A MODULAR SIMULATYON OF TSS/360

John W. McCredie
Assistant Professor of Computer Science
Carnegie-Mellon University

Pittsburgh, Pa.

15213

Steven J. Schlesinger
Department of Computer Science
Carnegie-Mellon University

Pittsburgh, Pa.

Summary

This paper describes a modular simulation of
TSS/360, a virtual memory time-sharing computer system.
A detailed model of the table driven scheduler is em-
bedded in an enviromment consisting of higher level
models of other subsystems. The original goal of the
project was to provide a useful tool to aid in the
tuning of the monitor's scheduling algorithm. As the
simulation evolved, the model served as a vehicle to
study proposed hardware changes.

Introduction

TSS/360 is the time-sharing operating system for
the IBM 360 Model 671. This computer differs from the
standard 360 line because of hardware additions de-
signed to create an efficient two dimensional address-
ing structure utilizing segments and pages.“ Hardware
performs the dynamic address translations necessary to
make a large virtual memory a reality. The goal of
demand paging organizations is to implement a system
in which each user may act as if he has a large, pri-
vate, directly addressable memory. Some parts of this
memory may be shared with other users of the system.
The operating system manages all system resources and
frees the user from many allocation problems.

The,algorithm which schedules and dispatches tasks
in this multiprogrammed, time-shared enviromment is a
section of TSS called the table driven scheduler.
Since each TSS system has a different user community to
satisfy, and a different hardware configuration, the
parameters in the table driven scheduler may be set by
each installation. Many of the parameters within the
table are branching codes to other sections of the
table. Thus the scheduling algorithm and its para-
meters are variables that must be determined locally.
This flexibility places the responsibility for tuning
TSS upon system analysts at each installation.

This paper describes a
in determining the value of
ule table. Why simulate to
alternative would be to try
in the operational system.
different tables would be a hard process in a produc-
tion environment. Bad designs would degrade the sys-
tem and adversely impact the user community until ad-
equate evaluations were complete. The complexity of
the scheduling algorithm ruled out an analytic approach

‘based upon queueing theory. A limited simulation
seemed to be a worthwhile approach. To be useful, such
a model would have to describe the basic effects of
schedule table changes on tlhe response of the system.
The model could not be too expensive in terms of design
and running time.

simulation designed to aid
entries in the TSS sched-
solve this problem? An
different schedule tables
Evaluating the results of

“See Wilkesz, chapter 4, for a good discussion of

virtual memory design.

201

15213

The main purpose of a descriptive model is to
account for observed phenomena of physical systems.
The complexity of TSS requires that any small model
address itself to a limited and conmstrained subset of
input and output state variables. The model is thus
an abstraction of certain important features of inter-
est to an analyst or designer. Simplifications re-
quired to make the abstraction manageable limit both
its scope and power. A flexible, modular design allows
for future expansion both to correct for oversimplifica-
tions discovered during validation, and to adapt to
changing goals. The design proceeded in a top down
manner with various subsystems being represented by
simple probabilistic approximations at first and then
by more complex descriptions as the model evolved. The
scheduling algorithm section is much more detailed than
other subsystems such as the paging disks. The model
is written in SIMULA, an Algol based discrete-event
simulation language in which modular design is easy.

Related Work

Papers in the simulation literature describe a
number of different approaches tg the modeling of com-
puter systems. Fine and McIsaac” describe a simula-
tion of the System Development Corporation time-shared
computer, the Q-32. Scherr® presents a detailed model
of the CTSS system at M.I.T. Both of these studies
model all subsystems at a common level of detail. Mod-
els by Katz5’ concentrate on state transition approach-
es which include many details concerning software struc-
ture and program characteristics. Barker and Watson
and Martin® discuss very detailed models of the IBM 360
including virtually all hardware and software functionms.
These latter studies are large efforts requiring a num-
ber of man-years of effort., Nielsen’> has developed
programming languages for building models of computer
systems. In [9] he uses his earlier work to model the
360/67. This model is another member of the class of
very detailed, complex, total system models. SCERT
(System and Computer Evaluation and Review Technique)
is a proprietary development of COMRESS, and is used
to evaluate different computer systems with respect to
a job profile from an installation, CASE (Computer-
Aided System Evaluation) is a commercial product simi-
lar to SCERT in which users complete forms to describe
workloads, hardware configurations, and software sys-
tems. SAM (System Analysis Machine) is amother lan-
guage speciallX*designed to help build models of com~-
puter systems,

The common denominator of these simulations is an
attempt to model all aspects of a system under study at
a uniform level of detail. 1In design philosophy, they
are attempts to provide tools capable of answering al-
most any reasonable question about the system. This
generality must be paid for by large investments in

KKSee the recent article in Computer Decisions11 for a
discussion of the commercial packages SCERT, CASE, and
SAM.

personnel and computer time.

