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One of the most useful distributions in sto-
chastic modeling is the two parameter gamma dis-
tribution. This paper presents a technigue for
generating random garma variates from any two
parameter gemma form with either integer or non-
integer parameters. Only two techniques are pre-
sently available for generating gemme variates
with a non-integer shape parameter, those being a
variate averaging technique proposed by Naylor,
et al. and a rejection scheme proposed by Johnk.
The three generation schemes are compared with re-
spect to (1) statistical goodness of fit, (2) com-
puter running time and (3) random mumber calls.
The author's scheme is shown to be statistically
comparable with respect to goodness of fit, and
generally superior relevant to computer running
times and random nuumber calls.

In most engineering and economic studies the
experimental data to be dealt with is often non-
negative and can be considered as unimodal over an
arbitrary range of values. The most common ques-
tion that I have encountered in working with the
layman engineer is, "What sort of distribution can
I use to represent this data?"” More often than not
the answer is to assume normality and proceed. In
many applications this is probably jusbified but in
many more, this assumption might not be valid -~
and may yield guestionable results even if a good-
ness of fit test accepts normality at marginal
decisions. If a set of data is strictly non-nega-
tive and unimodal, the gamme distribution can pro-
vide an excellent representation for a wide variety
of functional shapes. The distribution function is

given by
——L—a &L eEB wryao
T {a)s a,p constants
f(X) ={
0 elsewhere (1)
where: u = Qf
2 g B2
The above distribution function has been

successfully used in meny real-world applications,
including inventory, queueing, bidding strategies,
and income distribution analysis. Special forms
include the exponential decay distribution when
=1 and a normal form as ¢ becomes increasingly
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large. In general, the distribution is completely
described by the value of ¢ and g, which are the
shape and scale parameters respectively. In deal-
ing with real-world data, a primary advantage is
the ease by which these itwo parameters can be
estimated us:.gg the method of moments. In partic-
ular, a= E[x} /var[x] and f§ = var[x]/E[x], where
we define E[a] =0, E[B] =B. This paper will be
exclusively concerned with the use of the gamma
distribution in digital simulation analysis. A
case has been presented for the extensive use of
the gamma distribution function; it now remains to
discuss the merits of using this function.

Since the gemma forms are easily obtained
from raw data and can approximate a wide variety
of functional shapes, it could play a major role
in digital simulation studies. The primary
difficulty is that there are no efficient tech-
niques for generating random gamma variates.

This difficulty arises because the cumulative
distribution function for the gamma distribution
cannot be obtained in closed form. The purpose of
this paper is to present a new technique for
generating random gamma variates which avoids this
problem, and to compare this technique to existing
geamma, generation procedures.

Algorithms

In digital simulation analysis, there are
only two techniques presently being used to gen-
erate random gamme variates with arbitrary param-
eters; these being the techniques of composition
and rejection. Of the two, the composition
technique is the more widely used, primarily due
to its popularization by NWaylor, et al.? An
alternate technique using rejection has only
recently been presented by Johnk®s Swhich depends
upon mathematical convolutions of relevant random
variables. These techniques will subsequently be
referred to as simply Naylor's Technique or
Johnk's Technique.

The principal.thrusts of this paper will be
to present (1) a new technique for generating
random gamme variates with arbitrary parameters;
(2) comparison of this technique to those of
Naylor and Johnk.



A New Algorithm

The author has developed a gamma deviate gen-
erator capable of producing random deviates from
distributions characterized by either integer or
non~integer parameters. The primary objective was
to develop a gamma generator which would be both
statistically sound with respect to distribution
representation, and nct use excessive computer time
in producing a continming sequence of deviates.
Both of the previously mentioned techniques fail to
simultaneously satisfy this criteria, as will
subsequently be illustrated.

