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Abstract

The ILLIAC IV, a fast parallel-array computer, is being considered as a control

computer for a large radar system.

A high-level simulation of the ILLIAC is

being done to determine the ILLIAC's effectiveness in such a system and to investi-

gate various design alternatives.

The work to be performed by the system is divided into "tasks."

Timing constraints

for the tasks are input to the simulator along with a list of tasks to be executed

in a certain period of time.

A number of resources (e.g., memory, program, data) must be assembled prior to

the execution of each task.

The model can then be used to test the effectiveness

of various scheduling strategies under a variety of loads and the results will be
used to evaluate the overall effectiveness of ILLIAC IV for this system.

I  INTRODUCTION

The ILLIAC IV computer, a highly parallel array pro-
cessor, represents an architectural concept which is

quite distinct from conventional computer architectures.

The intent of this design is to provide computing
throughput which is orders of magnitude above that
which is currently available. This drastic departure
from familiar concepts requires different means for
determining the applicability of this design to spe-
cific user requirements.

The purpose of this simulation was to determine the
applicability of the ILLIAC IV for controlling a large
and complex real-time system. This system is very
large and requires quite a bit of data processing
power. In fact, no present generation machine is
capable of performing the required functions for this
system in the necessary time frame. The main goal of
this simulation project was to determine whether this
real-time system could be satisfactorily controlled by
an ILLIAC IV computer system.

Since the ILLIAC IV is a highly-specialized parallel
processor, it is very inefficient at certain tasks.
Unfortunately, the tasks which constitute an operating
system fall largely into this class. Therefore, in
order to construct an efficient configuration, the
ILLIAC IV is controlled by a general purpose control
processor - in this case a Burroughs B6500. The B6500
contains the major portion of the operating system and
performs most of the processing associated with it.
The B6500 also performs a number of other tasks for
the real-time system; these tasks are those which can
be handled most effectively on a computer having con-
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temporary architecture. The simulator was also used
to investigate the adequacy of the B6500 for these
various control and processing functions.

The simulation also showed how the control of the
ILLIAC IV could be accomplished. That is, it was used
to investigate the sufficiency of the proposed operat—
ing system and I/0 configuration as well as the B6500
control computer(s).

II DESCRIPTION OF THE SYSTEM
A. Actual System
1. ILLIAC IV - The ILLIAC IV computer is a parallel

array of 256 coupled processing elements (PE's)
arranged in four quadrants. This study, however,
addressed a one quadrant configuration. (This con-
figuration is currently being constructed by the
Burroughs Corporation for the University of Illinois.)
The quadrant contains 64 PE's which are driven by
decoded instruction signals emanating from a single
control unit (CU) working on a single instruction
stream.

The PE's of a quadrant must simultaneously carry out
the same operation on the operands to which they each
have access. Thus the PE's will operate in parallel.
Each of the 64 PE's will have an instruction set which
includes floating point arithmetic on both 64-~bit and
32-bit operands (with options for rounding and
normalization), 8-bit operations, and a wide range of
tests due to the use of addressable registers and a



full set of comparisons. The expected time for a
64-bit floating point add execution is 250 nanoseconds
and for a 32-bit add is 300 nanoseconds. The PE's
differ from conventional computers in three main ways.
Firstly, each is capable of communicating data to its
four neighboring PE's in the array by means of routing
instructions. Secondly, each PE is able to set its
own mode registers thus enabling or disabling itself
for the transmission of data or the execution of in-
structions from its CU. Thirdly, all instruction
decoding and some other functions are effected in the
CU, thus eliminating the need for a large amount of
hardware in the PE's. Each CU contain a 64-word
instruction buffer, a 64-word local data buffer and 4
accumulator registers which are loaded, as required,
from memory.

2. Computing Configuration - In addition to the
ILLIAC IV, the system being simulated consists of a
Burroughs B6500 as a control computer, a Burroughs I1/0
Control Unit (I0C), a one billion bit disc storage
unit (SU) with associated Electronic Unit (EU), and a
Buffer I/0 Memory (BIOM) of 8192 words to facilitate
B6500 - ILLIAC memory to memory data transfers in the
light of the disparate sizes of the memory access
paths. There is an I/0 Switch in the IOC which
handles data transfers between the special ILLIAC IV
I1/0 devices and the PE memories at a rate of 1024 bits
per microsecond and which co-ordinates all other I/0
to and from the PE memories.

