RESOURCE ALLOCATION IN STOCHASTIC PROJECT NETWORKS

John M, Burt, Jr,

Graduate School of Management, U.C.L.A.
Los Angeleg, California 90024

SUMMARY

This paper is concerned with the allocation
of a single type of regource in project networks
(such as the PERT represgentation) composed of
activities whose processing times are random var-
iables, There is a continuum of alternative
processing methods for each activity and corres-
ponding costs (resource utilizations) associated
with each method. The effects of these differ-
ent processing methods for any given activity
are represented by modifications in the proba-
bility functions of the time required to complete
that activity., Over the duration of a project,
the decision maker (i.e., project manager) must
decide which method (i.e,, probability Ffunction)
ghould be used for processing each activity. This
sequential decision making must be performed so
as to minimize the expected completion time of
the entire project in light of restrictions on
overall resource avallability. A simulation
study was performed to analyze the comparative
effectiveness of several decision rules for
"solving" this problem. This paper presents the
results of the initial stages of that study.

. INTRODUCTION

Over the past decade, network graphs have
received congiderable attention as aids in the
planning and control of large~scale projects,
There is an abundance (plethora may be a more apt
word) of articles in the professional journals
presenting various problem formulations and tech-
niques for analyzing these network graphs, It has
been recently noted that the results obtainable
via network analysis are geldom utilized, or
sometimes even considered, by decision makers in
top level management; see the editorial by
Vazgonyi.” In the views of this author, this
behavior of management may be attributed, in
large part, to the failure of existing network
analysis models to deal gimultaneously with the
following three realities of actual project man~
agement:

(1) Uncertainty; the time required to com=-
plete an activity is seldom known in
advance with certainty, This is par-
ticularly the case for typically non-
repetitive 'once-in-a-lifetime" pro-
jects,

(2) Resources; the time required to com-
plete most activities is seldom inde-
pendent of the resources allocated to
them. The allocation of limited re~
sources amongst "competing” activities
is a primary function of the project
manager,

(3) Decision making 1s not a static concept:
Over the duration of a project, the

project manager sequentially re-allocates re~
sources in light of new information on the sta-
tus of the project. Resource allocation in pro-
jects is seldom executed in the immutable manner
of a "budgeting' process.

While none of the research literature men-
tioned above deals simultaneously with all three
of these factors, considerable attention has been
given to problems involving the factors singular-
ly. Even a partial listing of appropriate refer-
ences would be voluminous; the interested reader
may consu}g the excellent bibliographies in Wiest
and Levy, , or in Elmaghtaby.s

This paper presents empirical results from
a project management model which incorporates the
above three aspects of the problem, The compara-
tive effectiveness of several resource alloca-
tion rules is analyzed in an environment of un-
certain activity times and sequential decision
making, Due to the complexity and stochastic na-
ture of the problem, the use of simulation was
esgential to the analysis. In the remaining sec-
tions, the particular problem under study is for-
mulated, followed by a short discussion of the
different allocation decision rules. Simulation
results are then presented and interpreted, Fin-
ally, since this paper represgents only the first
stage of this study, the directions of future re-
gsearch and gome asgsociated difficulties in experi-
mental design are discussed.

PROBLEM FORMULATION

The model under congideration is ome in
which a limited resource of a single type(l) is
allocated amongst the activities in a specific
project., The objective of this allocation de-~
cision making is to minimize expected project com-
pletion time, i.,e,, the time required to finisgh
the entire project on the average. The time re-
quired to complete each activity is uncertain,
and hence, is denoted by a random variable, The
effect of allocating a particular level of re-
source to an activity is represented by the pro-
bability function of the time to complete that
activity, given that resource level. There is a
cost (resource utilization) associated with the
amount of resource given to any activity.

(1) The only type of resource being considered
in this paper is one that is used up in the pro-
cessing of an activity and hence cannot be re-
allocated to a second activity later on in the
project's life., Thus, money or raw materials
would be congidered a resource in this sense, but
a mechine or laborer would not.