Normally an efficient method for generating a
random deviate is through the application of the
Inverse Transform!, Unfortunately, this technique
can only be applied to a limited number of statis-
tical distributions since one must obtain the
cumulative distribution in closed form. As pre-
viously mentioned, this cannot be obtained for the
gamma distribution. A primary difficulty is in the
evaluation of the complete gamma function for non-
integer valued parameters. The procedure here was
inspired by Hastings'ﬂ, who employed a numerical
approximation procedure in developing a normal
density random deviate generator. Since the com-
plete gamma function is a fairly well behaved
function, it was believed that a similar technique
could be successfully employed to generate gen-~
eralized gamma variates. The original density
function was scaled tiy choosing constants A and B
in such a manner as to permit an inverse transform
to be accomplished. (Actually three different
representations are ysed; one for the intermediate
ranges and two others for lower and upper regions.)
These two factors were empirically determined
through the use of a stepwise polynomial regres-
sion procedure. Foriincreased accuracy, three
different approximat:’[ng transformations were
derived based upon the value of &, the shape param-
eter. Using this procedure, the following FORTRAN
IV machine independent function was written to
generate random gamma deviates from any two param-
eter density with arbitrary parameters ¢ and B.
The algorithm functions in two distince phases.
The first time the generator is called a scaling
routine is implemented to compute appropriate
scaling factors. In all succeeding calls, only
three elementary operations need be pérformed to
generate a random gamma variate. Hence, the entire
routine is increasingly efficient as the number of
desired deviabes becomes larger. The algoritim
is given in Figure 1.

Extensive use of the generator has indicated
that the generator will produce random deviates
which closely approximate the desired gamme form.
Mathematically, the procedure was tested by sub-
jecting the generator to a series of Kolmogorov-
Smirnov goodness of fit tests. The results are
shown in Figure 2, dnd it is statistically signi-
ficant to note that in no case was the hypothesis
of goodness of fit rejected, even for samples as
small as n=10. The question now to be answered is
how well the generator performs with regard to the
existing generation techniques. Both Naylor's and
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Johnk's technigue will subsequently be Jjustified,
and then a statistical comparison will be made in
an effort to establish the best available techni-
gque with respect to functional representation
and computer running times.

Figure 1
The Algorithm
FUNCTION GAM(ALPHA,BETA,START )
NON INTEGER GAMMA GENERATOR
IF(START.GT.1.5) GO TO 50
X3=1.0
IF(ALPHA.LE.2.0) GO TO 1
IF(ALPHA.LE.5.0) GO TO 2
GO TO 3
1 B=0.2177+(2.10299768%ALPHA )~ (1.34611961%
1ALPHA**2 ) +(6 . 0001 4 76U*AT PHA% %3 )= (3, 95097 728%
2ALPHA*Z#)+(O.97279251*ALPHA**5)
GO TO
2 B=0.64350+(0.45839602%ALPHA )~(0.02952801%
TALPHA%%2)+(0 . O0L72718*AT.PHA%*3 )~ (0. 00005810%
2ATPHA%*l )+ (0 . 00000082 AL PHARXS )
GO TO 4
5 B=1.33408+(0.22499991¥ALPHA )~ (0.00230695%
1ALPHA%%2)+(0.00001.623*%ALPHA*¥3 )= (0.0000000%
OATPHA%¥: )
4 %x=1.0+(1.0/B)
START=5.0
12 IF(X-2.0) 110,50,15
15 ¥=X-1.0
X3=X3%K
GO TO 12
110 ¥=X-1.0
GY=1.0+Y*(~0.57710L7+Y*(0.98585h+¥*(-0.876L4218
1+Y%(0.8528212+7%(~0.5684729+¥% (0. 2548205+ *
2(~0.05149930)))))))
X3=X3%GY
A=(X3/(ALPHA®BETA) }**B
B=1.0/B
50 CONTINUE
RN=RANF'(0)
GAM= (= (1.0/A)*ALOG(RN) )**B
RETURN

END

ALPHA = O BETA = B

START = any real integer initially
less than 1.5

GAM = random gamme deviate

Legend.;

RANF(0O) = Rendom number generator



Figure 2
Kolmogorov-Smirnov Goodness of Fit Tests
for Gamma Generator; B =2.0
[0/ n=10 n=50 n=100
0.50 0.196 0.093 0.063
0.70  0.134  0.134  0.092
1.20 0.235 0.076 0.117
1.70 0.217 0.105 .059
2.30 0.262 0.056 .078
2.70 0.334 0.169 .06l
3.60 0.298  0.16h4 .056
k.00 0.271 0.087 067
k.60 0.211 0.086 .059
5.50  0.11%  0.149 .097
6.10 0.240 0.066 .092
6.80 0.176 0.161 L1k
7.00 0.237 0.098 .11k
10.00 0.287 0.066 .086
15.00 0.354 0.118 .05L
20.00 0.255 0.191 .083
25.00 0.137 0.131 076

CRITICAL VALUES

c=.05 c=.01
n=10 Ao .4oo
n=50 .193 .230
n=100 .136 .163

Gamma Variate Averaging (Neylor's Technigue

If the gamma shape parameter ¢ is a2 non-nege-
tive integer, then Equation (1) takes the follow-
ing form and is commonly known as an Erlang
distribution.

