SIMULATION AND MATHEMATICAL MODELING OF AN ON-LINE ACCOUNTING SYSTEM

Jack E. Shemer
Xerox Data Systems
El Segundo, Califernia

Summary

Two approaches are presented for analyzing and predicting per-
formance of an on=line business data accounting system. The
computer system's responsiveness to typical (high priority) file
updating demands is examined by two methods of a priori study:
simulation and mathematical modeling. A discrete event simu~
lation model, written in FORTRAN, is developed to compre~
hensively describe system performance. This simulation model
is based upon the isolation and sequential ordering of logical
“phases” which are seen to dccur during the servicing of a
user’s request, To supplement this model, two mathematical
models are developed from assumptions of exponential inter~
arrival and service time distributions. The first of the mathe-
matical models presents " worst case" estimates in the sense that
no simultaneity of Drum and Disc Pack operations is considered
possible; whereas the second model provides "best case"
estimates since it assumes that a maximum degree of file I/O
simultaneity is achievable, As expected, the simulation results
(in all cases examined) were between the upper and lower
bound response time estimates provided by the mathematical
models. Hence the mathematical models serve to substantiate
the validity of the results obtained from the simulation, and in
concert, the three models provide performance estimates which
range from "worst case” fo "expected real world" to "best case .
Thus it is shown how mathematical modeling can be coupled
with simulation to increase the fidelity of system analysis.

I Introduction

In general, there are three basic methods for analyzing com-
puter systems; 1) mathematical modeling, 2) simulation and 3)
empirical investigation. With mathematical analysis the sys-~
tem is typically examined in a macroscopic manner. Commonly
the methods of queueing theory are employed, and the sys~
tem is studied under equilibrium conditions. However, at best,
mathematical models provide only general indications of system
performance, since probability: analysis is amenable only to o
limited number of variables. In contrast, simulation models > ©
strive to comprehensively inter~relate all variables of the sys—~
tem, thereby providing a microscopic view of the system.
However, detailed simulation is frequently prohibitive due to
the effort involved. Moreover, the fidelity of a simulation is
often questionable because values for many of its internal
paramefers are unknown (especially prior to actual system oper-
ation). At the other extreme, empirical investigations 4~7
provide a degree of accuracy that is not experienced with
mathematical models or simulation since such studies obtain
results while the system is in operation. But, due to. consider-
ations of practicality and timeliness, posterior studies (requir-
ing operation of the system itself) may prove to be infeasible

or exorbitantly expensive. Therefore, only the techniques of
mathematical modeling and simulation can be employed for a
priori study when a system is in its early stages of design.
Hence, ideally, these approaches should supplement each other
since their results provide a basis of comparison.

282

With a priori studies it is typical that considerable doubt

arises as to the validity and accuracy of the modeling results .
Thus a basic analysis problem which must be confronted is that
of establishing the credibility of system performance predictions.
Here it is shown how the severity of this problem can be miti~
gated by employing several different a priori models and com-
paring their results. This paper employs simulation and math-
ematical modeling to obtdin an a priori analysis of a pro-
posed on-line business accounting system. The system's
responsiveness to typical (highest priority) updating demands
is examined and grophically analyzed for a variety of usage
conditions in order to ascertain the capabilities of the pro-
posed system.

11 Brief System Description

Consider a proposed on-line business accounting system (OBAS)
which would time=share its services among a number of remote
users and tailor its functions to: a) file updating, b) informa-
tion inquiry, and c) report generation. Broadly speaking,
assume the computer system configuration consisis of: a) a XDS
Sigma 7 CPU, b) core memory sufficient for the operating
system and up fo an additional 64K words for on-line users
(4K words per user "slot"), ¢) up to four medium speed Rapid
Access Disc (RAD) controllers (7231s) and up to two RAD (head
per irack) storage units (7232s) per controller, all of which are
dedicated to OBAS servicing, d) up to four Removable Disc
Controllers (7240s), with each servicing a maximum of fwo
dual spindle disk pack mechanisms (7242s) where, again, the
entire Disc Pack complex is dedicated to OBAS, also, e) whai-
ever additional hardware is deemed necessary to support report
generation, system initialization and restart, file back-up and
batch operations (e.g., high speed printers, magnetic iapes,
paper tapes, card readers, card punches, etc.).

