INCREMENTAL MODELING

IN THE FORWARD DIRECTION
Charles W.

Turk

IBM Education Center

San Jose, California

Abstract-Incremental modeling in the forward direction is defined as a modeling process in
which a desired conclusion is stated, then the known or stipulated facts which support the
conclusion. The feasibility of implementing this process in a conversational computer
environment is shown by reference +to conversation with an experimental Simulator of

State Described Systems.
Introduction "Taxes", "Product Revenue", etc.), The
conclusion can then be evaluated by starting
Mathematical analysis and mechanized at the last stage (ie., level of indentation)

. systems for simulation directly implement an
inductive approach +to problem solving. That
is, the detailed information pertaining to a
problem is amassed, some of it is assumed away
as being unimportant or representable by
aggregative measures; the remainder is
augmented by assumed values. The collection
is then a set of "facts" which is manipulated
in some mathematical structure to the point of
delivering an answer or conclusion on the
system being modeled (the "subject system")
This approach is highly efficient for one-shot
modeling activities, but non-trivial problems
are not likely ever to be satisfactorily
analyzed in a single session.

Educators and practitioners of the arts
and science of system analysis tell us that
one should expect to build a model, exercise
it to see the implications of the hypotheses
built into the model, revise the model based
on the conclusions reached +to that point in
the analysis, and repeat. A phrase that can
be used to describe this activity is
"incremental modeling"; as more is understood
about the subject system, more or less of the
information known to exist in that system will
be included in the model as "facts" in
succeeding operating sessions, Conventional
modeling tools generally require that all or

part of the model be restructured at each
stage of this iterative process. In each
instance the analyst again starts with the

"facts" and builds a structure that leads to a
desired conclusion (keeping intact, it is to
be hoped, major sections of the model
previously exercised). The analyst learns a
great deal by manipulating evolving versions
of a model, but the mechanical process of
repeatedly rebuilding a model is a
non-constructive use of the analyst's time.
For complex models, the work involved may
actually detract from his ultimate objective

of progressively understanding the subject
system better and better.
The Forward Approach

It is my thesis that less counter~
productive work will be required of the
analyst if he can take advantage of
incremental modeling in a forward direction:
from the desired conclusion to the "facts"

necessary to support that conclusion, defining
the appropriate model structure as he
proceeds, Figure 1 illustrates a fragment of
such logic. Note that this logic may be
pursued in a forward direction through an
indefinite number of stages. It terminates
when there are no factors left undefined.

They are defined by reference to known "facts"
(ie., numbers that could be plugged-in for

251

of the logical structure, where all the
elements are known "facts" and proceeding in a
reverse direction, applying the operative
language to elements as they become known,
until the conclusion is reached. This is a
fully general concept, limited in practise by

the operative language at our disposal. One
can conceive an implementation in which the
operative language includes not only
arithmetic operations 1like "sum”", but also

statistical and probabalistic relationships.

0f course, model may be designed to
reach more than one conclusion, that is,
define any number of subject system variables

a

as functions of known "facts® (and other
variables}. The great advantage to this
concept is that, in succeeding modeling
sessions the known "facts" may themselves

become conclusions (variables) and be defined
by known "facts" at a greater level of detail.
In this fashion the structure of a model is
validated at each level of detail. Further,
only those "“facts" to which the model is
sensitive, or those in which the analyst has a
special interest need be expanded in
succeeding sessions.

concept when dealing
relationships such as

This is a useful
with simple arithmetic
those represented in Figure 1. The far
greater value of this concept comes in the
notion that any operative function can be
represented; and this will be a constructive
representation if it is concise and
intelligible to an analyst and his computing
system,

An approach to mechanizing this concept
of incremental modeling in the forward
direction exists as a set of programmed:
functions in the time sharing system known as
aPL 360.7 It has been named "Simulator of
State Described Systems" (SSDS).2

8SDS acts in conversational style to
assist a user in defining a model, It will.
then simulate the subject system by exercising
the model and produce reports which tabulate
and/or plot the movement with respect to

simulated time of subsets of the variables
defined in the model.
Overview of "Simulator of State Described

Systems"
The nomenclature of SSDS:

SSDS is an on-line semi-conversational
system. That is, the user of 8SDS is in
direct contact with a computer, and SSDS
communicates with the user in conversational

a.

stvle. The user responds to SSDS queries with
a mixture of commands to control SSDS,
specifications of controls on the process of
simulation, and coded specifications of his
model of the system to be simulated.

b. 88DS is strictly user oriented. That
is, every effort has been made to free the
user of SSDS from computer conventions in

language, in the entry of information, and in
displaying results,

c., S8DS is an interactive hvpotheses
tester. That is, the user is encouraged to
describe some subject svstem in terms of the
interactions of state variables. He may then
obtain, from simulated activity of that system
a vportraval of some of the implications of
what hé has described.

d,., SSDS
modeling in

incremental
That is,

is a system for
the forward direction.

the user is able to define a model bv first
stating a conclusion, then filling in the
details necessary to support his conclusion.

