JOBSTREAM SIMULATION USING A CHANNEL MULTIPROGRAMMING FEATURE
S. E. McAulay

International Business Machines Corporation
San Jose, California

Summary

A rotational position-sensing feature designed for direct~
access devices reduces the time a hardware channel is busy
searching for disk records. This is accomplished by electroni-
cally dividing the track of a disk into equally spaced timing
sectors, using new hardware commands fo access desired sectors.
When an 1/O record ocated some distance away in rotation is
requested,, the channel disconnects to allow concurrent
seérvicing of requests from other devices. Through a combination
of hardware and software, multiprogramming at a channel/disk
level is achieved, thus improving channel performance.

In this study, overall effectiveness of the feature was
evaluated in a multiprogramming environment. Simulation at
high and low levels simultaneously required a unique approach
in the models. Hardware models were based on close tolerances
and exacting operations, while software jobstream models were
more generalized. The objective was to simulate a typical job-
stream in a typical multiprogramming environment on specific
hardware.

Introduction

Data transfer within a computer can be an inefficient pro-
gess. 1/O channels may be busy most of the time, yet only a
fraction of that time is used in the actual transmission of data.

A solution to speeding up the retrieval of data from a disk
has been infroduced in the form of a feature called rotational
position sensing (RPS). This feature combines hardware and
software to allow multiprogramming of direct-access programs
on a channel. The multiprogramming provides the means for
enabling a channel to increase its throughput, thus improving
overall system performance.

The use of RPS on a direct~access device reduces the time
a channel is busy searching for a disk record. A sector concept
is employed; that is, the surface of the disk is divided into
‘equally spaced timing sectors. Through new hardware com-
mands the individual sectors are accessed with negligible
channel activity. Record searching, which requires a dedi-
‘cated channel, may now be initiated just before the desired
record passes under the read/write head. Track formatting and
record placement is unchanged, although each record has a
sector location as well as a record address (see Figure 1).

Simulations of system performance were made to determine
the effectiveness of the RPS feature. The model for carrying
out the simulations is described in the next section. This is

; followed by the results of the simulation runs.

Simulation Vehicle

CSS/360 was used in this study. It is a simulation program
designed to analyze the operation of computer systems, espe-
cially System/360 configurations, In concept it is similar to
the General Purpose System Simulator (GPSS), differing in one
aspect: it is not general, but applies specifically to computer
systems, Thus, specific hardware may be accurately described
with parameters such as data transfer rate, seek timings,
channel data rate, CPU speed, etc.

Jobstream Concepts

The CSS package which was developed looks like OS/360.
Instead of performing work, the models merely add time incre-
ments to a counter, However, OS-like tables are kept, tasks

ACCESS MECHANISM &
READ/WRITE HEADS

ELECTRONICALLY
TIMED SECTORS

Disk surface. Tracks follow the circumference
of the recording surface with an index point as
the logical beginning of the track.

Figure 1

are created, and 1/0O models are called. The data management
models require data control block definitions analogous to OS
data management. Figure 2 shows the total CSS environment.

MULTIPROGRAM
SUPERVISOR—-0S -
MODELS

CSS
PROGRAM

*HARDWARE CON-
FIGURATION DEFINITION

® STATISTICS KEEPING

oSIMULATION CAPABILITY

DATA 1/0
MANAGEMENT SUPERVISOR
ACCESS
SCHEDULER
METHOD MODELS
MODELS

JOBSTREAM

Figure 2 Tofal CSS environment.

The simulated application program jobstreams were created
to simulate typical user jobsireams. Most often used was a
GET~GET-PROCESS~PUT-PUT algorithm. This algorithm
images the action of updating an account. Old master and
update records are processed, and a new master is writfen along

with a report of the transaction. This report under normal mul-
tiprogramming systems is initially written on a disk in an output
queve before printing.