Two major types of problems will be considered;
they correspond to allocations which are made
statically (i.e., only once, prior to the start
of the project) and those which are made sequen-
cially (i.e., repetitively, over the duration of
the project's life), To formalize these concepts,
some notation will be introduced and the problem
will be represented in symbolic form,

Let: The network be that of Figure 1, where
events (nodes) are denoted by the circles, and
activities-precedence relations (directed arcs)
are denoted by the arrows.

Xj be the level of resource allocated to acti-
vity i, where 0£X; <1, X; is the decision
variable,

Ry be a uniformly distributed random number
over the interval (0,1) associated with the
time. required to complete activity i.

200(1-X4)R; be the time required to complete
activity i, given that X; amount of resource
is allocated to it, Thus, the times requir-
ed to complete activities are independent
random variables uniformly distributed over
the interval (0, 200(1-X3)).-

Xizbe the cost of allocating X; units of re-

source to activity i, These quadratic costs

reflect the effect of "diminishing returns'.

Thus, the cost of (probabalistically) reduc-

ing the time required to complete activity i

by a given amount increases as Xi varies

from 0 (i.e., no allocation) to 1 (i.,e., the

. . maximum allocation).

ij} be the set of indices of activities lying on

\ path j.

The static problem is that of allocating the
resource amongst activities so as to minimize ex-
pected project completion time, subject to a lim-
itation on resource availability(2), That is,

Pl: Determine X;, i = 1,2,...,15, 80 as to mini-
mize expected project completion time,
= F J

Max 200(1-X4) Ry

e )

3= 1,2,.0.,10

Subject to the 'budget” constraint,
15

2
£
XI_Z

i=1

The sequential problem is sgimilar in form;
however it is extremely difficult to write down
concigely, The difficulty lies in the fact that
over the course of the project's duration, the
X ;'s become fixed values rather than decision
variables (i.e., decigions have been made and
carried out) and the Ri's become fixed rather than
random variables (i.e., activity times "early" in
the project become known). Thus in the sequential
problem, the Xj's are "fixed" at different points
in time in an order that depends upon the changing
ses of previously fixed X;'s and their associated
Ri 8.

It is computationally arduous, if not impossi-
ble, to solve even the gtatic problem, Pl, with
analytic methods. By conditioning on random vari-
ables associated with those activities lying on
more than one path, it would be possible to write
down an open-form expression for the expected pro-
ject completion times as a function of the Xi'x.
The open-form expresgsion would involve gixteen in-
tegrals~~-one for each random variable contribu-
ting to project completion time plus an additional
integral for the expectation. Deriving a closed-
form solution, which could then be optimized with

(2) 1f the available amount of resource (the
budget) is too large, then most X;'s will be 1
(i.e. most activities would receive a maximum
allocation) and if the budget is too low, then
most Xi's will be 0, Sensitivity analysis showed
that a budget equal to 2 avoided these extreme
"golutions" and hence that value was used in all
the empirical studies.

Figure I : Network Under Consideration
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respect to the X;'s would be extremely difficult
even if approximate methods (e.g., numerical in-
tegration) were employed. To obtain a deeper
understanding of the use of analytic method¢ in
stochastic network analysis, the reader may con-
sult the articles by Burt, Gaver, and Perlas,3
Burt and Garman% Hartley and Wortham®, and
Martin.’ For the sequential problem, it would
be virtually impossible, even to construct an
open-form expression for expected project com-
pletion time. This is due, in part, to the
fact that the ordering of decisions is unknown

a priori, and in part, to the fact that an op-
timization model must account for the dynamic
behavior of the problem(3).

Because an optimal solution of this
problem is unobtainable via analytic methods,
several heuristic rules were developed for
making the allocation decisions. The time re-
quired to complete the entire project, given
that a particular heuristic is used for de-
cision making, is a random variable. Esti-
mates of the expected value of this project
completion time were obtained by repetitively
simulating "realizations' of the project.

These mean value estimates (one for each heur-
istic studied) were then used to make compara-
tive judgements of the effectiveness of the
different heuristics in minimizing expected
project completion time.

In the next section, four heuristics
for making the resource allocation decisions
are discussed. In actuality, only two distinct
heuristics are presented, each of which was
applied both statically and sequentially. The
first heuristic is based upon the deterministic
assumption that each activity will require an
amount of time exactly equal to the expected
value of the time to ¢complete that activity.
The second heuristic is an extension of the
first which incorporates information reflect-
ing the stochastic nature of this problem.