-Q
£(x) '_“"(%-T)T &L x/p
It is easily shown that an Erlang variate can be
produced by summing o exponential variates, each
with expected value @.” Hence, a gamma variate
with integer shape parameter is readily obtained.
For a non-integer shape parameter @, define
G =0y +P; where o5 is the integer part of ¢ and: P
is a number between zero and one. Denote ap as
Q1 +1. 8Since ap-0=1~P then an appropriate choice
for a stochastic variate would be to choose in re-
peated sampling trials the gamma variate with
parameter oy [1-P](100) percent of the time and one
with parameter qp[P](100) percent of the time.
The stetistical logic here is that in many sampling
trials the expected value and variance of all
variates should approach that of the original
distribution. This logic is further supported by
the fact that the first three moments of a gamma
distribution function are linear in . Of course,
the technique fails for valuves of a<l.

©zx20 (2)

Theorem I:

A Sampling Rejection Technique
(Johnk's Method)

A recently developed technigue for generating
stochastic gamma variates is one proposed by Johnk
Establish the following fundamental theorems.

The sum of two gemma random variables

with parameters Gy(oq,B) and Gp(Gp,B)
is also gamme with parsmeters

G (0 +0p,8).

Theorem II: If Uy and Uy are continuous uniform
random variables described by

£(U;) =1 i=1,2 12T; 20 (a)
and
1/A 1/B8
x=Ul / y=U2 / (b)
Then if
x4y s1 (c)
X
2 = x—+y— (d)

is beta distributed with distribu-
tion function

T(A+B A=l B-1
(2) =wayerEy 2 (L-2)7  lzz20
Proof: Define gz = l'El_f %

Let us proceed to find the distribution of y/x
provided that x+y<l. Further, define V=y[1l/x] so
that we are dealing with a product function.

Recall that if we define the Mellin transform
of a distribution function, f(x), to be .

Mi£(x)|s] = [ % £(x)ax (e)

Then the Mellin transform of the distribution of
P=RQ is defined to be

Mi£(P) |51 =M[£(R) |s] M[£(Q)|s] (£)
provided R and Q are independent.
Like the moment generating function for sums

of random variables, the Mellin transform for pro-
ducts of random variables possesses the unigueness

property. Our purpose is to prove that £(z) is
B(A,B). In finding f(z) we must first define f(x)
and £(y). By (1) and (2), U:,_:xA and U2=yB, hence

£(x) = (1) g, | ana £(y) = (1) 19,

where ‘Jl‘ and [ng are the Jacobians of the
transformation, or
1 . ‘Jll =AxA~l
since

B-1 B-1
£(y) =By 1-x2y20 lo ] =8y

Now, notice that we can't use (b) because the
range of y depends upon x (or vice versa). Hence
we must form the joint Mellin transform of f£(y)

and f£(1/x) since we define V=y[1/x]. To do this,
ve must first form the Mellin transform of fy(x)
and fl(y) , replacing the argument s in the integral
involving x by (2-s), since the Mellin transform
of £(1/x) is equivalent to the Mellin transform of
f)(x) with the argument s replaced by (2-s), 1In
other words,

£(x) =Ax lzx=20
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MLE(1/x) |s] =M[£(x) |2-5].

Hence, in the case of independent random variables
x and y

ME(V) |8 =M{2(y) le] M[£(x)[e-s].
But since the range c:f y depends upon x

MEE() 18] = J«l (2-,,) 1y, A-1 [Il—xys—l B-1

By “dyldx

1 A-g 1-x_S+B-2
=I A¥ iEB j‘ ¥ dy]dx
o] . (o]

B( l-x)B+s-

Bts-1 ldx

= [tadi
o
B(A-s+1,B+s)

T(A~s+1)T(B+s)
T(A+B+1L

__AB
Brs-1
And since B(A+8+1,B+s) =
then
ML£(V) |s] =

ME(V) |s] =

I'(s+B~1)T(A-s+1)
T(a)r(B)

Now if we define
B=Q+1
A =p-q~1

= A+B=B’

(0t + s)T(B-0~5)
= TEa-L)T(@+1) ° (g)
But (g) is simply the Mellin transform of a beta
variable of the second kind; that is, by the
uniqueness property

Then M[£(V)|s]

re) v
(V) = I‘(a+1)1"(ﬁ_cz.1) (l+V)B ©2V20
T{A+B
(V) = I"(A+1" 3 (J_+V)A+B ®z V 20.