Other 1/0O request algorithms were simulated, including
the following:

GET-PROCESS-PUT -- a file update operation

GET-PROCESS -~ a simple refrieval

PUT-PROCESS -- format operation, addition or file
creation

Each algorithm represents processing within an individual task.
These tasks were combined in several variations to simulate a
multiprogramming environment. A four-task operation was
simulated most often, representing typical multiprogramming
usage with 512K core size. This core size is assumed to be
common for a large segment of potential users.

Three record sizes were used in most simulations: full
track, one-fourth track, and one-eighteenth track. Full-track
blocks represent efficient use of device capacity. One-fourth
track blocks represent a compromise, losing some device
capacity and gaining core from decreased buffer space. The
one-eighteenth frack blocks (298 bytes on a 2314) approximate
frequently used sizes with 75% efficient use of device capacity
and small core requirements for record handling.

The simulated unit record equipment is assumed fo be on a
separate channel, not affecting operation of the RPS. The only
effect is an increase in processing time within the I/O request
algorithm.

Processing times were determined experimentally. In some
cases the values were set to match the System/370 runs, In
other cases, values were set to match CPU utilizations of some
I1BM systems as revealed by recent studies. Many of the simula-
tions show CPU utilizations around 15-30%. Test simulations
showed little or no 1/O performance change in most cases, when
increasing CPU utilization as high as 50-60%.

Assumptions Used in Defining Hardware Configurations and
Jobstreams

The CSS program includes many assumptions relating to
5/360 operations:

1. Timings -- based on 5/360 Model 65.

2. Disk geometric characteristics -- full track capacity =
7294 bytes.

3. Seek functions -~ defined with a continuous function having
minimum of 25 milliseconds and maximum of 130 milliseconds.

4.

5. Channel disconnection and reconnection -~ after discon~
nection of channel, attempt to reconnect is made 1.4
milliseconds before record (lead fime), Reconnection attempted
for 31 microseconds (pulse width of hold time).

Data rate -~ 312,000 bytes/sec.

6. Rotation speed -~ approximately 2400 RPM (+0 to -0.8%,
defined in terms of 25,000 to 25,200-microsecond cycle time).

7. Priority -- No I/O Supervisor priority other than default
priority sc!u?me when searching queues; in this case highest num-
bered partition or region has priority in scheduling new activity.

8. Nonformatting writes ~- actual output under control of -
Data Management is usually done with formatting write (writing
high-density one's after the data until the beginning of the
track is again sensed, to erase old data),

9. Search direct -~ sirategy simulated and used with fixed
record inputf processing.

191

10. Queued requesting -- overlapped processing used for most
simulations (sequential processing on one volume).

11. Buffering -~ default of two program buffers used most often.
Some simulations made using from 1 to 18 buffers. Normal buf-
fer management assumed with refilling of buffers by 1/0O
supervisor routines automatically when retrieving.

12. Simulated time -- ten seconds of processing time used most
often. This value was found to represent a minimum point of
stabilization within the simulator.

13. MFT logic == multiprogramming with fixed core partitioning
was assumed with no considerations for core restrictions. Where
multiple tasks were simulated, simultaneous starting was assumed
with no delays for such things as operator interventions.

14, System configuration -~ as in Figure 3.

CPU
360/65

/f
CHANNEL CARD READER| | CHANNEL
1 TIME ONLY X
CONTROL W%'PTUER u CONTROL
UNIT 1 TSNy UNIT X

"

SYSRES
ZERO
ACCESS
TIME

DRIVES

Figure 3 System configuration.

CSS Modifications

The CSS models represented a current operating system. To

;irﬁulate both present and future systems, they were modified as
ol lows:

1. 1/O Supervisor (I0S) models -~ changes were made to
bypass the stand-alone seek for devices where the 1/O lead and
hold times are specified (RPS devices). Timings were added for
the handling of a channel-available interrupt by the /O Super-
visor. The CSS seek-complete interrupt scheme logically allows
for this interrupt as it is being implemented in OS/360. The
10S modifications were made in the 10S portions of the data
access method models (Basic Sequential, Queued, and Direct

Access Methods).

