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Abstract

Portfolio selection procedures
typically require estimates of the means,
variances, and covariances of returns
from the securities. However, sampling
error in these estimates is typically ig-
nored. A model is presented to simulate
returns that have a multivariate normal
distribution, using a regression structure
on a set of securities and holding the
parameters constant.

Introduction

Present approaches for considering securities
for inclusion in investment portfolios are incomplete
because they fail to account for error in estimating the
required parameters: average returns, and variances
and covariances of security returns. Limited analytic
work has dealt with the effect of error in estimating
means? but it has not been possible to consider the
effect of error in estimating variances and covariances,
let alone the simultaneous effects of all three forms of
estimation. In this paper, a simulation model is pre-
sented that permits analysi$ of the simultaneous effects
of error in estimating the required parameters for a
mean-variance portfolio selection model, and an ex-
periment using the model is described. We begin with
a brief review of the mean-variance approach to port-
folio selection.

The mean-variance approach to portfolio
selection, as described by Markowitz3 and Sharped
is based on the assumption that investors desire high
average returns and low variance of returns. In this
approach, a collection of securities is called "effici-
ent" if it:

1) Maximizes expected return for a given
level of variance of return.

2) Minimizes variance of return for a given
expected return,

Given any set of s securities being considered
for inclusion in an investor's portfolio, let the mean
returns be represented by the vector

B=lpy tlgseertis] )

(all vectors in this paper are column vectors), and let
the variance-covariance matrix of these returns be
represented by the s x s matrix

2= lloy Il = llpyyoy0; I @

A portfolio, which may be represented as a
weighted average of the s securities, is defined by a
vector

A=l Adgreeeidgl (3)
where ), denotes the fraction of the portfolio that is
invested in security "i". The expected return "E", and
variance of return "V* for any portfolio are obtained from

E=A"y (4)
and
V=2ASA (5)

respectively.

The essence of the mean-variance approach is
the recognition that security returns are not independent
random variables, and thus that simply increasing the
number of securities in a portfolio does not necessarily
reduce V. Computational techniques for computing effi-~
cient E -V combinations exist, but existing procedure 5

assume that y and T are known parameters. This is
never the case in actual decision situations.
Why Simulation
In practice estimates
E=[E1:ual-~'lusl (6)
and
B = 15,1l = 115,555, m

are used in portfolio selection models in place of the
desired parameters. The analyst may have historical
data regarding security returns that is believed to repre-
sent the process that will generate future returns that
are of interest. Based on such information, however,
the analyst can make but one estimation of each of the
required parameters. In addition, firms change with
time, as do other factors that affect security returns.
Thus, the amount of relevant historical data that is
available is necessarily small, precluding the possibil~
ity of conducting extensive empirical analyses on
estimators that have entered into actual portfolio deci-
sions.
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Even if one knew the distribution of § and §
[see Equations (6) and (7)], it would be a formidable
task to relate the distribution of these random variables
(which estimate parameters in the model) to the deci-
sion vector A. Just to identify an.efficient portfolio
for one given set of values for 2 and £, one must
solve for the values of ) that optimize a quadratic
programming problem. A solution for the entire distri-
bution of { given the distributions of g and ¥ does not
seem tractable. A simulation approach, on the other
hand, allows us to study directly the distribution of
related decision X, and the resultant distribution of
returns, for a hypothetical investor who follows a
mean-variance approach.

Example: An Application of Simulation in a Simple Case

Values for the parameters p and T [see Equa-
tions (1) and (2)] were calculated from time series
data for three actual securities. The resulting values
are shown in Table 1.

Table 1
Securities Used in the Simulation

Security Number 1 2 3
Mean Returns

Percent 16.64 6.64 21.35
Covariances:

With Sec. 1 2102 -115 9 1118

With Sec, 2 -115 1664 -37

With Sec. 3 1115 -37 2223

Chrysler N.Y. Ship. Bulova

Any number of portfolios can be made up of
those securities by specifying a weight vector )\ as
defined in (3). Incrementing the A; in steps of 0.10,
66 different portfolios are defined for the simulation; -
these are shown in Table 2, ordered according to the
mean and variance of returns, E and V respectively, as
determined from the assumed security parameters of
Table 1. Security returns were simulated using the
multivariate normal data generator described in the
next section, and the resulting annual returns for the
3 securities were collected in groups, each such group
representing a number of accounting periods of data on
security returns that may be available to the decision
maker.