The basic mode of on-line user input and system oufput re~
sponse would be via teletypes, When an on-line user is
allocated core space, he would be given a fixed size, 4K
area of main memory which is selected from those "slots"
availdable for on~line allocation, It is assumed that user
programs would run interpretively and thaf the system employs
the Sigma 7 hardware memory map for relocation, Therefore,
the assignment of a user to an area of core would not be bind-
ing, and a given user may be assigned to different areas of
absolute memory during successive computations.

The OBAS executive would operate as a resident real-fime
program which is inferfaced to a standard operating system
that supports foreground operation. Here, the OBAS execu-
tive would control the scheduling and memory allocation of
on-line users within its dedicated area of main memory and
perform 1/O via the File System of the host monitor. All CPU
activity for OBAS would be in the foreground mode,

*
Such features are common in a number of operating systems
provided by XDS {e.g. BPM, RBM, etc.)

As previously stated, the system would be structured fo provide
preferential service to requests which fall in the updating class
(e.g., posting activity, payroll inputs, accounts receivable,
efc.) since these requests demand rapid response and, moreover,
are considered to be the dominant mode of system demand. It

is assumed that all such activities, on a per request basis,
require a minimal amount of CPU time (in the majority of cases,
a total of less than 16 ms. per request); whereas, due to the
involvement of multiple files and indices fo these files, a siz-
able amount of 1/O time is demanded (typically six RAD, access~
es per request). However, problems of storage allocation are
negligible since files are not dynamically expanding but, ratheg
simply being modified.

When a user inputs an update request to the system, the system
must perform the following I/O operations to satisfy each such
fransaction:

1. Fetch from the RAD the user's identification (ID) block (=
1K words which locate the user's program, describe opera-
tional history, specify access privileges, etc.)

2. Read user program from RAD (=1K words)

3. Employ a user supplied "key"” and access the user's file
directory from RAD (<512 words)

4. Obtain appropriate record from Disc Pack (=512 words)

5. Update record and write modified record back on the Disc
Pack (step 4 is a "read with hold cylinder position" so that
step 5 can be accomplished with reduced access time ~ i.e.
the cylinder positioning on the write operation will be
instantaneous).

6. Update user accounting data in the ID block and restore it
upon the RAD

Steps (3), (4), and {5) are generally repeated two or three times
per user transaction since the updating of a record can affect
more than one file (e.g., time card data affects payroll files,
labor files, and, perhaps, the general ledger).

In any system of this sort, additional 1/O activity is required
per transaction to insure operational fidelity and error recovery .
There are many ways to achieve this. A simple approach, which
requires minimal additional 1/O activity per fransaction, would
be to maintain a log of all fransactions.” This log, together
with periodic duplication of all files on tape, would provide a
basis for system integrity. At the other extreme, a separate

Disc Pack could be dedicated to duplicating all modified files.
But this approach would necessitate additional 1/O activity per
transaction (typically 3 or 4 write operations) and thereby tie

up user core “slots” for extended periods of time, For the pur-
poses of this paper, let us assume that the former approach is
employed, whereupon little (if any**) additional 1/O is required..

This log could also be used as a basis for performance tun-

ing or as a fool to drive simulations.
%%

Multiple transactions would generally be buffered before
an update of the transaction log was. required.

283

III Assumptions and Analytical Approaches

Since the proposed system provides preferential treatment to
transactions of the updating variety and since such requests are
assumed to constitute the majority of demands imposed upon the
system, the analysis examines the system's ability to respond to
these demands. It is assumed that the response time R to typical
updating requests is, singly, the most relevant measure of per-
formance, because “satisfaction" of such transactions is only
achieved when "adequate” response is received. Here, re-
sponse time R is defined as that amount of time which elapses
from the instant at which a user "keys~in" an activation char-
acter (i .e., demands some service from the OBAS executive)
until the system responds with the prompt character (and/or
associated output data) which acknowledges the servicing of the
transaction and informs the user that the system is ready to
receive another request,

Within the above framework it is apparent that so far as updat-
ing activity is concerned, the system's capacity to accommo=
date 1/0 requests is the limiting aspect of performance. There-
fore the models developed in the Appendix principally examine
1/O queueing™* (i.e., RAD and Disc Pack servicing). To
facilitate the study, the I/O system is considered to be modu~
larized. The "basic I/O module" consists of a single RAD
controller (7231) with two storage units (7232's) and one Re-
movable Disc Controller (7240) with two dual spindle mechan-
isms (7242's). Now, since the system is 1/O limited (and also
due to storage capacity considerations), only a limited number
of users can be accommodated by a single "1/O module ."
However, since the CPU time/fransaction is minimal, it is
reasoned that performance estimates derived for a "one modulé'
system with S core "slots” for N concurrent users are applica-
ble to a "k module” system which operates with N.k concurrent
users and S«k user core "slots" (i.e., providing the user popu=~
lation is equally distributed over the "k modules" and also that
the system is capable of operating as many as "k modules” con-
currently, whenever they are demanded).

