,.
Meta-Symbol will then automatically build a copy of the
DSECT which the programmer then references to learn the
address of any GPDS entity. Thus a single command
gives the user direct access to all of GPDS.

SUMMARY

This then, is an overview of the Xerox General Purpose
Discrete Simulator. By starting with the miost popular
simulation language in use today, then adding features
that have been sought by users, and improving in areas
where competitive programs were weckest, XDS feels

that they have developed a discrete simulation language
that can become the standard in its field. GPDS, along
with SL=1 and FMPS/GAMMA IiI, now gives the users of
XDS equipment a selection of simulation software that
equals any in the industry, ’

487

