EXPERIENCE WITH THE EXTENDABLE COMPUTER SYSTEM SIMULATOR

Donald W, Kosy
The Rand Corporation
Santa Monica, California

Abstract

A prototype version of ECSS has been implemented to aid in
constructing simulation models of computer systems. A
specialized language is used to describe hardware, software
and system load and a service-routine package handles many
of the bookkeeping details of model control. The full power
of SIMSCRIPT II is also available for extending ECSS capa-~

bilities.

Some weaknesses in the provided facilities have

been noticed, however, which has led to a few general
conclusions about the design of computer system simulators.

I. INTRODUCTION

The Extendable Computer System Simulator
(ECSS) is a prototype language which has been
designed and implemented to investigate ways
of making the simulation of complex computer
systems a less formidable task. Nielsen
demonstrates the need for a new language,
from the problems of using general-purpose
languages and the drawbacks of existing
computer system simulators. The approach
taken has been to attempt to provide a conven-
ient and natural means of describing computexr
system characteristics and computing processes
while allowing the flexibility and power of a
general~purpose simulation language.

free

Experience with several small models,
written to test the initial version of the
simulator, has indicated the soundness of the
approach. In most cases, the models have been
quickly and easily constructed. However,
situations have also been found for which the
language is not as useful as it could be, re-
vealing shortcomings in both the breadth and
versatility of the facilities provided.

This report states the current capabili-
ties of ECSS, discusses its strengths and
weaknesses, and prescribes some directions for
further work. First, we review the concepts
of ECSS and use a simple example to illustrate
its powers. We then outline a number of cases
where the current version of the language is
not as helpful as it could be. Finally, we
present several general design principles for
computer system modeling languages that have
become clearer in retrospect.

ITI. REVIEW OF ECSS

Three elements of ECSS are important in
describing a computer system to be simulated:
1) the System Description section; 2) the
Load Description section; and 3) the Service
Routines.

System Description

The System Description characterizes
those system elements that are considered
static in ECSS. Declarations in this section
specify the number of various types of hard-
ware, the names of these devices and names of

235

groups of devices, their capacities and capa-
bilities, their interconnection, and the
possible "software execution time overhead"
incurred by operation of some devices in per-
forming certain operations.

All static system elements in ECSS are
called devices. A processor, disk drive, or
terminal is modeled by specifying a device to
have a particular set of characteristics. All
devices are a collection of up to four capa-
bilities, as shown in Fig. 1. Different
device characteristics result from using dif-
ferent combinations of capabilities. We call

ALLOCATABLE COMPONENT
MSG 1
MSG 2
. TRANSMISSION COMPONENT
DEVICE
JOB 1
JOB 2
. EXECUTION COMPONENT
STR 1
STORAGE SPACE COMPONENT
STR 2
Fig. 1~--ECSS Device Components

a device's capabilities its components. For
some hardware models, the conjunction of
several components may be meaningful, such as
defining a central processor to execute
instructions, transmit data, and have core
storage; but often, only one component will
be important, e.g., in defining a disk memory
as only a quantity of storage space. The
user is not restricted in his choice of com-
ponents for modeling real-world devices.

Device characteristics are further speci-
fied by setting parameters of the components.
Each type of component has different para-
meters according to its intended purpose.

Some of these parameters are: 1) for Storage
Space, the maximum amount; 2) for Execution,
the instruction processing rate and maximum
number of jobs that may be processed concur-
rently; 3) for Allocatable, whether a deviee
may be allocated to more than one job simul-~
taneously; and 4) for Transmission, the
maximum data rate, number of simultaneous data
streams that may be transmitted, delay per
transmission, and others. There are also
several parameters of interaction between com-
ponents. Two of these are software overhead
times, used to model the software execution
necessary to initiate data transmission or
device allocation, and degradation factors,
used to account for Execution interference

due to data transmission.

Besides characterizing individual devices,
the System Description may define groups of
devices. Groups are used for compact descrip-
tion (e.g., defining several devices having
the same characteristics) and for automatic
device selection at run time. Device seléc-
tion is a feature of the built-in ECSS
"operating system" that allows a group of
devices to be put in a load command to indi~
cate that the actual device picked to handle
the command should be the one first able to,
at any particular time during the run. The
last function of the System Description is
definition of certain data transmission paths
within the system.