DECISON RULES FOR ALLOCATING RESOURCES

RUIE I: Deterministic - Static

Suppose we make the assumption that the
time required to complete any activity, given
some resource level, is equal to its mean (or
expected value), The time to complete activity i
is then,

E [200 (1-%;) Ry] = 200(1-%)E [Ry] = 100(1-%p)

The problem being studied is now deterministic.
ILetting T denote the time to complete the entire

(3) Theoretically at least, it would be

possible to formulate the sequential problem as

a dynamic program with stochastic state variables
by conditioning upon the different possible or-
derings of decigions (there are 22 such orderings

for this network).
(4) The next most imminent decigion can not

occur at node 3 bécause it is "preceeded" by
node 2,

project, we may reformulate problem Pl as,

P2: Determine Xy, i = 1,2,44+4515 80 as to
Minimize: T

Subject to: 100(1-X;) £ T for all j

1 € {4

é— ngz

i
i=1

0£ Xiﬁ 1 for all i.

This is a non-linear programming problem and may
be readily solved by one of the existing codes for
these problems. Rule I is to apply this proced-
ure to the static version of problem P2,

This reader should note that Rule I is truly
a heuristic in that it does not yield an optimal
solution, The assumption underlying P2 destroys
the essential stochastic character of the problem.
The value of T associated with the "optimal' solu-
tion of P2 will always be less than the actual ex-
pected value of project completion time, This is
due to the fact that the maximum of the expected
values of several random variables (i.e. path
times) is always less than or equal to the expect-
ed value of the maximum of thoge random variables.

RULE II: Deterministic-Sequential

The second rule is to apply Rule I sequen-
tially over the duration of the project at those
points in time when the predecessors of any node
are completed, The programming of the procedure
to accomplish this is rather involved because the
structure (fixed versus variables X,'s) of the re-
sulting non-linear programming problems changes.
The procedure runs something like this: Initially,
problem P2 is solved with all X,'s variable; then
the resource variables X;, X,, dnd X5, egressing
from node 0, are fixed (i.e. decisions are taken
and resources are allocated); then Ry, Rys and R
are used to determine whether the next most immi-
nent decision will occur at node 1 or node 2
Suppose the next decision will occur at node 2
(i.e. the actual time to do activity 2 is less
than that of activity 1) -- then a new non-linear
problem is solved with X, » and Xq fixed and
with actual (rather than expected) activity times
for activities, 1, 2, and 3; problem P2 is solved
again and tle resulting optimal values of Xg, X4,
and Xg are fixed since those resources are now
committed; then the next most imminent decision
igs determined, and so on., For each realization of
a single project completion time, six non-linear
programming problems are solved sequentially.(5)
Rule II is simply the application of this pro-
cedure.,
(5) Although there are eight nodes in this net-
work, only six grogramming problems, need be sol-
ved at each realization. This is because the op-
timal initial decisions (fixing of X1, X, andX3)
are independent of the random numbers, and the op-
timal final decision (fixing of either X1, Xjj3,0r
X15) is simply to exhaust the remaining budget.




RULE III: Stochastic-Static

Rules III and IV are extensions of the two
rules above, in which some “stochastic informa-
tion" is used to modify the deterministic results.
For instance, suppose Rule I has been applied to
the problem so that the allocation decigsions Xy,
i=1,2,,.0, 15, are known. N simulation experi-
wments can then be performed using these Xi's by
taking random draws, R, k), R, (k), oee, Ry5 (K);
k=1, 2, .0y N. (Note that this is the same pro-
cedure that is used to determine the estimate of
project completion time achievable with Rule 1,)
These simulations provide a methonz for estimating
activity and path criticalities. )+ These cri-
ticalities provide information that may be used to
modify the original set of X;'s in such a way that
the expected project completion time is reduced
(below that achieved with Rule I). For instance,
suppose we consider a pair of activities, i and j,
whose original resource allocations are Xy and X,,
and whose criticalities (estimated via simulatioA)
are pi and p s respectively. Suppose that X<
X{ and p; > P;j. This means that activity i was
allocated less resource than activity j, yet 1 is
more likely to lie on the critical path than j.
Ceteris paribus, expected project completion time
could be reduced by taking some resource from ac-
tivity j and giving it to activity i. Unfortuna-
tely the ceteris paribus condition does not hold
because a modification in any of the Xji's tends
to change all the other activity criticalities.
However, as a heuristic the following simple pro-
cedure proved to be successful.