This entire configuration is used to control a large
real-time system which is interfaced with the com-
puting system through a Real-Time Interface Processor
(RIP). This processor buffers the data flow into and
out of the ILLIAC IV via the IOC and also performs
some special purpose data processing.

3. The Real-Time System - The real-time system being
controlled by the ILLIAC IV in this simulation is a
large electronically steered radar. The ILLIAC as
required to perform large data processing tasks in a
few milliseconds, to schedule and format orders to the
radar and to respond in a few milliseconds to large
and unpredictable amounts of data returned from the
radar, The real-time interface processor performs a
variety of special purpose functions such as digital-
. to—~analog and analog-to-digital conversion as well as
buffering of data semt from the ILLIAC IV to the RIP
or vice versa. In effect, the tasks to be performed
by this system usually consist of (1) the ILLIAC per-
forming some pre-processing; (2) a block of orders
being sent to and subsequently executed by the RIP;
(3) response data being forwarded from the RIP to the
ILLIAC; and (4) some post-processing of the new data
by the ILLIAC.

A diagram of this system is shown in Figure 1.

B. Model of the System:

The system which was simulated consisted of the ILLIAC
IV itself, the B6500 control computer, the buffer I/0O
memory (BIOM), the I/0 controller (I0C), and the real-
time interface processor (RIP). Each of these devices
is modeled in terms of its memory size, its I/0 rate,
and the tasks which must be executed upon it. The
simulation was written in a modular fashion so that
each of these devices was simulated separately. This
permits the operations or even the functions of a
device to be changed without adjustment of the logic
in other portions of the simulator.

Because of the virtual memory concept of the B6500
system and because of the undefined nature of its

208

non-operating system processing tasks, the constraints
of memory space and 1/0 load were ignored. Thus, the
B6500 was characterized only in terms of available
processing time. One of the parameters for the system
specified the number of central processors (up to four)
which could be used for the control computer. The
B6500 executes all of the non-parallel operating tasks
for the ILLIAC IV. Thus, the B6500 controls all com-
munication with the ILLIAC, including all I/0 transfers
of programs and data. In additiom it issues all
scheduling and control commands to the ILLIAC. Brief
commands are sent through a special 48-bit control line
while longer data transfers take place via the BIOM.

C. Model of Processing Load

The processing load was modeled from a specification
of the following types of imputs to the simulator:

(1) Tasks - Each task which the ILLIAC IV must -execute
is described by the parameters of computing time,
memory space requirements, data transfers required
before execution, and any prerequisite tasks. 1In
addition, a number of post-execution operations
may be specified, such as the transfer of data
from the ILLIAC to the RIP.

(2) Working Spaces - The working spaces reflect the

various sections of ILLIAC memory which are xre-

quired by the tasks in order to execute. These
include space for data sets, buffer areas, and
scratch areas as well as for the program itself.

(3) Data Transmissions - Various tasks require that

certain data transmissions take place either before

or after their execution on the ILLIAC IV. These
transmissions are defined in terms of their size,
origination, destination, triggered replies, etc.

(4) RIP Tasks - These tasks are described by the

amount of RIP processing required, the time at

which it is required, and the data which will re-
sult from the object system as a result of that
processing.

The simulation was designed to determine the effective-
ness of the ILLIAC IV computing system for controlling
the real-time system without the necessity for coding
and executing either the operating system or the com~
puting tasks for the ILLIAC and the RIP., However, it
was still necessary to develop estimates of the pro-
cessing, I/0, and memory requirements of the various
ILLIAC tasks. Data was also needed on the RIP and
B6500 processing requirements. Some of the more
frequently executed tasks were investigated in detail
and flow charts describing them were constructed.
Sample code was generated for portions of these tasks
in order to determine estimates of the computing time
and file usage that might be expected for a parallel-
array computer. These investigations were made sim-
ultaneously with the simulation development effort.

It must be recognized that these inputs are fairly
gross estimates and may contain a bias toward high or
low memory and/or computing time estimates. To give
credence to the simulation results, the sensitivity of
the system's performance as a function of these
estimates is being studied.

ITIT EXECUTION OF THE SIMULATOR

A. Effectiveness Measures

Under the proposed mode of operation the ILLIAC IV does
not respond to a real-time interrupts (as do many real
time systems). Rather, it must dynamically assess the



future processing load and allocate processing time
accordingly. The B6500 then tries to implement this
schedule, calling upon the ILLIAC IV as necessary to
provide the requisite processing. It should be noted
that the effectiveness of the future load assessment
procedure was not studied by this simulation. Rather,
the ability of the system to handle a load once spec—
ified was evaluated.