Load Description

The Load Description is used to describe
the system's dynamic behavior. The load on a
computer system is the work it must do where
"work" means the utilization of device com-
ponents for some amounts of time. Special
programs in this section called "jobs" simu-
late the work of real application and control
program processing by indicating sequences of
hardware utilization commands.

Nearly any kind of deterministic ox
random effects may be included in a job to
describe just which activities are to be done,
for how long, and in what order. The sequence
is controlled by the testing, branching,
looping and other logical properties of the
job. The simulated time at which a command is
issued depends on the time necessary to do the
work of the previous commands, and on any
conditional delays within the job. A general
example of the progress of simulated time in
a job is presented in Fig. 2. One may think
of a pointer moving through a job indicating
which command is being processed. Note how

236

this is reminiscent of the flow orientation
of GPSS.

The logical behavior of jobs is provided
by appropriate SIMSCRIPT II statements, e.g..
the IF statement in Fig. 2. SIMSCRIPT and
ECSS statements may be intermixed in job
descriptions. 1In fact, the full cagability
of this general simulation language4 is
available in ECSS. ©New data structures may
be created and used in the model, for example,
to expand the description of the state-of-the-
system beyond the condition of the devices.

Simulation time in processing ECSS
commands results from two situations. First,
the use of certain device components is ex-
plicitly time-consuming. Executing instruc-
tions as directed by an EXECUTE command, and
data transmission as specified by a SEND/
RECEIVE statement, always take time during
which the appropriate component is busy.
Second, some commands may or may not allow
time to pass depending on the state-of-the-
system. Conditional delays, indicated by
WAIT or HOLD statements, are of this type,
depending on whether the condition has come
true at the time the statement is processed.
Input may or may not have arrived in the job
in Fig. 2 and hence the process pointer may
or may not be held up at the HOLD statement.
Requests for storage space or for device
allocation, GET and ALLOCATE respectively, may
cause delay because the device component is
already being utilized, and the job must wait
for it to become free. Execution or trans-
mission commands may also involve this kind
of delay if those components are busy. Pri-
ority ranked gueues are associated with each
component to keep track of pending requests.
Marking the end of utilization of a device
component, e.g., with a FREE space or a
DEALLOCATE statement, usually does not hold
up job processing.

Several other load commands take no time
but serve to define the jobs and their initia-
tion. These include JOB -- marking the
beginning of a job, LAST -- marking the end,
START -- commanding job processing, and
INITIALLY START ~-- directing exogenous job-
starting with a possible repetition interval
to model system environment.

Service Routines

The Service Routines take care of the
housekeeping details of internal model control.
A collection of SIMSCRIPT II subprograms is
used by ECSS to implement the actions specified
by the Load Description. The event scheduling
and process pointer management necessary to
realize the flow orientation of jobs within a
SIMSCRIPT II context are included. All the
system-state updating associated with the
interaction of jobs and devices, jobs and jobs,
and devices and devices are incorporated in
these subprograms.

Moreover this package of routines supplies
a number of such operating-system-like func-
tions as resource allocation by priority, I/O
interrupt handling, device selection from
groups, and queueing, dequeueing and retrial
of device requests. These capabilities allow

&

Simulated time at beginning
of command processing

Job description

Comments

to JOB TO SHOW-TIMING
fo Command 1 (takes time t)
tg * 1y IF VARIABLE > 0, GO TO NEXT ELSE
VARIABLE < 0 VARIABLE > 0
tg + 1 _ Command 2 (takes time t5)
2
>t —_— Command 3 (takes fime t3)
i=0
3
2t tg T 1, TNEXT! (takes no time)
i=0
3 ditional del
>t tg HOLD UNTIL INPUT ARRIVES (conditional delay —— assume
0 input arrives at ti, >tg + t;)
P =
tm tin Command 4 (takes time t4)
bt + 1y tin ¥ty Command 5 (takes time t5)
tmtty *its tin T4 T 15 LAST

where ., = max

Fig. 2--ECSS Job Processing

multiprogramming, multiprocessing, real-time
processing, and conversational transmissions
to be easily specified for a model. The ECSS
user automatically gets these capabilitiis
when defining the dynamics of his model.