Given.a “"current" set of X,'s, perform N
simulations of project realizations so as
to estimate the activity criticalities, pi.

Amongst all activity pairs (i,j) such that
X; £X5 and pi:z pi, determine the parti-
ciilar pair (i*, i*) which maximizes the
expression (xj - Xy + (pg = pj)e

Reduce X;* and increase X;*, The associa-
cost reduction of allocation j* nust
equal the cost increase of allocation i*,
so that the budget constraint remains an
equality,

If the current value of the expression
(Xs* = X4%) + (pi* = p;¥%) falls below a
prédetermined level, then stop; otherwise,
return to Step 1.

There are three important igsues relating to the
parameters used in applying Rule III. The first
is the question of the 'best" sample size, N, to
be used in the simulations that eatimate the cri-
ticalities. Too small an N would lead to statis-
tically inaccurate criticality estimates; too
large an N would require excessive computing time,

Step 1:

Step 2:

Step 3:

Step 4:

(6y Definition: An activity's (path's)eritical-
ity is the probability that it will lie on (is) the
longest path, Path criticalities may be deter-
mined via simulation experiments by counting up the
number of times each path is critical and then di-
viding by the total number of experiments., Activ-
ity criticalities may be determined directly from
the path criticalities.

-
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This question becomes particularly important when
Rule III is applied to the sequential problem,
For the experimental results reported below, a
gsample size of N = 500 was found to be satisfac-
tory. The second quegtion involves the amount of
regourcé to be shifted between activities i%* and
j* in Step 3 above., Too small an amount leads to
an excessive number of iterations before the pro-
cedure is terminated, Too large an amount leads
to radical changes in the criticalities, thereby
"jumping over" good solutions.(7) Experimentally,
it was found that incrementing the resource allo~
cation of activity i* by one fourth the maximum
value of the expression in Step 4 worked fairly
well, The final question has to do with the ter-
mination level of the procedure in Step 4. A
value of ,08 appearedto yield a good tradeoff
between excessive computing time and marginal
solution improvements.

Rule III involved the use of the above heur-
istic procedure to derive a stochastically modi-
fied get of X;'s for the static problem,

_RULE 1IV: Stochastic -~ Sequential

Rule IV is simply a sequential application of
Rule III, As the predecessors of a given node
are completed, all the unfixed X;'s are set via
non-linear programming. These unfixed X.'s are
then modified by performing a series of simula-
tions as in Rule III., The simulations involve
the use of actual times for activities associated
with fixed X,'s and random variates for all other
activity tim&s. Then the Xi"s egressing from the
particular node under study are fixed and the pro-
cedure is repeated.,

SIMULATION RESULTS AND ANALYSIS

Table I below presents the results of repeti-
tively applying the four rules to obtain esti-
mates of mean project completion time, The sam-
ple sizes used in determining the estimates vary
because the amount of computing time required for
a realization of the project completion time
differs greatly between the static and sequential
rules. Regardless of the rule being studied,
each realization of project completion time re-
quired a set of 15 random numbers associated with
the 15 activity times, For experiments on Rules
I and III, the same 10,000 sets of random numbers
were used so as to reduce sampling error. Like-
wise for Rules II and IV, the same 100 sets of
random numbers were reused, Moreover for the
latter two rules, the sample of 100 sets was in
fact two "antithetic variate" samples, each of
50 sets.(8) The computing run time (exclusive of

(7) 1In preliminary experiments, the amount of re-
gources to be shifted was quite large and this

lead to cycling of the procedure, I,e,, in one
iteration of the procedure, regources would be
given from i to j while in the following inter-

action, resources would be given from j to i.



compiling time) requirements for generating the
specified number of realizations are shown for
each rule; computing was done on an IBM 360,
Model 91, The sample standard deviations of the
mean estimates are given, Realizations in the
different experiments are independent and hence
the meang should be roughly normally distributed,
Various hypotheses about the significance of the
differences in the mean egtimates could be tested
via standard statistical methods,

ity functions or activity cost-time tradeoffs)
may be a considerably greater factor than this
figure, Had the degree of improvements been 15
or 20%, then one would be justified in arguing
the importance of using sophisticated allocation
rules in project management., For the particular
model and network studied in this paper, this was
not the case,

Rule 1: Rule II: Rule III: Rule IV:
Determ,~Static | Determ,-S5eq. Stoch,-Static Stoch.~Seq.