2. |IBM 2314 device characteristics == geometric characteris~
tics for the 2314 Direct Access Storage Facility (i.e., 7294
bytes per track, 20 fracks per cylinder) were added under a new
generic device type. The new device fype also allowed
variance of rofation speeds within C55/360.

3. Write validity check -- the ability to simulate disconnec-
tion of the channel and position again on the record being
checked was added .

4. Search strafegz -~ simulation of the search-previous tech-
nigue was added w

5. . Formatting write -~ this is the method of writing used most
often by data management. CSS modifications were made to
allow simulation of formatting writes. Formatting causes the
confrol unit to remain in a busy condition after data fransfer,
until index-point. With non-RPS, device-end and channel-end
will be signalled at the end of data~transfer. This allows 1OS
to handle the resulting interrupt simultaneously with the format-
ting and frees the channel. With RPS, the last command may be
a read-sector if processing sequentidally and not calculating sec-
tors. In this case, channel-end and device-end occur after
formatting is complete although the channel disconnects until
index-point. [f the write is not the last command of the chain,
as with a read-sector comimand addition, the effect is one of
altering channel program completion point and changing
interrupt handling overlap points.

Simulation Run Results

A comparison was made of RPS versus non-RPS runs. In
some cases, mixtures of the two environments were used. Resulis
of several jobstream simulations are shown in Table 1. These
runs were made simulating both single-task jobstreams and 4-task
jobstreams. Our interest focused on changes fo channel utiliza-
tion relative to changes in number of RPS drives, and on overall
jobstream improvement. Note that the channel utilization sig-
nificantly decreased when the environment was totally RPS even
though throughput increased. This relief of the channel bottle~
néck was expected to be a major advantage of RPS. Ina
multiprogramming system the associated channel availability
would provide a potential for increased throughput. This poten-
tial would be dependent, however, on additional CPU space or
cycle time availability (i.e., whether or not the CPU is already
working -at full load).

Table T Simulations of S/370 runs

Total I/O

requests

RPS Total Channel CPU thru/ Improve~

Run drives Task drives busy,% used*% minute** ment,!%
1A None 1 4 95 12 2232 Base
18 All 1 4 64 12 2670 +20
2A None 4 4 94 21 3234 Base
2B 1of4 4 4 94 22 3420 +6
2C 20of4 4 4 92 29 4404 +36
2D 3of4 4 4 95 16 2401 =26
2E 4of4 4 4 23 29 5100 +58

*CPU speeds similar to S/360-65.
**Ten seconds total processing fime simulated (minimum
stabilization point).
tPerformance improvement is relative to non-RPS runs which
are shown as the base.

The addition of any drive with non-RPS channel programs
.jumps the channel utilization to over 90%. This increase is
mostly due to additional search fime which can be considered
non-productive time,)

A}

The performance improvement figures are certainly not
conclusive. The simulations shown in Table 1 were combined
~with other runs made in the study to draw some conclusions
» about mixtures of RPS and non~RPS programs. This is discussed
further in the section on Simulation of Interference.

The timings of all simulations assumed no 1/O time required
for system functions. That is, accesses of system libraries were
instantaneous with no channel time required. If system libraries

* were simulated on the same channel, results would be altered
significantly .

ere only search~direct strategy had existed.

CSS and System/370 Comparisons

Shown in Table 2 are the comparative runs on System/370
and Mod 44 hardware using an experimental 2314, The
measurements were made on experimental hardware and software
and were subject to implementation errors. CSS simulation
results of identical jobsireams are also shown. The comparative
runs were made on a jobstream particularly chosen to show opti-
mistic results, although saturation of the channel was not the
objective. No RPS and non-RPS mixtures were run.