The goal of this paper is to show that a useful
model can be designed to answer a limited set of ques-
tions about a complex system without detailed model-~
ing of all system components, This model has the basic
characteristic that different system modules have vast-
ly different levels of detail in the simulation. The
areas of emphasis may change as the model evolves.

Choice of Language

The model is written in SIMULA, an Algol based
discrete event simulation language., We chose a simula-
tion language over a procedural language such as Algol
or Fortran since the program must constantly schedule
and cancel events, We did not use GPSS for several
reasons. SIMULA is a compiled language and therefore
executes much faster than GPSS which is interpreted.
Since SIMULA is a direct extension of Algol, all of the
procedural and arithmetic capabilities of Algol are
present., Perhaps the most important feature was the
natural use of the "'process" concept of SIMULA in mod-
eling computer systems. Such systems are naturally
viewed as a set of hardware, software, and human ele-
ments which interact. In SIMULA each process is a
member of a class of entities having the same data and
event structures. Processes may interact with each
other in the same manner as computer subsystems. This
feature gives SIMULA programs a degree of modularity v
which greatly eases model modification and expansion.

One analyst spent about three man-months studying
the system and building the model which runs on a
Univac 1108. The compiled code requires 4,000 words
of storage. Five minutes of simulated system time
takes about one minute of 1108 time.

Model Design

Model design proceeded in a top~down fashion. In
order to keep the model as simple as possible, elements
of the real system were included only when necessary
because of interactions with the scheduler. The pri-
wmary goal of the model was to obtain the distribution
function of response times experienced by a user at an
interactive terminal as a function of the type of re-
quest submitted. The model simulates interactions

between hardware, software, and the user population.,
Figure I illustrates the model's structure.

Three hardware facilities appear: the CPU, the
paging devices, and memory. The CPU appears implicitly
in all software elements of the system and in the exe-
cution of user programs, No CPU characteristics such
as clock cycle time or instruction times are included,
although they are implicit in the amount of computa-
tion time used by user programs.

Two types of paging devices are included in the
model: disks and drums., Disks are viewed as an in-
finite source of new pages demanded by executing pro-
grams and as an infinite storage facility for pages
written out by the monitor. The disk units on the
real system were IBM 2314's, Actual operation of these
units is complex since arm seeks on different spindles
can be overlapped, and software disk management rou-
tines try to optimize arm movements to maximize the
flow of pages into core. Instead of modeling this
process directly, we determine the access time of a
page by drawing a number from a distribution. The
statistical characteristics of this distribution re-
flect the operation of the actual system. The para-
meters of the distribution were determined by observa-
tions from the system logging information. Drums are
represented by their revolution times and their capac-
ity in pages. The distribution of access times for
pages from a drum is uniform from zero to the revolu-
tion time, :

The 360/67 at CMU has a relatively small amount
(128 pages) of high speed core (.75 psec. cycle time).
The monitor uses all but a few of these high speed
pages. User programs reside in LCS (Large core stor-
age, 8 psec. cycle time). Since all user programs
compete for and share 550 pages of LCS, these pages
are explicitly included in the model. The high access
time of LCS is reflected in the computation time of
user programs. ’

There are two major software routines in the mod-
el - the timer interrupt handler and the table driven
scheduler. Minor software functions occur implicitly
in other parts -of the model, A timer interrupt occurs
when a user program has CPU control at the end of its
time quantum. The interrupt handler may, depending on

Timer

Interrupt

Handler

[}

. end of quantum

1

1

¥

request Page fault <
Task Queue
response (user's L _____ — —3 Scanner
P program) |
“““““ Page | -
v Request !
! l I
Queue
! 1 i
| I i
control and communication ! - — ~ L &
l ! - Page Fault Scheduler
_____ communication only l and

___________ Processor Dispatcher

“See Dahl12 and McCredie13 for discus~-
sions of the structure and use of SIMULA,

dispatch new task I
Figure I Model Structure

the program's scheduling parameters, do any of the
following: force a time-slice end and write pages
onto the disk (or drum); change the scheduling para-
meters; give the program an additional time quantum.
The timer rofitine in the model performs the functions
of several subroutines of T8S/360 which are called
when a timer interrupt occurs.