He can terminate the model definition process
at any point, stating that certain elements of
the model known to be stochastic are of fixed
value or completely deterministic functions.
On the basis of these fixed or deterministic
elements, he can satisfy himself as to the
validity of the model structure he has defined
to that point. Bv asking that arbitrary
changes be made on selected elements, he can
test the sensitivity of his model to those
elements, Independently and concurrently he
can define and test the actions of variables
left out of his main model. He can then
extend; his model to react to those variables,
and repeat this process an indefinite number
of times.

e, SS8SDS is tool for heuristic problem
solving. That is, the ability to define
models incrementally in the forward direction
gives the user a basis for the extended
development of parts of a model based on
experience gained in earlier analyses.

a

f. SSDS is interruptable. That is the
user may interrupt the process of model
specification or the simulation itself to go
back and correct a prior entry, to display and
investigate some intermediate results, or to
declare a recess (i.e., put away a copy of the
svstem and the partiallvy specified or
simulated model soc that the interrupted
session can continue at a later time).

g, SSDS is a secure svstem. That is, the
user can lock-up any copv of his defined model
as it is saved in the host computer's files.
No person can gain access to such locked
information without an appropriate "key".

h. SSDS is virtually a fail-safe system.
That is, there is almost no chance that
information, once input to S$SDS and saved in
the host computer, will be 1lost due to any
equipment failure in the computer or
communications system, if 24 hours have
elapsed since the information was saved away.
(It is standard practice +to create an archive
copy of wusers' private libraries daily.) As
soon as information is saved it is immune from
destruction except in the event of

252

catastrophic failure of the file device in the
computer system on which the information is
copied. Information entered at the terminal,
but not yet formallv saved is immune from
destruction due to any failure of the user's
terminal or the communication links between
the terminal and the host computer.

The Nature of SSDS Models

to Dbe described and
the

Any svstem that is
simulated using SSDS must fall within
following classification:

a. The subiect system and its environment
(hereafter the word svstem is understood to
stand for the combination) is always in one of
its possible "states".

A state of the svstem is defined bv all

of its "state wvariahles" having been

evaluated at some specific point in time.
A state variable is anv measureable
attribute of the system. It can be a
rate, such as "orders received per
day"; or it can be a level, such as
"quantity on hand", or "price-earnings
ratio",.

b. Each state variable of the systen
is evaluated at everv increment of a discrete
interval of time, and mav be assumed to hold
its value during the following interval.

The time interval at which a state

variable is evaluated need not be the

same as the interval at which anv other
state variable is evaluated,

c¢. The value of a state variable may be
defined as a function of the present or past
value of anv other state wvariable in the
svstem, of its own wvalue in anv previous time
veriod, of time, or of anvy guantitative or
gquantitative constant.

d. The values to be determined at a point

in time for an interrelated set of variables
do not depend on a true simultaneous
condition.

e. Bach state variable is defined by a
function which may contain an indefinite
number of the members of a set of operators

taken from the following classes:
Scalar arithmetic operators
Transcendental operators
Logical (combination) operators
Probability distribution functions
Arbitrary univariate transformations

(Discrete or piecewise continuous
operand)
(Deterministic or stochastic
transformation)
Arbitrary multivariate transformations
{Decision table logic)
These operators allow for comprehensive

mathematical description of a broad class of
syvstems. In addition, SSDS includes mechanisms
for demonstrating the time dependence of a
system and for maintaining files of data on
a system,

A General Function Tree

This implementation of incremental
modeling in the forward direction depends on a
tree~like notation that, in SSDS, has been

named General Function Tree (GFT). The GFT
(illustrated in Figqure 2) in a stylized form
of nodes and connecting limbs in which SSDS
operators, residing at the nodes, are assumed
to operate on SSDS operands represented by the
limbs extending from the nodes. Every node
produces an output that is delivered to a
single result-limb, The number of limbs
representing input to the node, i.e., the
number of opernads, mav be zZero or anv
positive integer. (This number is always
dependent on the node~operator.) The operand
represented by everv limb which is terminated
bv a node is defined in content and dimension
by the operator represented at the terminating
node. A limb not terminated bv a node is
named "leaf".