The effectiveness of the ILLIAC IV was assessed in the
following manner: (1) a particularly heavy real-time
processing load was hypothesized; (2) the corresponding
data processing tasks were then determined, and a

crude schedule indicating their order of execution was
constructed (i.e., the ILLIAC load assessment); and (3)
this schedule list was input to the simulator, and the
modeled system attémpted to implement it., The degree
to which the system could remain "on schedule" was
taken as the measure of effectiveness.

B. Operation of the Simulator

Because of the volume of data inputs, a special data
description language was developed. The first portion
of the simulator takes these "English-like"inputs,
checks them for errors, and initializes the simulator.
During the course of the execution of the model, a
number of statistics are calculated and printed covering
the performance of the simulated system. In addition,

a trace file of every major change of state in the model
can be obtained. Not only does this permit post-mortem
examination of system performance, but it serves as the
input for a number cf plotting routines.

The evaluation of the simulation results was greatly
enhanced by two sets of time history plots. The first
set of plots shows the execution of tasks (transmissions
in case of RIP), over time in each of the modeled
devices. The other set of plots shows various activity
indicators., for each device, such as, (1) memory utiliza-
tion, and active/idle status for the ILLIAC IV; (2) job
queue status and active/idle status for the RIP; (3)

CPU status (for each fourteen polling function ) in

the B6500; (4) disc file controller status and priority
queue status in the IOC; and (5) memory utilization and
request queue status in the BIOM.

One of the requirements for the simulation model was
that it be operable on several different computers.
Despite both the appropriateness and the desirability
of using a higher level simulation language for the
model, there was no one such language that was available
on all of these computers. Thus, the model was con-
structed in FORTRAN IV (which persists as the
"universal' language). This language choice made model
development much more of a chore, but it did enable

the model to be run on different computers without
reprogramming. Presently the model is implemented on
the IMB 360, the UNIVAC 1108, and partially on the

GE 635.

For the purpose of indicating resource requirements, the
following figures are based on the use of UNIVAC 1108
and the UNIVAC FORTRAN V compiler. The largest portion
of the program is the data input and initialization
section. This routine requires approximately 22K words
(36 bit), but is easily overlayable, being used but
once pPer run. The simulation itself requires only 11K
words with an additional 11k words being required for
the FORTRAN I/0 routines. The storage requirements for
the simulator's tables, pointers, and queues require a
further 18K words. In total, then, a partition size of
51K words is required, although this could very easily
be reduced to half that amount without significantly
affecting execution time.
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With the job descriptions currently being employed, the
simulator executed 170 times slower than the real
system when a full trace was being made. However, when
tracing is disabled the simulator runs only 1.4 times
slower than the real system. (The execution cf the
simulator is not I/0 bound, even with tracing, this
comparison provides an interesting view of the proces-
sing efficiency of the FORTRAN I/0 package). Con—
sidering that the simulator actually represents four
different simulation models and considering that some
of the simulated devices operate considerably faster
than the UNIVAC 1108, the optimized 1.4 execution
factor is quite encouraging.

The collection of input data consumed about three man-

months of effort. The development and exercise of the
model required an additional twelve man-months of effort.

C. Experiments Performed with the Simulator

In order to answer the primary question addressed by
this simulation, "Can the ILLIAC IV control this
system?", the effects of all parts of the configuration
other than the ILLIAC IV and the RIP were minimized.
This was achieved by setting all of the processing and
overhead times required by the remaining devices to
one microsecond (an insignificant amount of time for
those portions of the system). This action permitted
a determination of (1) whether there was sufficient
computation power in the ILLIAC IV to meet the proces-—
sing requirements and (2) whether or not the real-time
constraints imposed by the system were achievable with
possible I/O control configurationms.

The plots in Figures 2 and 3 are indicative of the data
resulting from this experiment. Together these two
figures indicate that the ILLIAC IV system would be
able to meet the real-time operating constraints when
using a carefully developed schedule. The RIP sub-
system reached the desired 1007% level of utilization,
as can be seen from the active/idle status line in
Figure 3. Further, this was achieved with only a 50%
utilization of the ILLIAC, as can be seen in Figure 2.
Thus, even for a particularly heavy load situation,

the ILLIAC IV appears to have ample capacity, so long
as data transmission and operating systems overheads do
not needlessly delay the execution phases.