Table 2 Performance comparison for System/370, Mad 44, and
CSS
Record (RPS improvement, %)
Run Tasks Jobstream size S/370 Mod 44 CSS
1 1 PUT-PUT-PUT-PUT 298,7294 +8 +11 +19
2 1 GET-GET-PROC-
PUT-PUT 298 +15 +21 +21
3 1 RUN2WITH 2ND
"PUT VERIFY 298 +13 * +17
4 1 GET-GET-PROC-
PUT-PUT 7294 +5 wk +12
5 4 GET-PROCESS IN
EACH TASK 298 +35 +6 +26
6 2 GET PROCESS PUT
(EACH TASK) 298,1693 +16 +18 +19

*Write verify not implemented.
**Not sufficient core.

The comparisons of simulations and hardware measurements
show a trend. CSS resulis tend to frack about 3 to 10% high in
comparison to the System/370 results. Assuming that the trend
remains accurate, fKe simulation models may be used to predict
performance results in areas not yet measured by actual runs.

Predictable Variations

The simulations as compared to measurements are slightly
optimistic; however, the CSS runs have some variations which,
in part, explain the optimism. At the time the simulations were
being done, the real implementation was not known. (See the
section on CSS Modifications.) First, for output, CSS simu-
lates a nonformatting write in the comparison runs. Actual OS
data management in most cases formats unless the disk has been
preformatted with rigid record sizes and placement. CSS simu~-
lations of the eight runis did not maintain the control unit busy
condition while formatting after data fransfer. This condition
was not available in the model. Second, CSS models, as used
for the comparison runs, simulated a search-direct strategy,
while actual measurements used a search-previous strategy
(e.g., search on record 2 to write record 3).

Simulation of Interference

Interference in an RPS environment refers to the situation
where RPS and non~RPS channel programs are concurrently
active on the same channel, The non~RPS channel programs
tend fo pre-empt the others, due to the long periods of channel~
busy time associated with their search operations. The RPS
channel programs disconnect while the control unit locates sec~
tors. If the channel is busy when the sector is found, the
control unit waits one full rotation and attempts reconnection
again. The non-RPS programs do not disconnect after starting,
thus insuring completion within one rofation. This is efficient
for an individual request, but impacts total system performance.

To simulate interference, RPS and non-RPS channel pro-
grams were infermixed in a multiprogramming environment. For

192

non-RPS, a model of the present OS/360 queued access method
was used as the simulated access method (representing, for
example, a user program which does not use IBM standard data
management access methods, or the result of mixing a non-RPS
disk file on the sume channel).

The simulations revealed significant variations in priorities,
channel utilizations, and system throughput. . In the study, four
drives were used with combinations of RPS and non-RPS to
determine the effects of interference. Table 1 shows the
resulting throughput relationships.

As is obvious from Table 1, the case with only one non=-RPS
program should be avoided. A performance gain is made with a
2:2 vatio although channel utilization is not lowered. All simu-
lation runs indicated that the case with only one non-RPS
channel program mixed with all RPS produces the poorest
performance.

Individual Task Performance With Interference

One factor not mentioned so far is the effect of RPS and
non-RPS mixtures on individual job performance. Listed in
Table 3 are the 1/0 request relationships for the simulation runs
shown in Table 1. Four tasks were checked in the study, mixing
RPS and non-RPS channel programs to examine variations of 1/0O
completion rates. The table shows how tasks without RPS chan-
nel programs can unbalance a muliiprogramming environment.
For 2314's, the maximum possible for one drive would be one
per rotation which is equivalent to 40/second (2400 rpm).

Table 3 Four-task mixiure study showing /O requests
completed per second
Run 1 Run 2 Run 3 Run 4 Run 5
All 3 non, 2 non, 1 non, All
Task non-RPS 1 RPS 2 RPS 3 RPS RPS
1 13 19 36 40 20*
2 13 19 37 1% 20%
3 13 19 1% 2% 23%
4 13 0* 1* 1* 22%
Total 52 57 75 44 85
*With RPS.