Everv leaf represents an operand that
must have its content and dimension assigned
by the user. This assignment is made
explicitly, by entry of a scalar number, or
implicitly, by entry of the name of a
parameter or a state variable.

As a logical construction, all limbs are
defined to be of the same "length". Therefore
it is meaningful to define a "Rule of Levels"
for nodes and limbs

a., Level 0 1is the
represented bv the name
defined by the tree.

aprex of the tree,
of the state variable

b. Level 1 of the nodes 1is the single
node that delivers the value of the state
variable defined by the GFT,.

c. Level J of the nodes is the set of all
nodes separated from the Level 0 node by the
same number of intervening limbs and nodes.

d, Level J of the limbs is the set of all
limbs representing the operands of the Jth
level nodes.

Alternative alignments of a GFT are shown
in Fiqure 2. Note that these alternates
represent a transposition of elements, not
merely a rotation. The convention on alignment
of a GFT is: Every dyvadic operator (an

operator that expects two operands; such as

"+") with its couple of overands is read from
left to right or from top to bottom. The
analogous rule will hold for any operator

defined to operate on more than two operands.

Figure 3 represents part of a GFT that
night be used to represent the logical
structure of Figure 1. Note that a clock-phase
name has been added as part of the definition

of "Profit After Taxes" to signifv the time
interval at which it is to be evaluated. This
tree has five levels shown, and a single

explicit leaf. The leaf-operand is "INTEREST",
From this, it can be assumed that "INTEREST"
is the name of a state variable, defined by

its own GPT, or the name of a parameter, with
a value assigned separatelv by the user, The
names enclosed in parentheses are shown for
convenience only. They are not entered into
S8DS. The symbol "f" is used +to revpresent

"anv SSDS functional operator".

253

An External View of SSDS

-

The activitv of modeling a subject system
and 1its environment takes place in four
phases. Any of the phases may be re-entered
to add to or correct previous entries, or to
re-run the simulation model, Within each
phase 8SSDS will back up for correction of
entries made within a logical group of
entries.

a. Phase I - Specify
set of controls on the
to take place. That is:

(1) Specifyv a clock,
arbitrary number of
(clock phases)
pairs of them.

(2) Specify the length of time :to be
simulated in terms of one of the clock phases.

(3) Set the "seed" element of the
random number generator. g

(4) Set the maximum number of
characters to be typed on a line of output. In
each case SSDS will assume an apprepriate
"default value" if the user chooses not to
make a specification. :

(or re-specify)
simulation that

a
is

to include an
named time intervals
and the ratios of successive

b. Phase II - Define (or re-define) a
model of the svstem as a set of state
variables and parameters.,

A state variable may measure = some
attribute of a single-member entity in the

svstem or it mav measure the same attribute of
a collection or set of members.
For example:

State variable "REJECTS" might be the
reject-rate on a particular machine, or it
could be the reject-rates of a set of
machines. i

A state variable that measures an
attribute on a set of members need 'not be

matched by other state variables that refer to
all or part of the same set of members.
For example:

State variable "REJECTS" could refer to
machines 1,2,-==n, while state variable
"PRODUCTIONRATE" might refer to machines

1,2,~--n,p,t,~--z, and at the same time a
state variable "DEPRECIATEDVALUE" might refer
only to machines 2,6,p, and t.

The next step in the activity of defining
a model wusing SSDS is, reading from the GFT,
to enter the name of the state variable being
defined, the clock-phase on which it moves, a
control on the amount of data to be kept on
this variable, then the onerators of the GI'T,
a level at a time, followed by the operands, a
level at a time.

As the operators of the GFT are entered
SSDS may detect the presence of some that
require the entry of a table of data as
auxiliarvy information (eg., a decision table,
or table representing an arbitrary function).
$8DS will call for each table by naming the
operator entered by the user and identifying
it bv its position (as determined by the Rule
of Levels). :

During the process of
simulation model defined by the user
guided by the positional significance

exercising the
8S8DS is
of all

operators and operands; again relying on the

Rule of Levels.. For these reasons, then, it
is imperative that the user follow the
convention on the alignment of operands and
the Rule of ILevels, A null operator is

available to simplify the

process of applying
changes to a GFT. .