III. AN EXAMPLE OF THE ECSS APPROACH

To show how the ECSS sections fit
together, we present a simplified model of a
multiprogrammed batch processing system.
Figure 3 shows the system hardware configura-
tion. A processor connects through three I/0
ports to a cardreader and two controllers
which in turn are connected to four disks.
The system's load consists of disk file up-
dating routines, a sequence of which are
entered by means of the cardreader. In
addition, some simulated software is included
in the load to schedule jobs according to
their space requirement, and to handle disk
allocation.

*
This review has of necessity been brief.
For a complete description of ECSS see Kosy”.

237

Figure 4 lists the model's entire simula-
tion program. Some comments appear in paren-
thesis; each statement has been numbered; and
SIMSCRIPT statements are marked with an (S).
Besides the system and load descriptions
mentioned above, the listing shows a preamble,
a definition-description section, some events,
and the MAIN routine. The preamble (lines
1-11) defines global variables and other data
structures to be used in the model. The
definition section (12-15) is an additional
ECSS element that allows relation of user-
defined terms to basic ECSS terms (with
possible conversion factors) for use in the
system and load descriptions. The event
OBSERVATION (24-29) in this program is used to
view the system every five seconds and print
out a record of its activity. QUITSIM (line
30) halts the simulation. Finally, the MAIN
routine (31-35) indicates when to stop and
when to make the first observation. It then
directs the simulator to commence.

Model Operation

The ECSS job READER (lines 37-45) models
units of work submitted to the system at ex-
ponentially distributed times, with a mean of
12 seconds. The work is characterized by its

DISKS

CONTROLLERS

92.5 MILLISECOND
ACCESS TIME

PROCESSOR

156 KBYTES /SECOND

/—2000 KBYTES /SECOND MAX

7

CORE

store | CPY

1/0

/1N
256 KWORDSJ \—2oo,ooo

INST /SEC

CARDREADER

Fig. 3--Multiprogrammed Batch System

space requirement, selected from an exponen-
tial distribution with a mean of 104 (XWORDS),
and a duration parameter, represented as the
number of simulated processing cycles, which
is read in from a data carxd.
is placed in a gqueue, JOB.QUEUE, and ranked
on its space requirement from high to low.
SIMSCRIPT II provides the definition and
manipulation statements for this queue.

The prototype for the work to be done is
the APPLICATION job (64-74), which runs on
the processor. First, one disk is designated
as the input source and one of the disks is
selected (by the built-in ECSS operating
system) as the output unit by the ALLOCATE
statements. This task is considered to re-
quire 50 msec of overhead time per allocation
(from statement 17), and hence the processor's
execution component is busy for 100 msec as
well as the allocatable component of the disks
being set. Because the disks are PUBLIC,
more than one job can use them simultaneously.

Next, the APPLICATION job begins the
simulated reading of blocks of data, proces-—
sing of the data, and writing of an output
record (68-~70). The RECEIVE statement picks
a free data path from the INPUT.FILE disk,
through one of the controllers, to one of the
I/0 ports of the processor. The job

Work to be- done

automatically waits for a free path if none is
available. Transmission components of these
devices are then tied up for the duration of
the disk access time (92.5 ms.), plus the time
for transmission of 800 bytes at 156 kilobytes/
sec (disk speed). "APPLICATION job processing
is suspended for that time, as directed by the
WAITING clause. The processor execution com-
ponent is then busy simulating the execution
time for 10 sets of 400 instructions (SUB-
ROUTINES) at 200,000 instructions/sec.

Finally, the SEND statement goes through a
similar procedure as the RECEIVE to model writ-
ing the output recoxd. The job's last action
is to reset the allocation status of the disks
it used, i.e., free them, which takes no simu-
lated time in this model.