A detailed investigation of system performance is achieved by
means of a discrete event simulation model. This model is
described in the Appendix and comprehensively accounts for
the queueing phenomena which user transactions experience
during various phases of service.

Also, two mathematical models are formulated in the Appendix
to supplement the simulation study. The first of these presents
"worst case” estimates for the expected response time ER] since
it assumés one user core "slot” per "I/O module." Even though
more than one user is queued for an "I/O module,” only one is
assumed to be active at any given time. Hence, the servicing
of 1/O activities for that *module" is stricily sequential with
no time overlap (i.e., it does not permit simultaneous opera~
tion of a.RAD and Disc Pack which comprise the same "modulé’)
The second mathematical model provides "best case" perfor-
mance estimates since it assumes that a maximum degree of 1/O
simultaneity is achievable. Given that a request for RAD
service is queved, the second model considers that it is always
possible to commence servicing such a request (i.e., there is
always an available user "slot"), The only conservative aspect
of this "best case" model is its inclusion of device interference
conflicts which can exist between individual Disc Pack service

*
However, the analysis does not account for any conten-

tion problems which may arise when files are shared.

7

requests. This is achieved by relating the description of Disc
Pack servicing to a) the number M of independent mechanisms
and the maximum number S of user core "slots" available per
"module”, and b) the number ng of requests queued for the
removable disks.

With the above models, it is generally assumed that:

Each on-line user interacts with the system at an average
rate A(requesis/sec.) which, depending upon the environ-
ment, varies from | request every 3 seconds to | request
every 7 seconds. The interaction interval corresponds

to the time period during which user is preparing a request
for the system (i.e. his thinking plus typing time). For
each user the duration of this interval is described by q
negative exponential disiribution function whose mean is
/x.

A total of N users per "1/O module" are concurrently
“on-line” and vying for service.

The average total RAD sérvice time per request is [/u, =
160 ms. (including six random access and all associated
data transfers).

The average total Disc Pack service time per request is
1/;;2 = 440 ms, (including all accesses and associated
data transfers, excluding file back~up).

Further details of the user transaction cycle ar;d associated
services are included in the simulation model as described in
the Appendix.

If the simulation model and mathematical models are accurate,
then it is expected that the simulation will yield average re~
sponse times somewhere between the two estimates provided by
the mathematical models,

IV Results

Employing the three models given in the Appendix, estimates

of expected response ﬁme** E {R] are derived and graphically
displayed in Figures I, 2, and 3 where A, the interaction rate
of each user, equals | request/3 seconds, | request/5 seconds

and | request/7 seconds, respectively.

Figures 4, 5, and 6 dipict the 80% point of the response time

distribution as. obtained from the simulation model for corres~

ponding values of A . The ordinate axis represents that value

of response time R(80%) such that 80% of the user transactions
experience response fimes less than or equal to R(80%).

Here it is assumed in the simulation and "best case" model that
the number of user core “slots" per "I/O module" equals the
number of independent Disc Pack mechanisms which are avail-
able per "module” (i.e., M =S =4). Thus if the total CPU
time required per user transaction is negligible; if probiems of

¥ Here 1/ is avérage duration betwaen system generard
response (user receipt of a system generated Chdl‘GCfel:) and
the generation of the next user request (the "keying-in" of
an activation character).

£33

Recall that E [R] is the average response time affarded to
requests which are "typical™ update transactions and which
are therefore characterized by a relatively large. amount of
1/0 but minimal CPU time.

secondary storage allocation don't exist; and if the system is
capable of operating k "1/O modules" concurrently whenever
they are demanded, then it is reasoned that the estimates for

N users per "1/O module” can be extended to N.k users when
k "1/O modules" make up the system, providing that core space
is expanded to provide 4k user "slots” and the user population
is evenly distributed over the "k modules". Given these
assumptions, whenk =4it is reasonable to conclude that the propos-
ed system is capable of supporting. 80 users (and still afford re~
sponse times which are typically less than 3 sec.). However,
it should be noted that this linear extrapolation is only an
approximation, and therefore should be viewed cautiously

" {e.g. for some value of k, CPU time would become significant

284

due to functions of 1/O initiation and 1/O interrupt handling
performed by the File System).

