SIMULATION DATA STRUCTURES USING SIMULA 67

Jean G. Vaucher
Département d'informatique, Université de Montréal
Case Postale 6128
Montréal, Québec, Canada

SUMMARY

This paper describes the approach to the
teaching of simulation at the University of
Montreal. The language used is the present
standard of SIMULA, sometimes referred to as
SIMULA 67; however, the modelling approach is
inspired from GPSS. This combination of an old
and a new language has proved very fruitful.

Little has so far been published on the new
standard for SIMULA and it is hoped that the
examples in this paper may serve as a painless
introduction to simulation programming in this
language.

INTRODUCTION

1, 2,3 is at the forefront of langua-
ge development. It is a general purpose language
with a built-in simulation capability. The lan-
guage can best be described as an extension of
ALGOL with 3 main features:

SIMULA

~ "Objects" based on the coroutine concept
to allow quasi-parallel processing. An
object is a self-contained program with
its own local data and actions defined by
a generic "class declaration", Examples
of objects in simulations would be custom-
ers, machines or digital circuits, each
of which is capable of independent parallel
actions.

- Strong list processing capability and
dynamic storage allocation under user con-
trol, There is automatic garbage collec-
tion.

~ The ability to create hierarchies of con-
cepts which makes it easy to generate spe-
cial purpose problem oriented languages.
More specifically, a class declaration
prefixed by the name of another class will
have the data and actions .of that other
class added to its own. To a certain
extent, the language may be considered as
extendable.

The writing of a simulation program in
SIMULA is done in two phases. First, the attri-
butes and actions of the objects that will be used
are defined through class declarations., In a
jobshop simulation, for example, useful objects
are jobs and machines. These class declarations
are akin to "event routines" in other languages.

255

Secondly, the required objects are genera-
ted and initialised. 1In the jobshop example,
there will be one class declaration for "job"
and another for '"machine". These declarations
will in general be rather complex but generation
of an object is fairly simple, for example:

" activate new job at time3 ;"

and as many jobs and machines as required can be
generated in this way. The simulation proper is
letting these objects interact over simulated
time.

In keeping with the philosophy of extenda-
bility, the basic SIMULA language contains a
minimum of concepts. However, there is in the
compiler a predefined class "“simulation" which
includes an events chain to implement simulated
system time. This class also contains useful
scheduling and list processing procedures. These
procedures and the events chain, called sequen-
cing set (SQS), are expressed in terms of the
basic language. The average simulation user
would preface his program block with the class
name "'simulation" to have access to these proce-
dures, but it is important to note that these
are not frozen in the language. A programmer is
free to ignore the predefined "simulation" class
and redefine the implementation of "simulated
system time" if he so wishes.

Similarly, an installation interested in
""jobshop'" simulation could create a "jobshop"
class by adding certain concepts and procedures
to "simulation". A user could then prefix his
program with this new class name '‘jobshop" and
treat SIMULA as a specialized jobshop simulation
languagel. 1In other words, the first phase of
program writing has been eliminated or at least
much reduced and the programmer can concentrate
on the second phase.

The language therefore allows the user great
freedom as to the degree of detail of the model-
led objects and the method of passing control
between them.

This power, however, has attendant
disadvantages:

1) The logic of simulation programs is noto-
riously complex and unless the programmer uses a
systematic approach to program writing, debugging
is very difficult. With SIMULA, it is very easy
to be clever with a resultant loss of clarity.

A good programming methodology is essential.

2) The language does not suggest an approach

to modelling. It was found, when first teaching
SIMULA, that students had a tendency to model in
too great detail. As a result, they had diffi-

culty in abstracting concepts from one model to

adapt them to another.

GPSS4 shows quite a different approach to
the design of a simulation language. GPSS forces
a "world view" on its user by providing him with
predefined objects. GPSS views systems in terms
of transactions flowing from one work area to
another. The objects of GPSS are transactions,
facilities, storages and logic gates. The trans-
action is the only object whose behaviour the
user can describe. In fact, the transaction
description is the GPSS program. The other ob-
jects are standard and their behaviour predefined.
The language is restrictive and it does not have
the power of SIMSCRIPT or SIMULA, but the wide
use and popularity of GPSS shows that its choice
of basic objects is well founded and quite useful
for a large class of problems.