A scheduling algorithm is modeled in the
INITIATOR job (46-63). It starts APPLICATION
jobs in the order determined by the JOB.QUEUE,
i.e., large jobs-first (if the gueue is empty,
an INITIATOR tries again in one second). Ex-
ecution time for scheduling is modeled with
the first EXECUTE statement. The GET statement
resexrves a contiguous block of the processor’'s
storage space necessary to satisfy the space
reguirement., If not enough space is available,
the INITIATOR job is suspended until there is.
When space is reserved, another INITIATOR is
started (for the next JOB.QUEUE work unit) and

238.

12.
13.
14.
15,

16.
17.

18.

19.

20.

21.
22.
23.

24.
25.
26.
27.
28,

29.
30.

31.
32.
33.
34;
35.

(8)
(s)
(s)
(s)
(s)

(8)
(8)
(s)
(8)
(s)
(s)

(s)
(s)
(8)

(8)
(8)
(s)
(8)
(s)
(8)

(s)
(s)

PREAMBLE (defines global variables and data structures)
DEFINE TOTAL.IN.TIME AS A REAL VARIABLE
DEFINE JOBS.STARTED, JOBS.COMPLETED, JOBS.IN.PROCESS AS INTEGER VARIABLES
TEMPORARY ENTITIES
EVERY JOB.DESCRIP HAS A SPACE,REQMT, A LOOP.REQMT AND A TIME.IN AND BELONGS TO THE
JOB.QUEUE
DEFINE SPACE.REQMT, TIME.IN AS REAL VARIABLES
DEFINE LOOP.REQMT AS AN INTEGER VARIABLE
THE SYSTEM OWNS A JOB.QUEUE
DEFINE JOB.QUEUE AS A SET RANKED BY HIGH SPACE.REQMT
EVENT NOTICES INCLUDE OBSERVATION,QUITSIM
END

DEFINITION DESCRIPTION (incorporates user terminology)
DEFINE UNITS KBYTES=1000 TRANSMISSION.UNITS,KWORDS=SPACE.UNIT
DEFINE UNITS SUBROUTINES=400 INSTRUCTIONS

END

SYSTEM DESCRIPTION (defines number and characteristics of each class of devices)
SPECIFY 1 PROCESSOR,
EXECUTES 200 INSTRUCTIONS PER MILLISECOND (execution rate)
TRANSMITS 2000 KBYTES PER SECOND (transmission rate)
HAS CAPACITY OF 3 TRANSMISSION USERS (models 3 subchannels)
CONNECTS TO CONTROLLERS
DEGRADES PROCESSOR BY 10% PER 200 KBYTES/SECOND (models cycle-stealing)
HAS CAPACITY OF 256 KWORDS (storage space)
ALLOCATES DISKS IN 50 MS (models gross software effect)

SPECIFY 2 CONTROLLERS, EACH
HAS CAPACITY OF 1 TRANSMISSION USER
CONNECTS TO DISKS,PROCESSOR

SPECIFY 4 PUBLIC DISKS, EACH '
HAS CAPACITY OF 1 TRANSMISSION USER
ABSORBS 92.5 MILLISECONDS PER MESSAGE (access time)
TRANSMITS 156 KBYTES PER SECOND (disk transmission rate)
CONNECTS TO CONTROLLERS

SPECIFY 1 CARD.READER, CONNECTS TO PROCESSOR

PATH OUTPATH IS PROCESSOR,CONTROLLERS, DISKS
PATH INPATH IS DISKS,CONTROLLERS,PROCESSOR
END

EVENT OBSERVATION SAVING THE EVENT NOTICE
RESCHEDULE THIS OBSERVATION IN 5 UNITS (seconds)
LET AVG.TURNAROUND=TOTAL.IN.TIME/JOBS.COMPLETED (calculate statistics)
LET AVG.THRUPUT=JOBS.COMPLETED/TIME.V
LIST TIME.V,JOBS.STARTED,JOBS.IN.PROCESS,JOBS.COMPLETED,AVG. TURNAROUND ,AVG. THRUPUT
(print out statistics)
END