In the mixed runs, the individual tasks supporting RPS are
penalized. Note that in no cases are the non-RPS tasks
penalized.

The effect produced by changing record sizes is similar to
that shown above. One simulation was made with a mix of 298-
byte requests with full track requests. The algorithm for
requests simulated an updating process. The non-RPS task again
shows improvement in the mixed environment at the expense of
the RPS fask. Shown in Table 4 are the results.

Table 4 1/O completions per second
Run 1 Run 2 Run 3 Run 4
Both 1st task 2nd task Both
Task non-RPS non-RPS non-RPS RPS
1 (298 byte) 12 64 2.4% 5%
- 2 (full track) 20 2.5% 24 25%

*Tasks with RPS support.

If only one segment of processing is considered, in light of
bytes transferred and 1/O request rates, the following results:

Task 1 non (298), and Task T RPS, and

Task 2 RPS (full track) Task 2 non Both RPS
-85% bytes transferred® =1.5% bytes +2.9% bytes
+104% requests complete® -17.6% requests ~7.7% requests

193

*Total throughput.

The above statistics consider only one segment of time and
confinuous operation of both tasks. With non-RPS tasks initially
dominating the channel, jobstreams tend to end with a pure RPS
environment. Under these conditions, it is possible for“the pure
RPS environment to show sufficient improvement over non-RPS
to overcome results of the earlier mixed environment. The
potential improvement would, however, be dependent upon
length of the non-RPS versus RPS task.

An Additional Performance Factor (Rotational Speed Variations)

Obviously, a shorter cycle time for any given device yields
improved performance. One factor often not considered in
developing models of hardware, however, is the cycle time of
each drive in relafionship o the others. Tolerances of the 2314
drives allow 12% rotation variance from the desired 2400 RPM,
while experience reveals an actual varionce befween 2390 and
2400 RPM, with no samplings showing slower disk cycle times.
Intuitively, closer tolerances would seem desirable. In sequen-
tial operations, however, a wider range of RPM's between
drives improves simulation performance. This apparently resulis
from the randomizing effect applied to record positioning.
Without rotation variance, the simulator performance as though
all index poinis were rigidly aligned, definitely not a real
world case. Figure 4 shows one case where onf; rotational
speed was varied. A base on drive 1 was used as 25,000 micro-
seconds. Drives 2, 3, 4, 5, 6, 7, 8 have the rofations time
lengthened (i.e., 25,010 for Drive 2, 25,020 for Drive 3, etc.).

50

B

£ 4ol

Y1}

=

=

S 3ol

[

=

8

S 20

=

=

S

L0

Ll

a

I 1 1 L
0 10 20 30 40 50

CYCLE TIME, jLSEC

Figure 4 Results of variations in rotation speed.

Conclusions

Performance simulations revealed the following general
trends:

1. Pure RPS environments show potential for good results.
Future jobmix throughput performance compared to present per-
formance should show general improvement from 5% to 30%
without changing hardware speeds, etc., and with no change to
application programs.

2. Priority queveing has little effect on the order of comple-
tion of the request in a mixed environment, as the non~RPS
requests always have priority over RPS requests. The overall
effect on priorities, however, may be negligible.

RPS is a desirable concept and, if fully utilized, can pro-
duyce good performance gains. Mixtures of RPS and non~RPS
devices on the same channel should be avoided to realize the
greatest throughput potential.

194

Acknowledgements

Initial simulation studies were made using a GPSS model
developed by N. L. Chase. Additional studies, including the
one described herein, were directed by J. S. Barnéy. A Shiba-
miya provided initial modification of the CSS models for RPS
simulation while educating the other team members in the design
and use of the simulation tool. L. R. Shipman provided
modifications and enhancements to the CSS models.