For each group of annual returns, a vector of
means fi, and a variance-covariance matrix £ were
estimated, and a mean E and variance V were calcu-
lated for each of the 66 portfolios. This procedure was
repeated for each of 100 sample trials with simulated
data for §, 10, 25, and 50 independent accounting peri-
ods for each trial. The percentage of simulated trials
in which each of the 66 portfolios appeared to be effi-
cient was recorded for use in preparing Fiqure 1, where
these frequencies are reported. Each portfolio is
assigned to a row and column of Figure 1 corresponding
to the values of E and V calculated from the parameters
g and ¥ , of Table 1. The circled portfolio, for exam-
ple, is less desirable to an investor than any portfolio
plotted below and to the right of it. Nonetheless, this
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portfolio appears efficient in from 25 to 42 percent of
all simulated groups of sample returns. The sample
size of 100 was chosen so that the percentages shown
in Figure 1 would not be very sensitive to sampling
error; the standard deviations of these percentages
range from 3 percentage points at the 10 percent level
of expected return to 10 percentage points at the 50
percent level.

Figure 1 shows that portfolios that are nomin-
ally inefficient can appear on the efficient frontier (in
sample space) a high percentage of the time. A secur-
ity analyst, using an E-V approach and basing his
judgment on small sample sizes, can be seriously
misled by error in estimation that is not accounted for
by standard portfolio selection models?:9 In the next
section, we present the methodology of the simulation
in a fairly detailed way.

Methodolo

2An overview of the simulation model is pre~
sented in the form of a flow diagram, which is shown
in Figure 2.

The annual percentage rates of return

R=[Ry,Ry,. -+Rgl (8)
for any set of s securities, are assumed to have a
multivariate normal distribution

£R) = [t en " Zexpl- 3R HRW] ()

where
1

=% (10)
is the variance-covariance matrix of security returns.
The parameters of (9), which are y and T (see Equa-
tions (1) and (2)), are obtained by statistical methods
applied to historical data for a specific collection of
s securities. A data generating algorithm, based on
Equation (9), is used to generate trial samples of R.

-

The data generating algorithm involves a series
of regression siructures. Let the s securities be
arranged 1,2,...,s. Then by the logic of Equation (9),
the marginal distribution of the first security

- -1

f(R1)=(2"Un) £, exp[-#(Ry -y )0y, ] (11)

is univariate normal, where 0,y denotes the upper left

element of . Returns on Securities 1 and 2 are bi-
variate normal

f(Ry . Rp)=2n72|5,, r% exp{—%(lj, '1‘9)’2;:
(Re=pa)} (12)
where

Bg =[R,,R,T, (13)
and T,4 Is the variance-covariance matrix for Securi-
tigs 1 and 2, which is a partition of . Once R, has
been generated by a standard method, R, can be
obtained from the regression equation

He = [y gl



Portfolio Portfolio Mean Portfolio Portfolio Portfolio Mean Portfolio

Number Weights Return Variance Number Weights Return Variance
1% 0 0 10 21.35 22,22 34 7 2 1 15.11 12,41
2%* 1 0 9 20.88 20,22 35% 4 3 3 15,05 09.19
3* 2 0 8 20.41 18.63 36 1 4 5 15,00 09.30
u* 3 0 7 19,94 17.46 37 8 2 0 14,64 13.75
5 0o 1 9 19.88 18.10 38 5 3 2 14.58 09.48
6% L 0 6 19.46 16,72 39% 2 4 4 14,52 08,54
7% 1 1 8 19.41 16.30 40 6 3 1 14,11 10.19
8 5 0 5 18.99 16.38 41* 3 4 3 14,05 08.20
9% 2 1 7 18.94 14,92 42 0 5 5 14,00 09.53