EVENT QUITSIM STOP END

MAIN :
SCHEDULE A QUITSIM AT 1000
SCHEDULE AN OBSERVATION AT 5

START SIMULATION
END

Fig. 4--Batch Processor Simulation

239

36. LOAD DESCRIPTION (defines sequences of system utilization commands)

37. JOB READER

38. (s) CREATE A JOB.DESCRIP

39. (S) LET SPACE.REQMT (JOB.DESCRIP)= EXPONENTIAL.F(104.0,1)

40. (s) READ LOOP.REQMT (JOB.DESCRIP)

41, (s) LET TIME.IN(JOB.DESCRIP)=TIME.V

42. (S) ADD 1 TO JOBS.STARTED

43, (s) FILE JOB.DESCRIP IN JOB.QUEUE

44, START JOB READER IN EXPONENTIAL.F(12. ,1) SECONDS ON CARD.READER

45, LAST

46. JOB INITIATOR

47. (s) IF JOB.QUEUE IS EMPTY,

48. START JOB INITIATOR ON PROCESSOR WITH PRIORITY 2 IN 1 SECOND

49. (8) RETURN

50. (8) ELSE

51. (s) REMOVE THE FIRST JOB.DESCRIP FROM JOB.QUEUE

52, (S) ADD 1 TO JOBS.IN.PROCESS

53. EXECUTE 100 INSTRUCTIONS (space reservation processing)

54. GET SPACE.REQMT (JOB.DESCRIP) CONTIGUOUS KWORDS FROM PROCESSOR

55. START JOB INITIATOR ON PROCESSOR WITH PRIORITY 2

56. EXECUTE 500 INSTRUCTIONS (job initiation processing)

57. START JOB APPLICATION (LOOP.REQMT (JOB.DESCRIP)) ON PROCESSOR

WITH PRIORITY 1 WAITING HERE FOR COMPLETION

58. FREE SPACE.REQMT (JOB.DESCRIP) KWORDS FROM PROCESSOR

59. (s) SUBTRACT 1 FROM JOBS.IN.PROCESS

60. (s) ADD 1 TO JOBS.COMPLETED

61. (s) ADD TIME.V-TIME.IN(JOB.DESCRIP) TO TOTAL.IN.TIME

62. (S) DESTROY THE JOB.DESCRIP

63. LAST

64, JOB APPLICATION (REQD.LOOPS)

65. ALLOCATE DISKS# 1 AS INPUT.FILE

66. ALLOCATE DISKS AS OUTPUT.FILE

67. (S) FOR L=1 TO REQD.LOOPS DO ...

68. RECEIVE RECORD "BLOCK OF DATA" OF LENGTH 800 FROM INPUT.FILE VIA INPATH
WAITING HERE FOR COMPLETION (read data)

69, EXECUTE 10 SUBROUTINES (process data)

70. SEND RECORD OF LENGTH 160 TO OQUTPUT.FILE VIA OUTPATH WAITING HERE
FOR COMPLETION (write data)

71. (s) LOOP

72. DEALLOCATE INPUT.FILE

73. DEALLOCATE OUTPUT.FILE

74. LAST

75. INITIALLY START READER ON CARD.READER (initialize the system)

76. INITIALLY START INITIATOR ON PROCESSOR WITH PRIORITY 2

77 END

Fig.,

some execution time, representing job initia-
tion bookkeeping, is called for. Following
that, an APPLICATION job is started on the
processor, passing its duration as an argu-
ment. Upon completion, the INITIATOR proceeds
to release the space for that unit of work
{(line 58) and terminates.

Several INITIATOR and APPLICATION jobs
may be running concurrently on the processor
in a multiprogrammed fashion. Contention for
devices is resolved by priority (note that
INITIATOR jobs with priority 2 will always
get a device before an APPLICATION job), then
by time of request. This is performed by the
Service Routines. Scattered throughout the
jobs are various SIMSCRIPT II statements that
collect the data periodically reported by the
OBSERVATION event.