Now, we are not interested in the distribution of
V per se but rather in the distribution of

S S S 1
Txdy T l4y/x T 14V
Hence, V=1-z/z dV=dz/z°=|J|. Therefore,
[i=2p B-1
g(z) =—(Tﬂ—7¥(ﬁ+3)3 _"TTZ |sz+2°]
[1/2]
=>g(z) m (l—Z)B—l A- 12z20
- Q.E.D. -

Theorem IIT: If x is a random variable gomma dis-
tributed with ¢=n+k, f=1; and if y
is beta distributed w:.th parameters
A=n and B=k; then z=xy is gemme dis-
tributed with @=n, B =1.

Proof: The Mellin transform of the gamme distribu-
tion is given by

Ml[i‘(x) ls] = Tla

””—T)—

Define a beta distribution by

)= —(ﬁj P e
So that its Mellin transform is given by
T(A+s-1) T(A+B
M [£(y) [s] = S{AtE-L)T(AB)

T(Ars+B-1)T(A) °
Now let O=n+k

A=n
B=k

and defining M[£(z) |s] =M[£(x) |s] M[£(y) |s] we

lzy=z20

_obtain
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ul2(s) |s] = RIS LR L nk)

or M[f(z)[s] = T(n+s-1)/T(n) which is simply the
Mellin transform of a gamma distribution function
with ag=n.

- Q.E.D. -

Efficiency: The entire procedure depends upon the
ability to produce a random beta deviate using
Theorem II, which is a rejection technique. In
general, we can state

Lemma l: Given a bete distribution function
wu-,h E smeters A and B, if we define x=ul/Aand
, then the probablllty that x+y =1 isgiven

T(A)T
Tieteen) - ST

Proof:
Define x=u /A

¥ =1121/13
£(u)

1
0

X

1=z w 20
otherwise

20

{

1=z

Then g(x)=Ax"

B-1
g(y) =By 1zyz0
Assuming x and y are independent random variables,

then
A-1 B-1
f(st) =ABX" Y

Now let z =x+y so that
£(2,5) =AB(z-y )AL (y)B

lzxz20
lzy=z0

22220
lzy=20
Hence,

£(z) = [ZaB(z-y)* V)Pl
y=0
If we let u=y/z then

£(z) =AB Il (z-y)A-l(‘uz)}?’-l
u=0

zdu=p(4, B)ABzA"'B":L .

Hence, Pr{zs1}=g(A,B)AB j\l AL g
T(A)T(B
= 8(A,5) 735 5 B= T(aim
which is the desired result.
- Q.E.D. -



If we define P =[B(A,B)AB/A+B]~1 then an
expression is obtained for the expected number of
rejections in obtaining one beta variate. Various
combinations of A and B are given belows

A
Rl35

11 k4 6
3 4L 30 56
5 6 56 252

A general conclusion is that if Johnk's technique
is used in beta generations per se, the time re-
guired to obtain a sbatistical deviate could prove
prohibitive except for selected combinations of A
and B. At this point let us consider the use of
this technique to generate gamma variates via
Theorem III. Suppose that we desire to generate a
gamma. distributed random variable with non-integer
shape parameter, o. Now define n=c~[c], where
[e] is the largest truncated integer, and similarly
define K =1~ + [0¢]. By Theorem III let A=n and
B=k. Under these rules, it is necessary that
a=n+k =1, It follows that if a beta variate is
generated following the parameters A and B, and
multiplied by a gamma variate with parameterso=1
and B =1, then a gamma variate with c¢=n and p=1
will be produced. Two facts are now significant
and should be noted. (1) A gemma distribution
with parameters @=1, B =1 is given by

£(x) = & ®2x20

from which a variate is easily produced using an
inverse transform. (2) Since A=n and B=k, A and B
will always be less than one. By Lemma 1, the
expected number of rejections in the beta genera-
tion phase would be

R=[AB(A)T(B)"T = [(1-B)BT(1-B)T(B)]~

(1-B)BH . ~1
! sinn I s

or expected number of rejections is approximated
by 1.33zR=z1.

The fundementel ingredients have now been
established to construct a random deviate generator
for a gemma density with arbitrary non-integer
shape parameter o and scale parameter g. The

algorithm is as follows:
Defines i) @ is a non-integer shape parsmeter

ii) oy =[@] is the truncated integer
root of
iii) uizis the 18 random number
- uy 20.
!