The table driven scheduler is the most detailed
portion of the simulation. Each program in the system
is assigned an entry in the schedule table. This en-
try contains maximum limits on CPU usage and paging
activity of a program. A program exceeding the limits
is penalized by loss of eligibility for CPU allocation
and possible lowering of priority. This penalty oc-
curs by changing the program's schedule table entry to
a new one depending upon how the program exceeded the
bounds of its previous entry. For each maximum there
is a new schedule table entry to which the program
will be assigned if that limit is exceeded., The mon-
itor interrupts a program during its time slice to
check if any bounds have been violated.

The scheduler maintains several lists of programs,
each one having a different eligibility for CPU alloca-
tion. User programs move among the lists depending on
their schedule table entry and operating characteris-
tics. The schedule table in the actual system has
limits on additional operating characteristics of pro-
grams to enable fine-tuning of the scheduling algor-
ithm.

Program behavior is characterized by periods of
CPU usage separated by page faults. When the program
receives CPU control from the scheduler it is inter=-
rupted only by a timer interrupt or page fault. While
it has CPU control, no classification is made of lan-
guage used, system functions called, or other modes of
activity. The only parameter of interest during CPU
usage is the time necessary to complete the user re-
quest., Paging activity is based upon the working set
concept of Denningl4. Each request specifies the work-
ing set size for that request., The user program then
calls for sufficient pages to fill the working set.
There is no distinction concerning the contents of
each page. Only the number in core is of interest.

The users in the model make terminal requests and
wait for system response at the terminal. A request
consists of the amount of CPU time required and the
number of new pages which have to be brought into core
for a complete working set. The model draws both of
these parameters from distributions either approximat-
ing observed system behavior or testing hypothetical
modes of system use, The distribution of response
time experienced by a user is the statistic of primary
interest in the simulation, Non-conversational batch
jobs have the same structure as interactive tasks, but
the distributions of their operating characteristics
and their priorities are different.

Model Validation

A prime reason for building a simulation of a
complex system is to construct a test environmment in
which one may experiment with different structural
configurations. A model is the set of functional re-
lationships indicating how output state variables
respond to different settings of input variables., If
the main purpose of a particular model is to describe
system responses over a limited and well documented
operating range, the structural correspondence of the
model and the real system need not be exact. There
are often conflicting hypotheses that adequately

203

describe a set of empirical data. For example, the
output of a stochastic process may appear to be Poisson
with rate A. If one has only aggregate data, he may
not be able to determine if the actual mechanism with-
in the "black box" is a single Poisson source with

rate A\, or n sources with rates x/n. For many purposes
it may not matter which hypothesis is correct; both

may lead to the same conclusion.

If, however, the central purpose of a simulation
is to aid in the study of a class of structural changes,
it is obvious that these basic relationships in the
model and the real system must be as nearly identical
as possible, Within a single model one may find gross
functional simplifications of a descriptive nature for
some subsystems, and very detailed structural relations
for others, As a model evolves, and its goals change,
some sections may become more detailed and others more
simple. A modular approach to model formulation and
construction will allow this type of growth. A poor
language or a bad initial design may force a complete
re-write as the system evolves, This consequence is
expensive in terms of both time and money,

At each stage of model development, one should
have a validation procedure to insure that a simula-
tion is doing the job for which it was designed. Our
model, with its many simplifications in certain areas
and great detail in others, should predict system
response to a wide range of inputs, Since we expended
much effort to'model the schedule table as described
in system manuals, we were confident of its accuracy.
However, other areas of the model are rough approxima-
tions. 1In an effort to avoid what many people have
called "the model-is-reality syndrome", we used three
different validation procedures.