GPSS is especially helpful for the beginner
on just those two points noted as disadvantages
for SIMULA. Model building is'simplified by the
presence of the predefined objects which can be
used as building blocks. All decisions for Sche-
duling movements through the system are localised
in the transaction definition, The other objects
are completely passive in this style of modelling.
The model logic is therefore easy to debug.
Further, GPSS programs for queue-type simulations,
for which they are well suited, are very concise.

It is therefore advantageous to combine the
two languages. SIMULA definitions for "facili-
ties” and "storages" will be given as well as the
corresponding "entering" and "leaving" procedures.
The "transaction" is also defined. By prefixing
his program with these definitions, a SIMULA user
can program in a way closely resembling GPSS.
Essentially, programming is adding to the 'trans-
action' definition.

The concepts of "facilities" and "storages"
to represent resources are so fundamental to
scheduling or queuing problenis that they may be
considered basic simulation data structures. These
structures are very close to the concept of
"semaphore" introduced by Dijkstra to synchronise
laosely comnmected parallel processes5. The
“entéring" and "leaving" procedures correspond %o
his "P" and "V" operations. In this way, the old
concepts of GPSS are finding new life in systems
programming..

The paper will refer to the SIMULA concept
of "object" rather than "data structure'. The"
two are close although the SIMULA object includes
relevant actions as well as the data structure
itself.

256

DEFINITION. OF "FACILITY' AND "TRANSACTION™

The facility is a resource that can be used
by only one transaction at one time. It is in ome
of two states, busy or not busy. Each facility
has an input queue where arriving transactions
wait when the facility if occupied by another

transaction. In this first example, the queue
discipline is FIFO. Transactions have two specidl
procedures. With the "seize" procedure, the

transaction tries to occupy the facility. If the
latter is busy, the transaction will stop execu-
tion of its program and place itself at the end
of the input queue. With "release" a transaction
frees a facility and allows the next transaction
on the queue to occupy the facility and resume
its program.

The following SIMULA block describes a class
nGPSS" which defines transactions and facilities.
The underlined words are basic SIMULA symbols and
the capitalized words are either system variables
or procedures already defined in the system class
"SIMULATION".

Program 1

1 SIMULATION class gpss;

2 begin

3 ref (facility) array
station [1:100]

4 class facility ;

5 begin

6 ref (HEAD) ing ;

7 ref (transaction) occupier ;

8 boolean procedure busy ;

9 busy : = occupier =/= none ;

10 ingq :- new HEAD ;

11 end facility definition ;

12 PROCESS class transaction ;

13 begin

14 real time mark, priority ;

15 procedure seize (n) ; integer n ;

begin

16 if station [n] = = none then
station [n] :- new facility ;

17 if station [n] . busy then
begin)

18 INTO (station [n] . ing) ;

PASSTVATE ;

19 ouT ;
end ;

20 station [n] occupier :-
this -transaction ;

21 end seize ;

22 procedure release™(n) ; dinteger n ;

23 begin

24 inspect station [n] when facility do,

25 begin

26 if occupier =/= this transaction

then ERROR ;

27 if ing. EMPTY then occupier :- none

28 else activate ingq. FIRST delay 0 ;

29 end

30 end release ;

31 time mark := TIME ;

32 end transaction definition ;

33 end definition of class gpss ;

line 1

line 3

By prefixing the class definition with
the name of the system class SIMULATION,
all the scheduling and list processing
procedures of that class are made avai-
lable to the class GPSS .

A ref type variable is a name or pointer
to an object. The declaration also 1li-
mits the use of the name to objects of a
certain class; in this case, ''station
[n]" can only refer to a facility.
Neither the class definition nor the
ref declaration create the objects in
question. Objects of a certain class,
for example "facilities'" will have to be
created by a statement of the form:
station [17] :- mew facility ;
Thereafter, the new facility can be
accessed or referenced through its name
“station [171" .
The declaration of line 3 limits the si-
mulation arbitrarily to 100 facilities.

lines 6,7 These are the attributes of a facility.

line 8

line 10

line 12

line 14

"inq" is the name of the input queue for
waiting transactions. In SIMULA, the
list processing capabilities are based
on two-way circular lists where a spe-
cial marker, a "HEAD" object, serves as
both the starting and end point of the
list. A queue is defined as. a pointer
to a "HEAD" object.

"occupier" is used to contain the

name of the transaction which has

seized the facility.

A variable could have been used to indi-
cate wether or not the facility is busy,
but this information can easily be ob-
tained by the procedure shown which
tests if an "occupier'" exists.