On the other hand, the main ILLIAC IV memory (2048 words
per processing element) does appear somewhat limiting.
While the memory utilization ranges from 60% to 85% in
the particular simulations described, it is quite pos-
sible that a heavier peak load (with high memory re~
quirements) could occur. This is not unrealistic when
one considers that the sizes of some of the individual
working spaces for a task may exceed 10% of the total

PE memory space. Further, as was mentioned above, the
memory estimates for each of the tasks may be potentially
somewhat low. Various alternatives are being considered,
such as expanding or paging the memory, in order to
alleviate this situation.

It should also be noted that the "wait" status lines in
the plots in Figures 2 and 3 refer to the lengths of

the queues of job awaiting processing on the ILLIAC IV
and the RIP. Inasmuch as the jobs have early start times
associated with them, it is not inconsistent for a

device to be idle while simultaneously facing a non-
empty queue.

A further simulation was made with the processing and
overhead times of the remaining devices in the configu~
ration restored to their estimated correct value.



Again, the ILLIAC IV system appeared able to handle the
Processing workload within the desired time constraints.
However, it was necessary to use a dual processor B6500
in order to meet the desired schedule. Figure 4 indi-
cates the processing activity which took place on the
control processor. In addition to the activity lines
for each of the 11 control functions, the utilizations
of the two CPU's are also plotted. TFrom this data it
is clear that the problem is not so much one of in-
sufficient computer power as it is one of bunched
computing requirements. Given an approplrate distri-
bution of processing demands, a single processor would
nearly suffice. Attention is currently being devoted
to the problem of eliminating or at least minimizing
the bunching of requests.

A second question which has been addressed by the sim-
ulator is, "What type of configuration is sufficient

to allow the system to perform effectively?" A number
of possible configurations have been suggested. Some
of these were simulated by slight modifications of the
current simulator. However, some did not require any
modification. For example, the use of a multiprocessor
B6500 system could be tested by appropriate parameter
adjustment. Another type of configuration change which
is readily permitted is a change im the type and cap—~
acity of the various I/O devices. For instance, the
disc secondary storage could be replaced by a faster
access bulk storage device. This would be useful in
those cases where working spaces must frequently be
swapped into and out of ILLIAC IV memory. Aslo, the
bandwidth of certain data busses between devices may
be varied to obtain a more effective system performance.

Finally, certain changes to the operating system rules
may be easily effected in the simulator.

IV CONCLUSIONS

From the results of this simulation we conclude that
the ILLIAC IV does have sufficient computational power
to control the real-time system in question. However,
it would appear that the expansion of ILLIAC IV memory
from 2048 to 4096 words per processing element would
be appropriate in order to assure that serious time
delays resulting from insufficient memory space would
be minimized. It also appears that a dual processor
B6500 system will be adequate for control of the ILLIAC
IV system.

The simulation will continue to be exercised in order to
answer several more subtle questions. These include
investigations of possible alternatives to (1) the
current operating system philosophy, (2) the B6500 as

a control computer, and (3) the use of secondary

storage to alleviate memory problems in the ILLIAC IV,

This simulation has shown itself to be a worthwhile
investment. It has already provided quantitative
answers to some very difficult questions. In the

future it will serve as a valuable design tool when more
specific design questions are addressed.
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Task execution schedule was manﬁpilated until approximately 100% utilization
of RIP after initial start-up period was achieved.
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Activity profile of the B6500 computer with two processors and the
11 polling functiops of an operating system is shown above.

Polling functions WSALC2 and IIVFIN were never called during the run,
BIOMDA and BIONAL were called after the shown time period.

THE DEFINITION OF POLLING FUNCTIONS

IOSTRT - initiates all input-output operations.

IOFIN - handles the I/O completion interrupts from the IOC,

IIVFIN - handles the completion of move operations on the ILLIAG IV,
WSALOC - is the primary working space allocation function.

WSALC2 - is the secondary working space allocation routine.

WSDALC - is the responsible for the deallocationm.of working space.
CLENUP - processes the postcondition requirements of a task.

READYP - marks all of a task's dependent tasks as ready.

BIOMAL - allocates BIOM space for I/0 requests between the ILLIAC and the B6500.
BIOMDA - deallocates BIOM space.

SETUP - processes a task's preconditions,
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