V Comments

As previously noted, the simulation results should be somewhere
between the two estimates provided by the mathematical models,
Upon examining Figures I=3, it is evident that all simulation
results are consistent with this conjecture. Therefore, given
that the assumptions of the investigation are correct, it is
reasonable fo attribute considerable accuracy to the simulation
results. To this extent,it has been shown that mathematical
modeling can be coupled with simulation to increase the fidelity
of the analysis.

However, it must be again emphasized that throughout the
analysis the total CPU time per request was assumed to be
negligible (typically, <16 ms per transaction). This total
included user program execution {interpretively) together with
all the processing required by the File System of the host oper-
ating system. Thus, the OBAS Interpreter should be highly
efficient and the number of interpretive commands which users
are allowed to execute per transaction should be constrained
by some mechanism in the OBAS monitor (perhaps adjustable
depending upon the environment). Moreover, all I/C activity
performed by the File System must be accomplished with mini~
mum delay . If this is not accomplished, then CPU queueing
must be considered in the models, and the predictions displayed
in the figures are grossly inaccurate.

None of the models presented here accounted for a priority
structure in the OBAS scheduler or considered requests other
than those of the upddte variety, A more general and flexible
simulation model could be readily developed to allow for
flexible priority assignment, arbitrary definition and sequencirig
of service phases for each distinguishable request type (e.g.
update, inquiry, report generation, etc.), and comprehensive
treatment of multiplexing conirol for k "I/O modules". Then
providing the user environment could be accurately character-
ized, this latter model ¢ould be used to obtain more detailed
performance estimates.

In summary, it must be emphasized that this is a preliminary
analysis, Many of the assumptions employed here which
characterize system usage are subject to closer review. For
sxample, as the system evolves, it is reasongble to assume that
more and more diverse demands would be imposed upon the
hardware/software complement, thus negating the assumpfion of
a homogeneous user environment. Yet even though the models
are exiremely simplified approximations to complex situations,
their results are credible and, in this respect, demonstrate the
potentials of the proposed OBAS system.

Acknowledgements

The author is indebted to P. F. King for his programming work
to implement the simulation model .

Bibliography
L. Kleinrock, "Time=Shared Systems: A Theoretical

Treatment”, Journal of the ACM, Vol. |4 (April, 1967),
pp. 242-261.

E. G. Coffman, Jr., "Stochastic Models of Multiple and
Time~-Shared Computer Operations” (Report No, 66~38;
Depariment of Engineering, University of California at
Los Angeles, June, 1966).

J. E. Shemer, "Some Mathematical Considerations of
Time=Sharing Scheduling Algorithms”, Journal of the
ACM, Vol. 14 (April, 1967), pp. 262-272,

J. E. Shemer and D, W, Heying, "Performance Model-
ing and Empirical Measurements in a System Designed for
Batch and Time-Sharing Users", Proceedings 1969 FJCC,
November, 1969, pp. 17-26,

A. L. Scherr, "An Analysis of Time-Shared Computer
Systems," M.I.T. Project MAC Report MAC-TR-18,
(Cambridge, June, 1965).

N. R. Nielson, "The Simulation of Time-Sharing Systems
Comm, of ACM, Vol, 10, pp. 397~412,

G. E. Bryan, "JOSS:20, 000 Hours at the Console ~ A
Statistical Summary”, Proceedings 1967 FJCC, pp. 769~
777,

Appendix

Model 1 - Simulation Model

The discrete simulation modeling technique is based upon
the isolation of logical "phases" which are seen to occur
during the servicing of a user's request. Phases here are
distinguished by the required action of enfering a queue
for their initialization, Such actions will be required for
users and their respective programs to obtain access to
core, CPU, and I/O processors, The instants marking
entry of a user's request into a queue and completion of
service for that user's request are simulated in order of
occurrence and cause the simulation clock to advance.
These event epochs are respectively equivalent fo initia=
tion of a phase of service and completion of a phase of
service. In short, a "phase” of service is a single dis-
tinct task performed by one of the servicing units® (RAD,
CPU, DISC, or CORE) which must be completed before
a user's request is completed, When a user enters a
phase of service, a service element is specified, a ser=-
vice requirement is simulated, and the request is entered
into the respective queue according o a first-come~first-
servedrule. For each distinguishable phase, a service
time calling parameter is used together with a service
distribution function to simulate the service time (or
amount of service resource) required.