When all the variables have been defined

via entry of GFT's, SSDS will call for the
names of parameters used in the model and of
historical "real" variables, The "real"

variables represent measures taken on the
subject system in order that, in Phase 1V,
direct comparisons may be made between this

data and the results of the simulation.

Once all names of variables and
parameters are known to SSDS, the user is
given the opportunity to enter sets of initial
values to be applied to any name. A scalar
zero value is assumed by SSDS for any named
element not explicitly initialized by the
user. Re~entry of initial values for any
element replaces any previous initialization
of that element.

¢, Phase III -~ Exercise the model.

Interaction with SSDS is suspended during
the time it takes the host computer to "run
the model”. SSDS runs as a non-stop system as
much as possible, That is, minor errors in
model specifications will generally be
overcome, and operations continued, rather
than stopping and signalling the user. The
user can, however, interrupt the process of
simulation at any time and ask for a display
of the series of values assumed by any of the
state variables up to the point of
interruption. He can add to or change any
definitions or specifications previously made,
and ask SSDS to resume the simulation.

can also, at a point of

ask that a copy of his entire
system be stored as it exists at that time.
He can then end his session at the terminal,
to return and resume the simulation at a later
time. As another use of this ability, he can
make changes in his model, resume the
simulation and, if the changes lead to
unsatisfactory results, return to the point at
which the system was copied and resume
execution of the unchanged model (or with a
different set of changes).

The user
interruption,

d, Phase IV - Display results.

Any time after state variables have been

defined in Phase II, the user can set up
reports to be made on the results of the
simulation, These reports are specified in

terms of the state variables +to be displayed

in the form of time series, corresponding
measured historical "real" data (if it has
been entered in Phase II, and whether a
particular series is to be printed, or

For anv state variable that
represents a measure on a set of parts of the
subject system the user hag the option of
displaying the detail on each member of the

plotted, or both.

set, or a selected subset of the members, or
the average of the values taken across the
entire set or any subseét. Any report can

always be repeated with the data on particular

254

variables translated in time or modified by an
arbitrary scale factor.

Example Conversation and Reports

Figure 4 1is a reproduction of a fragment
typical of an 8SDS "conversation." The user
entries are underlined and notes are appended

in a different type style. Figure 5 is a
sample output report.
Summary

The objective of this paper was to

introduce the concept of incremental modeling

in the forward direction. Compared to
conventional systems analysis, this approach
holds a potential for reducing the non-
constructive time required of an analyst for
the mechanics of model building in his
examination of complex systems.

The feasibility of operating in the
forward direction has been shown by the
experimental implementation of a con-
versational system for simultion of a broad

class of subject systems, This is an open-
ended approach in that a conversational system
could be devised to act on almest any
operative language used in the basic structure
illustrated in Figure 1.

References:
1. 1IBM Corporation, APL 360 User's
(GH20-0683), Armonk, New York, 1969

Manual

2, Turk, C. W., "A Simulator of State
Described Systems," Unpublished Ph.D.
dissertation, Stanford University, 1970

"Dyrofit After Taxes" is "Profit" less "Taxes"
where "Profit" is "Gross" less "Interest”

where "Gross" is "Revenue" less "Costs"
where "Revenue" is the sum of "Product Revenue"
where "product Revenue" is, for each product, - - -
and "Costs" is the sum of - - -
and "Interest" is - - -
and "Taxes" is - - =~

FIGURE 1

Fragment of the Logical Structure of a Budget Model

SVARI Name of state variable
(Clock=~phase) defined by this GFT
a Node Level 1
PARM1 Limb level 1
®/\ e Node level 2
SVARS// NNN \\\PARMZ Limb level 2

f g h are any SSDS functional operators

SVARI,SVARJ represent the names of two state variables
PARM1,PARM2 represent the names of two parameters

NNN represents an actual number

Limb level 1 contains 3 limbs, one of which is a leaf

SVARJ

SVARI

(Clock-phase)

PARM2

+ Limb level 2
+ Node level 2
+ Limb level 1
+ Node level 1
4+ Name of state variable defined by this GFT

FIGURE 2
Alternative Alignments of a General Function Tree

255

PROFITAFTERTAXES

(Clock-nhase) QTR

(PROFIT) TAXES)
(GROSS) e
INTEREST

(REVENUE) (COSTS)

(PRODUCTREVENUES) ~.