Sample Size 10,000 100 10,000 100
Mean Estimate of Project 329,12 324,47 325.59 317.57
Completion Time
Standard Deviation of 4772 4,398 4570 3.891
Mean Estimate
Computing Time 2,66 337.16 3.81 613,15
in Seconds

Table I: Simulation Results

As was anticipated, the sequential rules led
to shorter project sompletion times, on the aver-
age, than did theilr static counterparts, Simi-
larly, each of the stochastic rules yielded an
improvement over the results achieved with the
corresponding deterministic rule.(9) These im-
provements are bought at a cost of computer run-
ning times which vary directly with the effec=-
tiveness of the different rules.

In terms of initial expectations, the most
surprising aspect of the results is the relative
closenegs of the four mean estimates, The mean
project completion time achievable with the most
effective rule (Stochastic-Static) is only about
3 1/2% less than that of the worst rule (Deter-
minigtic~Static), Speeding up the completion
date of @ multi-million dollar project by 3 1/2%
may be significant, However, the sensitivity of
the results to inaccuracies in the data underly-
ing the model (egs., assumptions about probabil-
(8) Antithetic variates is a Monte Carlo techni-

que for reducing the variance of estimates obtain-
ed via sampling procedures., The standard devia-
tions given in the Table for rules II and IV are
unbiased values but they do not indicate accurate-
1y the "goodness" of the associated mean estimates;
the actual standard deviation of those estimators
are considerably smaller than the values sghown,

The reader may see Burt and Garmanl, and 2, or
Burt, Gaver, and Perlas3, for discussions of the

effectiveness and application of Monte Carlo tech-
niques in the analysis of stochastic networks.
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In the opinion of this author, the closeness
of the results for the different allocation rules
is due, in part, to the following factors: the
uniform probability functions, the quadratic
costs, the deterministic assumption underlying
the programming procedure, and the particular net-
work configuration chosen for study. Each of
thege factors affects the degree of control that
can be exerciged over the processing of the pro-
ject, If the probability functions had smaller
variances (than those of the uniform), there would
be a closer correspondence between the anticipa-
ted activity times achilevable with a given re-
gource allocation and the times that are actually
realized, Under the uniform probability function
agsumption of this paper, suppose a manager allo-
cates 1/4 unit of resource to a particular acti-
vity. Any time between O and 150 is equally like-
ly to actually occur for that activity. Thus,
there is a great deal of uncertainty as to how
much will be accomplished (in terms of actual
activity times) with a given amount of resource.

The second and third factors, those of quad-
ratic costs and the deterministic assumption, has
& very detrimental impact on the effectiveness of
the non-linear programming algorithm to achieve

(9) The results in Table I may be contrasted
with the mean completion times achievable with
the following two naive rules: i) Allocate the
budget equally amongst all activities (361.45)
and 1if) allocate the budget equally amongst ac-
tivities 1, 2, 5, 6, 12, 14, and 15 (368.77) .



optimal allocations. The algorithm makes (some-
times very costly) resource allocations only to
those activities lying on paths that are critical
under the deterministic assumption., To illustrate
the cause of resulting errors, consider the net-
work of Figure II.

3
Figure II.

If a budget of glightly less than .5 dollars was
to be allocated, activities 1 and 2 would each re-
ceige slightly less than .5 units of resource

(.57 + 5% = .5). Activity 3 would receive nothing
gince it is not critical under the deterministic
assumption, The marginal cost of the last bit of
resource put into activities 1 and 2 is extremely
high compared with the marginal cost of zero for
activity 3. Moreover, activity 3 will be critical
only slightly less than 507% of the time. In an
optimal solution t6 the problem of Figure II, ac-

tivity 3 would receive some allocation of resources.