Advantages of the ECSS Approach

1) PNatural Input Language. Both ECSS
and SIMSCRIPT II statements are guite

240

4~--Batch Processor Simulation {(Continued)

English~like and their procedural format allows
a clear and flexible design. The definition-
description permits incorporation of user-
defined terms for various dimensional units.
Considerable freedom for mnemonic names of
devices, jobs, variables, events, etc. is
allowed.

Provides Declarations and Commands
Hard-

2)
for Common Computer System Operations.
ware elements are compactly defined and
desctribed in the system description, and a
variety of utilization commands for describing
loads are provided. Note that such things as
requests for storage space, job starting,
execution and data transmission require only
single statements. The Service Routines
assume much of the modeling burden by handling
the details and the built-in operating system
capabilities.

3) Flexibility. ECSS provides a variety
of techniques for modeling systems. Both
flow-oriented jobs and events can be used to

operate on the system state, depending on the
modeler's preference. Jobs can model program
behavior, e.g., APPLICATION running on the
processor, or system input characteristics,
as READER running on the cardreader, or
arbitrary activities running on any appro-
priate device. The generality of devices,
each having as many as four components, allows
nearly any kind of equipment to be modeled.
No particular structures are forced on the
user.

Nor is any particular level of detail
required of the model. The example focuses
on scheduling software, in INITIATOR, includ-
ing space reservation and release and neces-
sary execution time, while I/O interrupt
handling, transmission path selection, multi-
programming and other things are left up to
built-in ECSS functions. In other models,
these things may be of interest and could be
modeled explicitly. Changes in detail are
also readily incorporated into a given model.

4) Extendability. ECSS and SIMSCRIPT II
statements are used in conjunction to build
simulation models. Provision of all the data
types and procedural statements of SIMSCRIPT
allows the user to go beyond the primary ECSS
capabilities for any purpose. Note how the
JOB.QUEUE was included in our batch example.
In addition, the user may extend the defini-
tion of a device, a job, a transmission or
any other ECSS structure by appropriate
SIMSCRIPT preamble statements that add attri-
butes to these entities. Although not shown
in the example, new commands consisting of
combinations of SIMSCRIPT and ECSS statements
may be defined as another means of extending
ECSS capability.

5) Modifiability. For some simulation
models, the user might like to change certain
ECSS operations. In the above example, the
user may not wish to wait for space to become
available for the first APPLICATION job on the
JOB.QUEUE, but would like to know if space is
available or not. Such changes would require
modification of one or more of the Service
Routines. This is relatively easy because the
Service Routines are both modular and written
in SIMSCRIPT II. The source code for any of
these routines is completely open to change.
Of course this would require a fairly good
knowledge of the internal working of ECSS,
but the clarity of the SIMSCRIPT II code makes
change much easier than if the user had to
cope with assembly language.

6) Rerun Convenience. Simulation models
are usually rerun a number of times both dur-
ing development (to debug, test, and validate
the model) and in production (to investigate
behavior under various conditions). ECSS has
been constructed to avoid recompilation of the
model for each run. First, it produces a
summary deck of the static system description,
which allows changing system parameters with-
out reprocessing the system description.
Second, the object decks representing the
jobs, events, functions, and other routines
written by the user are available for subse-
quent runs. Finally, the system and load are
independent of each other with respect to
system parameters (e.g., CPU speed, number of
disks, etc.). This allows different systems

241

and loads, which were not originally processed
together, to be combined later as summary
decks and object modules, again avoiding the
overhead of recompilation.

IV. WEAKNESSES QF ECSS

What Is a "Weakness"?

ECSS is weak in some areas in the sense
that certain capabilities are less convenient
or less flexible than they ought to be. BAl-
though generous use of SIMSCRIPT II makes it
possible to model nearly any system in ECSS,
the user must still do more work than he
should have to do for certain classes of
operations. (Questions of efficiency of
implementation are secondary at this stage of
ECSS development and will not be discussed
here.)

The difficulty in coping with weaknesses
varies considerably. Least difficult is
writing extra SIMSCRIPT II routines, not
involving ECSS system variables, to include
some operation not specifically in the ECSS
language. Manipulating ECSS system variables
outside the Service Routines is fairly diffi-
cult since a knowledge of the function and
use of these variables by the ECSS system is
required. Most difficult is changing the
Service Routines themselves, which demands an
intimate knowledge of their working and inter-
action. We will describe examples of some
noticeable problems.