-~ \\

- - ! ~

' FIGURE 3

Fragment of a General Function Tree for a Budget Model

256

~

)391768:LOCKWNORD Initial sign=~in.
OPR: UP UNTIL ABOUT 0830 PDT MONDAY

013) 14.06.41 05/28/70 CWTURK Time and date of
sign~in,

APLN\NB360O0

LOAD 1131 _SSDS

SAVED 10,10.13 05/28/70 Time SSDS was last
saved-away.

START NEW MODEL

05/28/70 14:07:15 Time now.

o o o SYSTEM PARAMETERS SPECIFICATION o o o

THE LINE-LENGTH IS SET TO 130 CHARACTER SPACES.
ACCEPT THAT WITH NULL C/R, OR ENTER NEW VALUE (30sN<130)

(2]

2

THE RANDOM NUMBER GENERATOR IS 'SEEDED' WITH 16807
ACCEPT WITH NULL C/R OR ENTER YOUR OWN
There is no visible
indicator of a null
C/R.

o o o MODEL DEFINITION PHASE o o o

WHAT ARE THE NAME OF THE PHASES OF YOUR POLYPHASE CLOCK?
WEEK HQOORS

1BACK When ']BACK' is ambiguous
LINE TO BE CHANGED: SSDS will ask you what

you want to change.
WEEK HOORS

5 /1 Slashes eliminate characters,
Digits cause spaces ahead
WEEK HO RS of their relative position.
DAYS U
OK? A chance to re-correct.
YES
FIGURE 4a

An SSDS Conversation

257

CONTINUE ENTERING

HOW MANY HOURS PER DAYS?
6

HOW MANY DAYS PER WEEK?
5

ENTER INCREMENT BY WHICH 'HOURS' SHOULD BE STEPPED, IF NOT 1
3

CLOCK PHASE ON WHICH SIMULATION WILL BE CUT-0FF?
WEEK

VALUE OF ‘WEEK®' AT WHICH SIMULATION SHOULD BE ENDED?
30
NOW, TO DEFINE TEE STATE VARIABLES OF YOUR MODEL o o o

NAME OF STATE VARIABLE

LONGVARIABLENAME

CLOCK PHASE ON WHICH 'LONGVARIABLENAME' VARIES?
WEEKS

NAME MUST MATCH ONE OF: WEEK DAYS HOURS

CLOCK PHASE ON WHICH 'LONGVARIABLENAME' VARIES?
VEEX
HOW MANY VALUES OF VLONGVARIABLENAME' SHOULD BE RETAINED?

('ALL* IS A VALID ENTRY)
ALL

ENTER OPERATOR ARRAY

+ : Level 1 node,
: FD A level of operators,
"FD" is Decision Table Opr.
Null C/R
ENTER CORRESPONDING OPERAND ARRAY
o o Null characters to indicate
structure of GFT.
PARM1 SVAR1 Leaf-operands; "FD" takes
none.
FIGURE 4b

S5DS Conversation {Continued)

258

ARBITRARY REPORT NAME
07/086/70 16:35:21

ANY NUMBER OF HEADER LINES

AS OF THE END OF

30 WEEKS
0 DAYS
0 HOURS
SVAR4Y SVARS
WEEK WEEK 0 20" 40 60
o o__.. $__1___+ | o1 +
|WEEK)
42,25 53,501 30 | x 0
40,50 51.251 29 | * [¢]
38.75 49.00] 28 | * 0
37.00 46,75] 27 | * o
35.25 u44,.50| 26 | * o
33.50 42.25| 25 | * o
31.75 40.00] 24 | * O
30.00 37.75| 23 | * O
28.25 35.50| 22 | * O
26.50 33.25] 21 | * O
24,75 31.00] 20 | * O
23.00 28.75] 19 | * O
21.25 26.50] 18 | * O
19.50 24,25} 17 | * O
17.75 22.67| 16 | * O
16.00 21.,08] 15 | * O
14,93 19.50] 14 | * O
13.93 17.92] 13 | *0O
13,03 16.33| 12 | * O
12,29 14.75] 11 | *0
11.76 13.171 10 | []
11.48 11.58] 9 | o) This report, by being
11.50 10.00| 8 | Ox vertical, can cover
11.87 8.421 7 | o % an indefinite number
12.64% 6.83] 6 | o % of time periods.
13.86 5.25] 5 | o *
15.57 3.87| 4 |o *
17.82 2.08| 3 lo *
20.67 2.371 2 Jo *
24,15 2,45} 1 |o *
+] 4 | + | +
0 20 4o 60
ANOTHER?
o
FIGURE 5

Sample SSDS Output

259