The programming model of this paper leads to non-
optimal solutions because of this assumption of
deterministic activity times; furthermore, due to
the quadratic nature of the cost functions, these
non~optimal solutions may prove to be very costly
(i.e., in terms of prematurely exhausting the bud-
get).

A final factor that may have influenced the
results of these experiments is that of network
configuration. The basic concept is easy to illus-
trate with the aid of Figure III.

Figure III.

If the activitiles indicated in the figure were
carried out from left-to-right, the manager would
be able to sequentially '"control" the project more
effectively than if the activities were carried
out from right-to-left, In the former case, re-
sources would be committed initially to only two
activities, while in the latter four commitments
would have to be made initially. When processing
is performed from left-to-right, the project man-
ager is able to delay more allocation decisions,
pending forthcoming information on realized acti-
vity times, thereby maintaining greater flexibil-
ity of control, The network studied in this paper
has an equal number of arcs entering the source
(start) and sink (Finish) nodes. However, the
structure of the entire network is such that a
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greater amount of resources must be committed ine
itially (e.g., activities 1 and 2 utilize about
1/4 of the entire budget) when processing is done
from left-to-right rather than in the reverse di-
rection )

Each of the factors mentioned above are sub-
jects for research on the behavior of stochastic
networks. In the final section below, some com-
ments on directions for future study are given.

EXPERIMENTAL DESIGN ALTERNATIVES AND FUTURE RESEARCH

Any model for analyzing the stochastic, se-
quential, resource allocation problem must specify
numerous assumptions about the structure underlying
the system under study. The following partial list
indicates some of the dimensions along which these
assumptions may vary.

1. Network size and configuration.

2. Probability functions to represent the affects
of resource allocations on activity times.

3. Choice of decision nodes; which of the activi-
ties are subject to the project manager’'s
control?

4, Cost-time tradeoffs for each activity; are

the quadradic cost assumptions of this paper
realistic?

5. Objective functions; is the assumption of
myoptically minimizing project completion
time reasonable?

6. Resources; should we consider the cases of
multiple resources, unconstrained resources,
non-""exhaustible" resources, and non-continu~
ous resource allocations?

7. Allocation decision rules; what heuristics

might lead to good problem "solutions'?

The list could go on almost indefinitely. Even
these few dimensions should give the reader a feel
for the scope of this problem. For the purposes
of this study, many simplifying assumptions were
used such as those of using identical forms for
activity costs and activity time probability func-
tions. This was done primarily so that attention
could be focused on the comparative effectiveness
of decigion rules, If other, more realigtic data
were available, the model and solution procedure
could be applied with only minor modifications.

As mentioned earlier, one major area of fu-
ture regearch has do do with identifying the re-
lative "importance" of the different dimensions
above with respect to thelr impact on the project
manager's ability to achieve the specified objec~
tive. A second area of research concerns the real-
ism of the assumptions dimensioned above and upon
the data requirements underlying those assumptions.
Are manager's concerns about uncertainty and se-
quential decision making as wisespread as was
implied in the introductory section? Do managers
think in probabalistic terms such as "expected com-
pletion time"? Even if it is very convenient for
theoretical models, is data obtainable which could
be used to construct the activity time - resource
level probability functions? Greater attention
must be given to field study research and behavior-
al information so that the management scientist
can construct realistic models.



A third direction for research, which this
author is pursuing, is the use of analytic methods
to optimally solve the problem of this paper for
relatively simplistic networks., For a project
composed of a single serial path, dynamic pro-
gramming gives such a solution. By using condi-
tional random variables, dynamic programming may
be applicable to more complex networkg such as
series-parallel-series configurations. Results
of this analytic study may provide insights or
new heuristics for treating large~scale problems.,

This paper has presented a model for studying
the problem of sequential resource allocation to
projects in an uncertain environment. Due to the
stochastic nature of the problem, analytic pro-
cedures could not be utilized to determine optimal
golutions, Simulation provided a method for anal-
yzing the comparative effectiveness of allocation
rules, and results were presented for a particular
get of problem specifications, The study was in-
vestigatory in nature and some directions for
future work were indicated. Hopefully this paper
will assist both theoretists and practioners in-
terested in project management systems.
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