¥ Alsoduring each transaction cycle see Figure 7), auser passes
through a read state (phase 0) which corresponds fo therequest
generation inferval (i.e. a user's typing plus thinking time).

H
r

285

In general, each user request will spawn several phases of
service which must be sequentially completed before the
user can again impose another request upon the system.
During this sequence, a given user is in one, and only one
phase of service at any arbitrary instant of time. The
migration of a user from one phase of service to another is
simulated in the manner depicted in Figure 7. For each of
the tasks associated with the phases of the model a service
time must be generated. The method used to obtain these
times is the commonly employed Monte~Carlo technique.,
First a pseudo-random number is generated, then an inverse
mapping under an appropriate probability distribution func-
tion is performed to yield the corresponding service time.
The same method is also used to determine i) the total num=
ber of files to be modified during any single transaction,
and ii) also which of the four disc queues (within the mod-
ule) shall service the user.

As diagrammed in Figure 7, each user transaction is com-
prised of the set of all service phases invoked to complete
a request (i.e., the response cycle is equivalent to that
period elapsing between request initiation and request com-
pletion). Thus, the response fimes to any user request
depends on the individual times required for each of the
set of predefined phasesas encountered during the simula-
tion of their sequential execution where, of course, the
time required for phase completion results from fime spent
queued in addition to the actual service time. The model
accumulates a complete history of simulated fransactions
and presents this in the output summary which contains o
probability distribution for response time, the mean response
(and its standard deviation), the mean utilization of each
1/O device, the average amount of I/O and CPU service
per request, and a number of other salient performance
indexes,

The program employs eight queues to model each "1/0O
module”. Queues are assigned for core, the RAD, and the
CPU, The Disc Pack controller is assigned four queues to
correspond fo the possible maximum of two dual spindle
mechanisms. These Disc Pack spindle queues are multiplex-
ed to another queue representing a data channel in order
that a shorfest-access~time~first strategy can be simulated
for channel servicing of the four independent disc mech~
anisms, Elements of most queues have user and phase ideni-
ification associated with them, thereby providing a means
of determining and monitoring the sequence of discrete
events that occur within the system since each user is char~
acterized by a state vector whose elements depict his
current phase, next phase, core residence condition,
arrival time, accumulated service time, efc.

The model itself, was implemented in FORTRAN in order to
maximize the ratio of simulated time fo job run~time and
also to conserve memory requirements.

Model 2 = "Worst Case" Estimates

Consider that the generation of on-line transaction requests
on each communication line is an exponential process with
paraimeter A denoting the mean request rate, Thus, the
time interval t elapsing between completion of a request
(i.e., the sending of a prompt character to a user) and the
generation of a new request by that user is described by

the distribution function

l-e_)‘* fort>0 (1)

Alr) =
0 fort< 0

where A(t) denotes the probability of a new request arrival,

Similarly, assume that the total I/O service time t required
by each on-line request is exponentially distributed with
mean 1/p and described by the distribution function

B(t) = {1-«;*‘* fort > 0 (2)

0 7 fort < 0

Here it is assymed that 1/u is the expected sum of the RAD
and Disc Pack service times. Thus, the model doesn't
consider that the RAD and Disc Pack can operate concur~
rently (i.e., it does not allow for simultaneous servicing
of different requests).

Assume that the system can be modeled as a single server
queue with state dependent arrival rate, Then, given that
there are N unique communication sources, let p () de=~
note the probability that n on-line requests are queued at
an arbitrary instant of time t for n =0, | ... N, whereby

dp (1)

-NA po(f) + Fp](f) for n=0"

dt
= [(N-mx+ o () + (N=ntDap, () (3)

+ ppn+](f~) for 0<n<N

-ppN(’r) + APN_](") for n=iN

From these equations, the stationary probability that n on~
line requests are queued is

o ST W, *
where 1

N . -
Po = |1+ 2 Ry O

Note that in the above equations, the input rate is (N-n)
when n requests are queued. Thus, the model accounts for
the natural variations in demand intensity which result be-
cause there are a finite number N of input sources.