Neglected Statements and Capabilities

Certain features should be included in a
computer system simulator which have not been
incorporated in this version of ECSS. It is
still difficult to formulate a complete set of
these, but there are a few which have become
apparent. For one, although all data are
available to the user, no statistics are auto-
matically collected or reported by ECSS.
(Hence the need for the OBSERVATION event in
the example simulation.) Such things as
device utilization, average waiting time in
queues, and average queue length are nearly
always of interest in computer simulations.
These statistics should be collected and
perhaps produced as a summary report on demand.
It would also be convenient to receive a
summary of the static system simulated because
the system description may be quite complex if
hierarchical groups are used. Another desir-
able feature would be a built-in technique for
stopping and restarting a model at any point,
perhaps allowing parametric changes to account
for initialization periods. There is, further-
more, very little consistency checking of the
model at translation time or run time. ECSS
should do more to point out self-contradictory
or meaningless system descriptions.

Several common computer operations now
must be modeled in SIMSCRIPT II and probably
deserve specific ECSS statements to handle
them. A statement to change job priorities
during their run would contribute convenience
and clarity to a model, particularly when
simulating such operating system functions as
task scheduling or interrupt masking. Another
missing capability is data file placement on
storage devices for file access modeling.

Although files may now be placed on specific
devices, or allocated from groups of devices,
it would be quite handy to have statements
indicating file position on a device. This
could ease calculation of variable access
times for sequences of transmissions from
different files on the same device. A third
deficiency is lack of any built-in polling
operations. Many applications require
service requests to be handled differently
from a priority-interrupt fashion, e.g.,
involving round-robin scheduling. The con-
trollers could have polled the three I/0
ports, in our example, rather than being
interrupt~driven by the ports. Incorporation
of arbitrary (or changing) servicing order
would be eased by ECSS statements to implement
it.

Hard-To-Get—-At Mechanisms

Control of mechanisms invoked by declara-
tion is sometimes desired in the load descrip-
tion. One instance is the degradation of
instruction execution rate as declared by a
DEGRADES clause in the System Description.
Reductions in execution rate may occur for,
other reasons than transmission interference.
Multiple CPU's contending for the same core
memory will not generally run as fast as if
only one CPU had access to the memory. The
degradation mechanism could easily handle
such cases if the user had more direct con-
trol over it when specifying jobs.

Software overhead is another delarative
feature that could be more accessible. In
the batch model, allocation takes 50 msec of
overhead time, but a variety of other activi-
ties like job initiation, task switching, or
core storage reservation may also take time
that should be counted as overhead. Hence,
the user should be able to indicate overhead
time for a variety of operating system func-
tions, or perhaps at any time he wishes, to
realize greater utility of the overhead
accumulation procedures.

Over~Automaticity

The user may also need greater control
over the functions of load description state-
ments. Sometimes these statements automati-
cally do more than the user desires. GETing -
space in the INITIATOR job of the batch
example not only finds and reserves space on
the processor, but also waits for space, if
enough is not available at request time. This
holds up further processing of the INITIATOR
job. Or, one may want to return to processing
INITIATOR with a note indicating an unsuccess-
ful request if insufficient space was avail-
able. That is, one wished only to use that
part of GET that found the maximum contiguous
amount of space left and compared it to the
amount required, and not the part which
queues unsuccessful requests for retrial.

A similar problem also occurs when
SENDing data. Although not shown in the batch
example, it is possible to specify a message
to be conveyed from one job to another by
means of a data transmission. These messages
are often used to activate further processing
of jobs waiting for them. Instead of termi-
nating and restarting the INITIATOR job in

the batch model, it may have been more realis-
tic to suspend and reactivate it by means of

a clock interrupt. This involves only the
signaling features of the SEND statement, all
communication being within the processor, but
there is no way of simply doing it without

all the path selection and other transmission
machinery. Several other cases could be
mentioned which illustrate a need to use only
part of the power of a load description state-
ment.