1., let x=-0m I vy
i=1

2. Set A:CZ-CZ_L $ B=l-A
a) Set j=l.
b) Genera.tel7Ara.ndom number, uj, and set
yl = (ud ) .
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¢) Generate al?%ndom number, Wj.q, and set
Yo= (uj+l) .

d) If yq +¥p 1, go to (£).

e) Set j=j+2; go to (b).

£) Let z=yl/(y11i+y2) so that z is a beta

variable with parameters A and B by
Theorem II.

3. Generate a random number, y, and let
==0n (uN) .

k. The desired deviate is D= (%+zQ)B by
Theorem I and Theorem III.

Algorithn Comparisons

An attempt was made to compare the three al-
gorithms previously presented with respect to (1)
rendom number calls; (2) Kolmogorov-Smirnov. good-
ness of fit wvalues for n=10,50, and 100 variates;
(3) generation run times for n=100,500, and
1000 varistes.

Random Number Calls

The quantity of random numbers reguired for
each gamme random deviate is eesily evaluated.

a) Phillips Technique: Since the generation
technique proposed by the aubthor is based on an
epproximated inverse transformetion, only one
random number is required per gamme deviate.

b) Naylor's Technique: As previously described
Naylor's teghnique is based upon random deviate
averaging, and therefore requires on the average
(0+l)/2 random numbers per random gamme deviate.

¢) Johnk's Technigue: It has already been

established that a variate from a gamma form with
parameter ¢ will require approximately between 1.0
and 1.33 rejections per beta variate, plus

o = [@]+1 random exponential variates. Hence, one
would require between (3+0y) and (3.67+0;) random
numbers, or approximatel;raj(al+3.3 ) rendom numbers
per gemme deviate.

The conclusion is that in terms of random
mmbers required, Phillips method would be the
most efficient followed by Naylor and Johnk's
techniques respectively.

Goodness of Fit Analysis

A computer program was written to facilitate
a Kolmogorov-Smirnov (K &S) comparison for the
three algorithms. Levels of confidence of ¢=0.01
and 0.05 were chosen, along with sample sizes of
n=l0, 50, and 100.

¢=0.05 ¢=0.01
n=10 0.410 0.kg0
n50 0.193 0.230
n=100 0.136 0.163

Critica:l Values for The X &S Test



Goodness of fit values for 24.802 ¢z 0.50, n=50,
and B =2.0 are given in Table 1. (Since g is the
gamms, scale parameter, it was fixed at 2.0 for
comperative purposes.) Table II gives a summary of
values for n=10, n=50, and n=100. Four indicators
of relative performance are given for each sample
size: (a) The "best" test result with respect to
the lowest K &S value; (b) The "worst" test result
with respect to the highest K &S value; (c¢) The
number of goodness of fit rejections for c=0.05 and
¢=0.01. Each tabulated value is the aritlmetic
average of two difi‘ereﬁt K &8 tests starting with
different random number seeds. The conclusionwas
that based on these reswults, the overall perfor-
mance of each test was'evenly balanced, with Johnks
test showing a tendency to produce a wider range of
K &S values.

All tests producen:.;l statistically sound re-
sults from a goodness of fit standpoint for
values of @¢z1.20.

For lower range values, the only technique
which consistently passed the K &S tests was that
of Phillips. In order to further investigate the
lower range of ¢t parameters, Table III was con-
structed for ten values of 1.002¢20.10, starting
with 0¢=0.10 and ending with @=1.00 in increments
of 0.10. A sumary of! these results is glven by
Table IIXI. It is believed that based on these
sampling experiments, Phillips! technique is con-
sistently better than the Johnk procedure.

Table I. K &S Goodness of Fit Values for
n=50, and 24.802x20.50

KX &S Values
Q,B=2.0 "~ 150
Phillips Johnk Naylor
0.50 0.093 0.5h0%  *x
0.70 - 0.13k4 0.488%  *x
1.20 0.076 0.056 0.176
1.70 0.105 0.089 0.048
2.30 0.056 0.I1k 0.099
2.70 0.169- 0.111 0.089
o 3.60 0.165 0.175 0.092
k.00 0.087 0.105 0.081
. k.60 0.086 0.085 0.107
-5.407  0.1k9. 0.067  0.10h
N+ 610 0.2 0.083  0.126
) 6.80 0.161 0..084 0.151
7.25 0.105 0.071 0.122
9.75 0.138 0.110 0.054
1h.62 0.060 0.126 0.066
19.91 0.076 0.09% 0.08lk
2k .80 0.070 0.073 0.071
* XK&S value exceeded critical value(s)