Now employing the above results, the expected response
time E [R]is expressed

ER] = 1/uEl]) + 1] (5)

where N
E[n] = ann
n=1

286

C. Model 3 - "Best Case” Estimates

Again, consider the inpuf.per communication source fo be
an exponential process described by equation 1 above.

Assume that the RAD and Disc Pack service times required
by each on-line request are individually exponentiatly
distributed with means respectively equal o 'I/p] and
l/pz(nz) when n, requests are queued for Disc Pack service,

Consider that the system can be examined as two queues in
tandem. Letp {n,, Nor 1) denote the probability that n
requests are queved for RAD service and that n,, requests
are queues for Disc Pack service at time t where n, +n,=0,
1....N, Then, the state differential equations become

dp (Oynyet) = = [(N-ny)x+ 1y (n))] p (Ormyy) +

o bofny 1) B (0t 1)
P (l,n2-1,t) for OSn2<N
dp (n],O,f) _ o
& - [(N-n]))\’!' l“]:l P (n]l , 1)

+ (N'n] +1ap (n] -1,0,1)

+ p2(])p(n.|,],f) for OSn]<N

dp (N,0,1) _

=P (N;O, 1) +Ap (N-1,0,1) (6)
dt

dp (O, N, 1) _

'Hz(N) p (0, N, 1) + P (1, N-1,1)
dt

dp (n‘llnzl f)
e = [Ny) g glng) ey e
dr

+ Hy P (n] +]In2 - 1,1)

+ Pz(nz +1)p (n]lnz +1,1)

+ (N-n]-n2 + ap (n]-l,nz,f)

. for 0<nl,n2,<N

Hence the stationary probability that ny +n, on=line re-
quests are queved is

n, +n
1
plnpeng) = NI A 2 p (0,0)

(N~(n, +n,)) LM (D eapglng)) - (7)

where [N N-i N)\i-lj -1
0,04 220 (N =)) g)« etig)
=0 j=0

In the above equations, it is again assumed that the arrival
rate is a function of the number queued n,+n,. Also, it is
assumed that Disc Pack servicing is a function of the number
queued n,, since multiple independent mechanisms (up to four
in a single "1/0O module") can function concurrently when
more than one request is queved. In general, if there are M
independent device mechanisms and if there are a total of

S user core "slots", then when S= M the function pz(nz) can
be expressed

n, nye Ny ML
Hoyng)=py [M (1/M) = + ZZW (1/M) RN
Far
AL
k]+k2'= n,

2 "2 M!
2B ETTR M e et

FOR ALL i

kythgtky =ny
(8)
a a
M k——,—E——iz—E-—-r' (1/M) 2 for n2>M
mhl?— 10 Kg s ooy
k]+.. M = 99 |
or
N E
n2 , . n2- n2
W—_Tz—)-:— M ./n2.) W (1/M) “Ifor 2/_~n2éM
2 -t
where k, 21 and
I
a, = ny if MSnZSS
S for n22$

Thus with M =4 =§

(1) =,

H2) = 2p, - “Z/M

13) = B, (1=1/M) + /2

n(4) = Ay = G,/ + 4y M - p2/M3

M) = Byl 4) for 4<j<N

and for cases in which 4$n25$, a good approximation is

Pz(nz) ng + (nz"']) (1-1/M) My

287

Now, employing the above results, the expected response E[R]
is approximated by .

E[R =Epy] (/) +Epg) (/) O/M) (9)

(1 + Vi) + FEST O/

M
where N N—n]
Efy] = Z Z nyplngeny)
n]='l n2=0
and N N=n
2
E[nz] = Z Z n2p(n],n2)
n2=1 n]=0

However, it should be noted that there is an inherrent inaccu-
racy in this model. Each I/O activity (and also CPU activity)
invoked by a given request is conditionally related to some
previous activity for that request; therefore, it is not possible
to batch the RAD and Disc Pack-services associated with that
request. The only situations which allow for concurrent opera-
tion of the RAD and Disc Pack are those in which two or more
users reside in core and simultaneously demand different 1/O
devices. That is to say, the "best case" estimates become
more plausible as more user “slots” are available (providing
there is no appreciable delay in initiating I/O action).