10 6 0 4 18,52 16.47 43 7 3 0 13.64 11,31
11* 3 1 6 18.47 13.96 4y 4 4 2 13.58 08.27
12 0o 2 8 18.41 14.77 45 1 5 4 13.53 08.56
13 7 0 3 18.05 16.98 46 5 4 1 13.11 08.76
14%* 4 1 5 17.99 13.42 y7* 2 5 3 13.05 08.00
15% 12 7 17.94 13.18 48 6 4 0 12.64 09.68
16 8 0 2 17,58 17.91 4g=* 3 5 2 12,58 07.86
17 5 1 4 17.52 13.29 50 0 6 &4 12.53 09.37
18% 2 2 6 17.47 12,00 51 4 5 1 12,11 08.14
19 9 0 1 17.1 19.25 52 1 6 3 12.06 08.60
20 6 1 3 17.05 13.59 53 5 5 0 11.64 08,84
21% 3 2 5 17.00 11.25 54 2 6 2 11.58 08,25
22 0 3 7 16.94 12,23 55 3 6 1 11.11 08.31
23 10 O 0 16.64 21.02 56 0o 7 3 11.06 10.00
24 7 1 2 16.58 14.30 57 4 6 0 10.64 08,80
25% 4 2 4 16.52 10,91 58 1 7 2 10.58 09.44
26% 1 3 6 16.47 10.84 59 2 7 1 10.11 09.29
27 8 1 1 16,11 15.43 60 3 7 0 09.64 09.56
28 5 2 3 16.05 10.99 61 0 8 2 09.58 11.42
29+% 2 3 5 16.00 09.88 62 1 8 1 09,11 11,06
30 9 1 0 15.64 16.98 63 2 8 O 08.64 11.12
31 6 2 2 15,58 11.49 64 0 9 1 08.12 13.64
32% 3 3 4 15,52 09.32 65 1 9 0 07.64 13,48
33 0 4 6 15.47 10.49 66 010 0 06.64 16.64

Note: Mean returns are given in percentages, variances in (percentg><10_%

Weights are fractions x 10, Efficient portfolios are indicated
by an *.

Table 2

Portfolio Summary Report
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Flow Chart of Simulation
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Ry =iz +pla =N (Ra_ )+ o, (14)

where

Lo~ W0.050. 1) (15)
and

Can . 1 = 032 (012)% /04, (16)
Returns Rs,R,,...,Rg can be sequentially generated in
an analogous manner, using a series of multiple regres~
sion equations.

To establish the validity of the method des-~
cribed above, consider the situation where returns on
the first g (@=1) of the s securities have been properly
generated, letting

= [Ry Ry, ... Ryl 17)

be the s x 1 vector of known returns. The variance-

covariance matrix is then partitioned

i
T = _____._.._! ______ (18)

such that Zqq is the variance-covariance matrix for the
first q securities. Let

Rg = [Rpsy Rgupsv- o Rgl
represent the returns not yet generated

shown by Mood and Grayb111 that Rg
multivariate normal with mean

It has been
is distributed

Bs.q = ks~ Tsq¥q Rq kg (19
and variance
-1
Tss.q " Css TeqEqaas (20

where , is the vector of means for Rq and B is the
vector % means for Rg

To generate Rqﬂ , one needs only to deter-
mine a univariate normal density marginal to the

distribution of Rg From (19), Rq.,_1 has mean
Bg+i g = qu+ 1 ‘_b:;l+ 1.q° [Eq'l_lq] (21)
where
'
bq+1 q = = first row of zsqzqq (22)

and can be calculated as the coefficients of a multiple
regression of Rq*.1 against R, q where the assumed y
and ¥ are substituted for sample estimates. Rqﬂ has
variance

I
Ogn,qt.q = Oqu ,qr17P gr.q [01,qu 05 griee

oy Uq’ qa+a 1 (23)
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and is obtained from the modified regression model
described above. Notice that degree of freedom adjust-
ments must be eliminated when standard regression
codes are used, as (assumed) parameters are used in
place of the usual sample values.

The remaining steps in the simulation are more
straightforward, as is clear from Figure 2. These steps
were applied in the example presented in the previous
section.

Conclusion

In this paper, a model is presented for generat-
ing multivariate normal retums from a group of
correlated securities. A regression structure is used,
but the logic is precisely reversed relative to a usual
regression analysis, and allows the random variables
to be generated with little more computational effort
than for uncorrelated variables. The parameters of the
multivariate normal distribution are preserved.
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