This initialisation is executed at the
creation of each facility. An empty

list is created and its address is placed
in "ing". At creation, ref variables

are = none and the procedure "busy"
would therefore return a '"false" value.

PROCESS is a system class. Roughly, it
enables an object to be scheduled and
event notices for the object can be in-
serted into the Sequencing Set. Contra-
ry to simple objects, the program part
of a PROCESS object is not execute at
creation but only when the object is
first activated.

These have been found to be useful attri-
butes for transactions. The first is
used to time the transaction through
parts of a system. "Priority" is not used
in this example; the next section gives

a more complex procedure ''seize' which
uses this variable to give different
queuing disciplines.

257

16

line

17

line

18

line

19

line

20

line

24

line

26

line

27

line

28

line 28

31

line

The first time a transaction tries to
seize a facility that has not been crea-
ted explicitly, it is automatically
created.

If the facility is free, the transaction
does not enter the queue but jumps to
line 20 to occupy the facility. Note
the use here of the ''genetive' or dot
notation to access a particular facili-
ty's attributes: "station [2] . inq"
means ''station [2] 's ing" or '"the inq
belonging to station [2]" .

INTO is a system procedure which places
the transaction at the end of the queue
passed as a parameter (FIFO). The pro-
cedure PASSIVATE stops the execution of
the transaction program at this point
until such time as it is reactivated

by some other object (see line 28).

As soon as it is activated, the trans-
action executes the procedure OUT which
removes it from the input queue.

The transaction places its own name in
the occupier variable.

When it is required to have access to
many of an object's attributes, the dot
notation becomes tedious. The "inspect"
statement provides a useful shortcut.

In the statement or block following the
do any reference to a facility attribute
is assumed to refer to the attributes of
the station [n] facility and the dot
notation is superflous.

Here we guard against the possible logic
error where a transaction tries to relea-
se a facility it never seized. ERROR

is not a system procedure; its implemen-
tation is left free. ERROR could possi-
bly print a message and jump to the end
of the procedure so that no action would
be taken.

If the queue is empty, the facility is
marked as not busy.

The first transaction in the input queue
is reactivated. The delay 0 clause
enables the leaving transaction time to
complete its actions before control is
passed to the walting transaction.

TIME is a system procedure which gives
the simulated system time. "Time mark"
is therefore initialised to the time at
which the transaction enters the system.
All integer and real variables are auto-
matically set to zero at block entry and
the priority variable does not need ex-
plicit initialisation.

QUEUING EXAMPLE

To show the similarity between a GPSS
program and a SIMULA program using the previous
definitions, a single server FIFO queue is comsi-
dered. A typical fragment of a program is given
below:

Program 2

GENERATE 5,0
MARK

SEIZE 1
ADVANCE 4,1
RELEASE 1

GPSS EXAMPLE

TABULATE 1

1 TABLE M1,5,5,10
TERMINATE 1
START 200-

Transactions arrive in the system every 5
minutes. Arriving transactions are time stamped
then seek to enter facility 1. Service time in
facility 1 is uniformly distributed between 3
and 5 minutes. The dashes indicate that trans-
actions then go through other parts of the sys-
tem, The time through the system is tabulated
then the transactions leave the system. The si-
mulation is ended after 200 transactions.

The complete equivalent SIMULA program is:

Program 3
gpss begin

1
2 transaction class customer -;

3 begin

4 activate new customer delay 5 ;
5 time mark := TIME ;

6 seize (1) ;

7 HOLD (UNIFORM (3,5,u)) ;

8 release (1) ; ’

[OUTFIX (TIME - time mark, 2,10) ;
10 end customer description ;
11

12 comment now the initialisation ;

13 integer u ;
14 wu := 54321 ;

16 activate new customer delay 0 ;
17 HOLD (1000) ;
18 end of the simulation

The class declaration for the '"customer'
object adds scheduling statements to the predefi-
ned "transaction". This customer declaration is
the exact equivalent to the GPSS program. Line 4
is equivalent to the generate block; upon arrival
in the system each transaction schedules the arri-
val of its successor. Line 5 is the same as the
"mark" block. This line is not strictly necessa-
ry since "time mark" is initialised to time of
entry, HOLD stops execution of the program for

the indicated amount of simulated time. UNIFORM
is a standard function which returns a random
value uniformly distributed between 3 and 5. "U"
is the random number seed. The time through the
system is also printed.