FIGURE 1 FIGURE 3

100 = Z — -J - [SRS S a—— 100
& . MR S s %
70 70
(] &0
50 50 -
40 = 40
A= 1 REQUEST 3 SEC.
30 30
A= 1 REQUEST 7SEC
20 rlzx 20
— — | Al
L2~ WORST CASE™ /
oL MooE A 0 ' A
2 — A — o MODEL 2 “WORST CASE" —
7 i g ! ’ H - X
] o
. T I MODEL 1~""SINULATION" : AT
i: .
R ' /] n’/‘),/(5 A /urnsu- SIMULATION" ,A‘,V !
EXPECTED / 1t corksions A /{] 4 CORESLOTS
RESPONSE TIME * 7 v LOT8, o8 EXPECTED 3 <t
SEC.) — / A 5/ RESPONSE TIME /‘-
LOGSCALE » AR | {SEC.)-LOG SCALE A
A)/0/ ODEL 3—""BEST CASE" z /]/{ J/ \
IRyAY < | 1A A y
i = e a—
7 L) : = < - "
Pt Q_'Af MODEL 3--""BEST CASE
5 —_— 5,
4 4
3 3
.2 2
a 1
4 It + E 2 E: 3 36 s 4 [} 12 6 x = 2 3% 20
N N
NUMBER OF USERS
o % NUMBER OF USERS
(PER *“1/0 MODULE™) (PER “/OMODULE™) — >
) FIGURE 2
R] FIGURE 4
5O
0 13.0
A= 1 REQKEST 5 SEC.
a0
12,0 | A= 1 REQUEST/3 SEC
2 4 CORE SLOTS
/] 11.0 4
MODEL 2~"WORST CASE” /
10 A e 10,0
g N\ P 8
P Prarl
s rd 9.0
5 4 It o
’ G
EXPECTED RESPONSE 5 R {80%) 8.0 4
TIME (SEC.J— 4 4 [MODEL 1—"SIMULATION"* THE 80
LOG SCALE E 80%
j 5 POINTOF THE 79
. haY! . RESPONSE TJME
4 7 1S ’/U DISTRIBUTION
/ /J % (SECONDS) 6.0
0 /()/(MODEL 3—*'BEST CASE" | 5.0 -
‘_’, ——
s Sl 4.0 4
4 3.0 4
20
2
1.0 4
-1
. T : T . . : 1
4 8 12 1% 20 24 24 32 26 40 4 8 12 16 20 24 28 32 3‘5 40
N
= N
NUMBER OF USERS ————> NUMBER OF USERS
(PER **I/O MODULE"") {PER 170 MODULE™) >

288

R {80%)
THE 80%
POINT OF THE
RESPONSE TIME
DISTRIBUTION
{SECONDS)

NORMAL
FLOW

12,0

1.0 -

10.0 |

9.0 4

7.0

6.0 +

50 -

FIGURE 5

A = 1 REQUEST 5 SEC.]
4 CORE SLOYS

MULTIPLE
FILE
UPDATE

NUMBER OF USERS ———————»
{PER "1/Q MODULE")

R (80%)
THE 80%
POINT OF THE
RESPONSE TIME
DISTRIBUTION
(SECONDS)

é}

—— e S e g i i e domp Pt poe

.

DESCRIPTION
PHASE 0: USER REQUEST TRANSMISSION
PHASE 1: QUEUED FOR CORE
PHASE 2: ID BLOCK FETCH
PHASE 3: READ USER PROGRAM
PHASE 4: ACCESS USER'S DIRECTORY
PHASE 5: OBTAIN RECORD FROM

FILE

PHASE 6: UPDATE RECORD
PHASE 7: REWRITE MODIFIED RECORD
PHASE 8: UPDATE ACCOUNTING

DATA

FIGURE 7 -- PHASES OF USER SERVICE DURING A TRANSACTION

289

10.0 ~

9.0 4

4.0 4

3.0 7

2.0 4

FIGURE 6

A =1 REQUEST/7 SEC,
4 CORE SLOTS

TASK

RAD READ
(1K words)
RAD READ
(1K words)
RAD READ
(.5K words}
DISC READ
WITH HOLD
{.5K words)
CPU

ACTIVITY
DISC WRITE
(.5K words)
RAD WRITE
(1K words)

NUMBER OF USERS

{PER ""1/0 MODULE"}

USER
STATE
1/a "READ"
A
"WAIT)I
RESPONSE (including
TIME service)