The 360 at Carnegie has a software monitoring
facility that allows us to make significant measure-
ments of the system in a production environment. The
analyst initializes the system to create an output
record, on magnetic tape, for every internal system
event of interest. This logging tape is saved for
later off-line statistical processing. From this in-
formation we constructed an input generator that cre-
ates tasks having the same statistical distributions
as those of users in the real environment. Statistics
from the simulation along with those of the actual sys-
tem appear in Figure II.

A second method of comparing the model with the
real system is to have humans go through a script and
then compare actual responses with the simulation. The
only advantage of this test over that of the preceding
paragraph is that the properties of the usexr's tasks
are known exactly and may be varied at will Carnegie's
360 may also be driven by a simulated user environment
in which the system responds to a completely repeatable
script representing an arbitrary number of terminals
following predetermined programs. This test was more
demanding of system resources than the previous one.
All users made similar demands on the system since
they were following the same script. The comparison
of the simulation and the actual system appears in
Figure III.

An alternative to the previous tests is to probe
the system periodically with test runs while it is in
the normal production enviromment. The sample jobs for
this test were the same as those used in test two, but
all other users were doing normal work. We loaded the
simulation with users requesting resources based upon
our statistical profile of the general user. 1Into this

% 15
See Kac
in science.

for a good discussion of the use of models

environment we inserted a user requesting the resources
of the test probe. Figure IV compares the average
response times for the test run in both the model and
TSS.

The results of these three experiments, plus the
knowledge that we carefully modeled the details of the
scheduling algorithm, give us confidence that we have
captured the essential features of the scheduler and
the enviromment in which it operates. The modular
nature of the simulation makes extension to other
areas of TSS design natural. In future studies of
additional subsystems the present scheduler may be
replaced by a simple priority discipline if goals
change and a macro approach to scheduling is practical,
An abstract model is applicable to a limited number of
questions about the real system, It must change with
the questions. At every stage a reasonable test of
validity should confirm the assumptions of the analyst.,
Using a model in uncharted domains without validity
checks, even though it may be well validated in some
areas, is one of the most dangerous practices found in
mahy simulation studies.

Present and_Future Model Uses

The original goal of the model was to aid in
tuning TSS/360 to the job load of the QMU enviromment.
The first use of the simulation involved a group of
users who proposed paying a higher rate to receive
better service from the system. The proposal ro
achieve this service differential was to cause the
high priority class to follow a different algorithm
through the schedule table, Tests using the model
indicated that benefits of the proposed solution were
marginal compared to the increased charge. A differ-
ent plan, based upon the concept of guaranteed ter-
minal access to a certain number of higher priority
users, provided the required service differential,

Late in the spring of 1970 Carnegie announced
that starting with the fall term, TSS/360 would be the
general purpose campus computing facility. The Com-~
putation Center would phase out OS/360 and restrict the
1108 to large scientific users. Previously TSS has
served a limited user community. The transition of
many users from 0S/360 and 1108/EXEC IL requires that
new services be provided under TSS. An example of one
such service is the introduction of a fast turnaround,
student oriented, Fortran compiler called WATFIV. The
model is presently being used to determine how best to
s5chedule this service in an environment of conversa-
tional and batch tasks. It is also forecasting the
number of users who can adequately be served in each
category.

LCS, the slower core storage, causes the effec-
tive instruction rate of most user programs to be
approximately one per 8 microseconds. In the fall of
1970 new 1CS, with a two to three fold improvement in
cycle time, will replace the old core. The modular
nature of our system enables us to reconfigure the
simulation to predict overall system improvement due
to LCS upgrading. Figures V and VI are examples of
the type of studies possible with minor alterations
to the model. The high paging rates generated by
heavy loads cause predicted improvement due to faster
LCS to be less than expected. Faster core does not
alter the paging rate, and tasks spend a significant
portion of time waiting for pages, The model allows
us to quantify the function relating core speed to
response time. The effects of adding additional units
of our present speed LCS are presented in Figure VI.
The improvements are substantial, but the cost is
large.

204

Costs of alternative configurations are straight-
forward to calculate, but the benefits, are yvery hard
to assess without a good model. It is not possible to
validate our predictions until the new core is in-
stalled and statistics are gathered. 1If the model
proves itself in this new domain, we feel that the
simulation will be a valuable working tool for con-
tinued use in studies of both hardware and software
subsystems of TSS/360.

This work was supported by the Advanced Research Pro-
jects Agency of the Office of the Secretary of Defense
(F44620-70-C-0170) and is monitored by the Air Force
Office of Scientific Research.