The rest of the program deals with initial-
isation and control of the simulation, For more
realistic, larger models, only the customer de-
claration would increase in proportion to the
complexity. The initialisation would stay almost
identical., Line 16 schedules the exogenous event
which starts the simulation and in the next line
the main program relinquishes control for the du-
ration of the simulation. In a more realistic
model statistics would be collected and printed
out at this point.

The random number seed '"U" is declared and
initialised in lines 13 and 14. To clean up the
program these two lines could be inserted in the
GPSS definition instead.

In spite of some minor differences, the
structure of the two programs is very similar.

PRIORITY QUEUING

In queuing models, it is frequently neces-
sary to experiment with a wide variety of queuing
disciplines. In the simple "facility" described
so far the discipline in the input queue is FIFO,
Entering transactions are placed at the end of
the queue and when the facility is free it selects
the next occupier from the beginning of the same
queue. A wide range of disciplines can be intro-
duced by modifying the "'seize' procedure so that
the incoming transaction is placed in the "ing"
according to some priority parameter. The follo-
wing procedure places transactions in a queue in
ascending order of priority; in case of identical
priorities, the ordering is FIFO is the priority
is positive and LIFO if the priority is negative.

Program 4

procedure priority into (queue) ;
ref (HEAD) queue ;
begin
ref (transaction) pt.;
pt :- queue,FIRST;
loop: if pt = = none then INTO (queue)
else if priority < pt.priority
then PRECEDE (pt)
else if priority = pt.priority
and priority < 0
then PRECEDE (pt)

" else begin
" pt :- pt.SUC ; goto 1loop ;
end ;

end proc priority into ;

To implement priority’ queuing, the procedu-
re should be placed in the transaction definition
and line 18 (program 1) of the ''seize' procedure
should have the VINTO'" procedure replaced by the
newly defined '"priority into".

As an example of priority queuing, consider
a transaction which passes sucgessively through
4 facilities. The service times in each are
"tsl'", "ts2', "ts3", and "ts4" respectively.
Each transaction has two local variables: "code"
and "delivery date". The variable "code" indi-
cates the importance or priority of the transac-
tion (code=l1 has priority over code=2). The dis-
cipline at each facility is as follows:

LIFO

shortest service time-first out
low code-first out (priority)
earliest deadline - first out

station 1 :
station 2 :
station 3 :
station 4 :

The transaction program for this example is:

Program 5

priority := -TIME ; (LIFO)

seize (L

HOLD (tsl) ;

release (@8]

priority := ts2 ; (priority to short ser-
vice time)

seize 2 ;

HOLD (ts2) ;

release (2) H

priority := code ; (priority to lowest co-

de)

seize (3 ;

HOLD (ts3) ;

release (3) H

priority := delivery data ; (priority to
earliest delivery date)

seize 4
HOLD (ts4) ;
release 4 5

In cases where the relative transaction
priority is liable to change while it is waiting
in the queue, the above scheme for priority
queueing is no longer valid. In this case, the
old "seize" procedure would be kept.and it would
be the ''release' procedure that would be modified.
More specifically, the procedure FIRST in line 28
should be replaced by a procedure "priority first"
to select the transaction with the lowest value
of the priority variable. Using the full power
of SIMULA, "priority" could also be defined as a
virtual procedure allowing dynamic recalculation
of the priority.

259

DEFINITION OF "STORAGE"

A storage is a resource that can be subdivi-
ded. Parts of it can be allocated to different
transactions; each transaction having exclusive
use of its own part. The main characteristic of
a storage is its maximum capacity. A storage can
be used to represent a group of identical facili-
ties. Examples of storages are: computer memory
allocated to several programs, space in a ware-
house or salesmen in .a shop. Transactions re-
quest use of storage through an "enter" procedure
where they indicate the number of units of stora-
ge required. Units are returned to the storage
through the “leave" procedure. There is no check
wether a transaction returns the same number of
units that it took or even if it previously remo-
ved any units at all. The only verifications
are: 1) a transaction cannot request more than the
maximum capacity of the storage, and 2) returned
units cannot increase the available space over
the maximum capacity.

There are many ways to implement a "'storage"
with "enter" and "leave". The following declara-
tions show a possible version whose implicit sche-
duling decisions will be discussed later.