Awkward Control Program Representation

Although the automatic operating system
is a great help in some models, the distribu-
tion of control functions between the Service
Routines and user-written jobs makes for a
sometimes strained relationship between the
model and the real system being simulated.

In the batch example, the work schedule
INITIATOR job interfaced fairly smoothly with
the ECSS system. This may not be the case if
different algorithms are desired for other
kinds of queue handling, resource management,
or other schemes for controlling the order of
occurrence of internal model events. Low
level changes in these operations usually
require extensive changes both to the Service
Routines and to the jobs representing the
load's simulated software. Moreover, the
code implementing the new operating-system
functions is scattered over parts of several
routines, thereby decreasing model clarity.
It would be desirable to keep most or all of
user-specified control program models in one
place, either through a number of "operating-
system-jobs" or some other unifying concept.

V., DESIGN CONSIDERATIONS FOR FURTHER
ECSS DEVELOPMENT

Pointing out the weaknesses in something
under development is usually tantamount to
saying how it will be improved. Reflection on
the above has further indicated some more
general factors in designing computer system
simulation languages. These may be used to
anticipate future difficulties and correct
them before they intrude into some new applica-
tion of the language.

Declarative vs. Procedural Description

Although declarative specification of
system features is most convenient, procedural
specification is more flexible. Since one
cannot anticipate all possible types of inter-
action, all interaction mechanisms should be
accessible to procedural control so that the
usexr can make the fullest use of provided
capabilities. Declarative specifications
should be retained, however, for their conven-
ience, and perhaps even be expanded to further
parameterize the built-in operating system
(e.g., more opportunities for overhead time
specification).

Statement Scope

Just as one cannot anticipate all possible
interaction types, one cannot foresee all the
combinations of ways to command the system
components. Variable sophistication of detail
requires greater user control over the actions

242

of the load description statements. Powerful
statements, incorporating a number of opera-
tions in a predetermined sequence are neces-
sary to quickly develop coarse models. For
more detailed models, each operation should
be available separately. Control at a lower
functional level allows the same Service
Routine mechanisms to be put together in a
greater number of ways without the chore of
altering their structure. The inclusion of
more optional clauses for statements may ease
transitioning from coarse to fine levels of
detail during model development.

Operating System Accessibility

Service Routine alteration could also be
avolided by inclusion of a number of exit
points to user routines. Such a "monitor" is
included now but operates more as an observer,
telling what the system did, not what it is
about to do. Substituting an active monitor,
with the power to skip some of the built-in
operations on command, would provide more
flexible use of the ECSS operating system
features.

Automatic Summaries

A computer system should include auto-
matic collection of statistics, and automatic
output of statistical and other summaries, in
addition to user access to all operation data.
Certain values of interest are well enough
known that statistics on them should be
collected. Preformatted reports of these
statistics would provide a convenient overview
of model operation. Machine and man readable
system structure summaries could further make

243

the simulation clearer to the user and aid in
rerunning the model. Trace-type output should
also be available on demand (perhaps through
the monitor) but undesired volumes of opera-
tional data should be avoided.
VI. SUMMARY

Use of the initial version of the Extend-
able Computer System Simulator has shown it to
be a convenient and powerful analysis tool.
Its provisions for describing both common com-
puting system elements and operations eases
much of the modeling burden, while its extend-
ability and modifiability insure its suit-
ability for uncommon applications. Certain
ommissions and inflexibilities have been
noticed, however, which has lead to some
suggestions for improving its convenience.
Implementation of these suggestions is pro-
ceeding.

REFERENCES

l. Nielsen, N. R., E(CSS: An Extendable
Computer System Simulator, The Rand
Corporation, RM-6132-NASA, 1970.

2. Kiviat, P. J., R, Villanueva, and H. M.
Markowitz, The SIMSCRIPT II Programming
Language, Prentice-Hall, Inc.,
Englewood Cliffs, New Jersey, 1968.

3. Kosy, D. W., The Extendable Computer
System Simulator Language Speecification
Manual, The Rand Corporation, R-561,
(in process) .