**% Technique is not applicable

Table IT. K &S Sumary for Table I, @>1.00
(X & S)OBS> (K&S)CRIT
Best Worse 0.05 Q.01
P* 6 5 0 o}
n=10 J* 6 6 (o} 0
N¥ 3 b 0 0
P, 5 b ] 0
n=50 J 6 6 0 0
N L 5 o} 0
P 5 3 o] 0
n=100 J 5 b 1 1
N 5 8 0 o]

¥ P=Phillips; J=Johnk; N=Neylor

Table III. K &S Summary .
(K &S)OBS > (K&S)CRIT
Best Worse 0.05 0.0L
P% 10 0 o} (o}
n=10 J¥* 0 10 7 7
P 10 0 2 1
n=50 J 0 10 9 9
P 10 (¢} 3 3
n=100 J 0 10 10 o
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* P=Pﬁillips; J =Johnk; N =Naylor

In order to complement the overall goodness of
fit results, additional statistics were compiled
relating the sampled mean and variance to the
theoretical mean and variance for n=10, 50, and 100.
The results were that all three techniques perform
quite well with respect to sampled means and vari-
ances for @¢>1.00,’ even for samples as low as
n=10. Two performance measures were calculated
from these results, those being the total varia-
tion of sampled expected values from theoretieal
expected values and the average deviation for each
sample size. The results are given below:

Total Deviation

Phillips Johnk Naylor
n=10 21.20 17.96 18.93
n=50  6.66 7.20 9.15
n=100 5.15 7.32 6.10

Mean Deviation

Phillips Johnk Naylor
n=10 1.4 1.19 1.18
n=50 0.45 0.48 0.63
n=100 0.35 0.49 0.h1




As previously indiceted by the K &S tests,
each technique performs quite well with respect to
expected value representation.

Based on these experimental results, general
rules as to which test to choose with respect to
goodness of fit would be as follows:

1) Choose the Phillips technique for values
of 1.02¢20.10.

2) Choose any one of the three tests for
values of a¢>1.0.

3) No technique is recommended for velues
of @<0.10 If ¢ is found to be in
this range data scaling is recommended.

Computer Running Time

Certainly one of the primary considerationsin
choosing a random deviate generator would not only
be its statistical relidbility, but also the speed
&t which random deviates can be produced. In an
effort to determine which of the three techniques
was more efficient, random deviates were generated
for n=100, 500, and 1000. ZFor each value of & and
n the actual DCD 6500 computation times were
independently recorded. Since Phillipd technique
is an inverse transform approximation, the genera-
tion time for a fixed sample size is independent
of ¢, hence, a constant generation time for n=100,
500, and 1000 was obtained. Conversely, the
Naylor technigue exhibited increasing generation
times for increasing values of o since at least
far] random number calls are always required for
each random deviate. Johnk's technigue required
generation times which are directly dependent upon
the two paraméters o and p. In generel, the re-
Jjection technique will be less efficient as o and
B increase, hence, computetion times will increase
rroportionately. Over the range of values studied,
Johnk's technique was considerably better than
Naylor's technigue in the midranges, but becomes
less efficient for values of ¢z 7.50. Phillips!'
technique was always faster than Naylor's technique
and for values of o22.70 became more efficient
than Johnk's technique. Again, Neylor's technique
is not applicable for o< 1.0.

Summary and Conclusions

There are presently three techniques for
generating random gemme variates from a gamma
distribution with arbitrary parameters ¢ and B; a
variate averaging technique developed by Naylor,
et al., a rejection scheme first proposed by
Johnk, and an inverse transform approximation
presented in this paper. With regard to
statistical goodness of fit, it appears based on
limited experiments that all three methods are
capable of generating random gamme deviates closely
approximating the desired gamma density for wvalues
of @>1.0. For lower values of the scale parameter
o, the method presented in this paper appears to
be superior. With regard to compute generation
times, Johnk's method is recommended for values of
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a<2.5 and Phillips' method appears to be superior
for ¢>2.50. Naylor's method seems to function
quite well for values of ¢¢>1.0 and is perhaps the
easiest method to program, but will consistently
require more computer running time.

The primery contribution of this paper was to
present a new technique for generating random
gemme. deviates using arbitrary parameters o and B.
An attempt was also made to compare this technique
to the two known methods presently being used.
Hopefully, this report will stimulate the use of
this technique and encourage further investigations
of the statistical properties of each gamma genera-
tor.
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