Program 6

eef (storage) array box [1:100] ;
class storage (capacity) ; integer capacity ;
begin
ref (HEAD) inq ;
integer available space ;
procedure check inq ;
begin
ref (transaction) client, next client ;
client :- inq. FIRST ;

loop: if client = =none or available space = 0
then goto fin ;
next client :- client . SUC ;
activate client ;
client :- next client ;
goto loop ;
fin : end of check inq ;
ing :- new HEAD
available space := ' capacity ;

end storage ;

The maximum capacity is specified as a para-
meter when creating the storage, For example, to
model a parking lot with space for 100 cars, the
storage would be created as follows:

parking :- new storage (100) ;

The following procedures should be added to
the transaction definition of PROGRAM 1. Both the
"enter'" and the "leave" procedures specify the
identity, "n", of the storage and the number of
units of storage required or released.

procedure enter (m, units required) ;
integer n, units required ;
inspect box [n]. when storage do
begin
if units required > capacity then ERROR ;
INTO (ing) ;
test :. if units required < available space then
goto exit ; !
. PASSTVATE ;
goto test ;
exit: OUT ;
available space :=
units required ;
HOLD (0O) ;
end enter ;
procedure leave (n, units released) ;
integer n, units required ;
inspect box [n] when storage do
begin
available space := available space +
units releaséd ;
if available space > capacity then ERROR ;
check inq ;
end leave ;

available space -

To see the actions of the different proce-
dures, consider a transaction trying to enter a
full storage. It puts itself at the end of the
input queue then tests if space is available. In
this case, the test is false and the transaction
is passivated. Later, whenever the transaction
is activated, it will perform the same test. When
a transaction leaves the storage, it returns some
units to "available space' and calls ''check inq".
This procedure scans through the input queue on a
FIFO basis, activating each transaction in turn
until either it reaches the end of the queue or
the available space becomes equal to zero.

The scheduling decisions implicit in the
implementation are:

1) The input queue discipline is FIFO, One
could choose to have priority queueing as for the
facility.

2) Blocking is not allowed. That is, when a
small amount of space is returned to the storage,
all waiting transactions are given a chance to
enter. A transaction at the start of the queue
which requires more space than is available does
not prevent a succeeding transaction requiring
less space from entering. ''Check ing" could be
modified to implement blocking by stopping the
scan of the input queue as soon as.a transaction
was too large to be accomodated.

3) At present, an entering transaction tests
for available space independently of the number of
waiting transactions. If "blocking' were imple-
mented, this could only be tolerated with an empty
queue.

CONCLUSIONS

Conclusions from this work can be drawn
on several levels:

1) It has been shown how SIMULA can imitate
GPSS. By prefacing his program with the defini-
tions given here, a user can program a suitable
model with the same ease and brevity as in GPSS.
The use of well defined objects eases model build-
ing and later debugging. The approach has proved
quite successful in the introductory teaching of
simulation with SIMULA.

2) SIMULA is not limited to GPSS type models.
The power of the language has been shown in the
definitions of GPSS objects. The structure of
these objects is not frozen as in GPSS and some
alternative algorithms for the implementation of
"storage'" have been suggested. SIMULA is also
suited to other types of models. The language has
been applied to biological epidemic simulations®
and at Montreal, SIMULA has .been used with success
to simulate both PERT and digital networks.

3) Good programming in SIMULA leads to a cer-
tain formalisation of generally useful data struc-
tures for simulation: "facilities" and "storages"
in the present paper and '"nodes" and "arcs" in our
other simulations of networks. SIMULA appears to
be an ideal language with which to study these
structures and find efficient ways to implement
them. The SIMULA definition of “storage'" points
out the various alternatives in scheduling entry
and indicates the complexity of what appears at
first to be a relatively simple concept.

4) Finally, the-ease of definition in SIMULA
of complex data structures and their associated
routines suggests that simulation algorithms or
the structure of models be described in SIMULA
just as computation algorithms are described in
ALGOL.

REFERENCES

1) 0.J. Dahl, B. Myhrhaug and K. Nygaard, "Some
Features of the Simula 67 Language', 2nd
Conference on Applications of Simulation,
New York, December 1968.

2) 0.J. Dahl and K. Nygaard, "SIMULA - an ALGOL
Based Simulation Language', Comm. of the ACM,
Vol.9, September 1966.

3) 0.J. Dahl, B, Myhrhaug and K. Nygaard, "SIMULA
67 Common Base Language", Norwegian Computing
Centre, Oslo, May 1968. -

4) I.B.M., "General Purpose Simulation System
/360, User's manual", I.B.M. Publication H20-
0326, 1968. ’

5) E.W. Dijkstra, "Co-operating Sequential Pro-
cesses", in "Programming Languages", Genuys
(Ed.), Academic Press, 1968.

260