References

IBM Time-Sharing System - Concepts and Facilities,
Form C28-2003. '

Wilkes, M, V., Time-Sharing Computer Systems,
American Elsevier, New York, 1968,

Fine, G. H., and P. V., McIsaac, "Simulation of a
Time-Sharing System', Management Science, vol. 12,
No. 6, Feb., 1966, p. B180-B19%,

Scherr, A, L., An Analysis of Time-Shared Computer
Systems, Research Monograph No. 56, M,I,T. Press,
Cambridge, Massachusetts, 1967.

Katz, J. H., "Simulation of a Multiprocessor Com-
puter System"", Proceedings AFIPS 1966 SJCC, vol. 28,
p. 127-139,

Katz, J. H., "An Experimental Model of System/360",
Communications of the ACM, vol. 10, No. ll, Nov.
1967, p. 694-702.

Barker, P, E,, and H. X., Watson, "Calibrating the
Simulation Model of the IBM System/360 Time-Sharing
System', Third Conference on the Applications of
Simulation, 1969, p. 130-137,

Martin, W. L., "System Analysis Program - A Simula-
tion Technique', Summer Computer Simulation Confer-
ence, 1970, p. 98-103,

Neilsen, N. R., "The Simulation of Time-Sharing
Systems", Communications of the ACM, vol., 10, No. 7,
July 1967, p. 397-412,

Neilsen, N. R., "ECSS: An Extendible Computer Sys-
tem Simulator', Third Conference on the Applica-
tions of Simulation, 1969, p. 114-129,

10,

11, Bairstow, J. N., "A Review of Systems Evaluation
Packages'", Computer Decisions, vol. 2, No. 6,

July 1970, p. 20.

12. Dahl, 0., and K., Nygaard, "Simula - An Algol-
Based Simulation Language', Communications of the

ACM, vol. 9, No. 9, Sept. 1966, p. 671-678.

13, McCredie, J. W., "Structure of Discrete Event
Simulation Languages', Summer Computer Simulation

Conference, 1970, p. 88-97.

14, Denning, P., "The Working Set Model for Program

Behavior", CACM, vol. 11, No. 5, 1968, p. 323-333,
15. Kac, M., "Some Mathematical Models in Science',
Science, vol. 166, No. 3906, Nov, 7, 1969, p. 695-
699,

Cumulative
Percuentage
1000 e
s T
e e =
=~
-
~
»<
V; —_
4
T -
Il
50 li
PR
i
!
!
!
'.
of
0 2 &4 6 8 10 12 14 16 1lb 20 22 24 20 28
Response Time iseconds)
Cumulative
Percentage
100
-
‘—" ~—~’ - .
- - —_
P el '
P '?"—' : :
sol /_ _ ~—e— Simulation
4 e — ~ ~ Actual System
¥
0
0 4 8 12 16 20 24 28 32 36 40 44 48 52
Page Faults per Interaction
Normal User Mix - Model vs. Real System
FIGURE 1I
150
120
+ ///;
.
90 7
Response
Time) j}//
(seconds) .
60 //// + Simulation
//// + o Actual System
30 .
0 +
1 2 3 4 5 6

Service Request (seconds)
Average Response vs. Service Request - Model and Real System
FIGURE 111 - HEAVY USAGE SCRIPT

205

AN

Response ! * + Simulation
n :
Time ',/// e Actual System
(seconds) 30 +
.f
20. ‘/
1] -
{
i s
1
Vo
0
1 2 3 4 5
Service Request (seconds)
Average Response vs. Service Request - dodel and Real System
FIGURE IV - PROBC JOB IN NORMAL MIX
40 __ 8 usec
Speed of
Bulk Core
— _ 4 psec
30 > 2.7 psec
Mean
Response
Time
(seconds)2g
10
0
20 40 60 (Users)
Mean Response vs. Number of Users ~ Different Speeds of Bulk Core
FIGURE V
~
1 ' 550
l
i
401
' .
i
Mean
Response 305 Size in Pages
Time | of User Bulk
{seconds) R ? Core
i 1050
!
20
10 e
/, / 0 1%
0 T T T T _.4////////
20 30 40 50 60 (Users)

Mean Response vs. Number of Users - Different Seizes of Bulk Core

FIGURE VI

