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Summary

This paper indicates the applicability of statistical
procedures, known as response surface methodology,
"to the design and analysis of experiments performed
'with a stochastic simulation model, Fundamental
simplex-sum designs are displayed explicitly and in-
ferences therefrom are interpreted in terms suitable
to the optimisation of the simular response function,

Introductory Remarks

The specification of the environmental conditions
for a simulation model and the subsequent observa-
tion of the model's behaviour may be termed an en-
counter with the model (or, a simular encounter).

By means of alternative specifications for the model's
environmental conditions (as reflected in the input
'data of a computerized simulation), one may experi-
ment with the model in an endeavour to achieve either
of two goals: ‘

(2) to ascertain the relative importance of alternative
poiicies, of dissimilar environmental conditions, or
of differing parametric specifications as they affect
the simular response at some point, T, in simular
time; or,

(b) to determine that combination of policies, envi-
ronmental conditions, or parametric specifications
which will provide, according to some criterion, the
‘optimal simular response at the end of T simular
time units,

For the purposes of this paper, we shall denote
the simular response at the end of T simular time
units by Y{(T), an univariate quantity which is charac-
teristically represented by the status of some system
attribute whenever the simular clockworks arrives
at time T. Furthermore, we shall presume that the
class of simulation models of interest is the stochas-
tic category, requiring along with its input (environ-
mental) specifications one or more random number
seeds for each encounter. The simular response be-
comes then a random variable

T(T) = Yy, 0ensxis)
where x ’XZ’ cees xp denote p environmental conditions

1
other than the seed s. Quite generally, one may write

ce = e
Y(xi’xz’ . ,xp,s) f(xi,xz, . .,‘,xp) + ¢(s),
where f is also a function of unknown form, and
where €(s) is a2 random variable of mean zero and of

2 s o
variance ¢, regardless of the environmental specifi-
cation (x‘1 P Egseees xp). Thus the stochastic simular

'
i
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response becomes representable as
Y(T) = f(x;,x,,.. -,xP) +e(s),

. . 2 .
a random variable of variance o° and with expecta-~
tion:

EX(T)]= f(xi,xz, .o ,xp) s

denominated the simular response function. The
function, when plotted in terms of the p environ-
mental conditions, may be considered a hyper-sur-
face, herein referred to as the simular response
surface.

Presuming that the stochasti¢ simulation model
has been properly verified (i.e., the model and its
component modules have been checked in order to
assure that each responds in accordance with its in-
tended, programmed structure) and has been adequ-
ately validated (i.e., the model has been compared
with the known behaviour of the simulated system),
the analyst should be in a position to commence sys-
tematic experimentation with the model, This ex-
perimentation shall be in consonance with one of the
aforementioned purposes and shall require, since the
model is presumed to be of the stochastic variety,
the use of appropriate statistical techniques.

If the purpose of the experimentation is to ascer-
tain the relative significance of alternative environ-
mental specifications, the analyst shall likely employ
either the technique of the analysis of variance or its
close associate, regression methodology. These
procedures permit one to vary simultaneously, yet
in a scientifically organised fashion, a number of in-
put variables so as to estimate the marginal simular
response attributable to each altered environmental
condition. For the application of these statistical
procedures, the reader is referred to the review
paper of J. S. Hunter and T. H. Naylor (1970) or to
the monograph of A. Huitson (1966).

The concern of this paper shall be the second of
the aforementioned analytical goals of simular ex-
perimentation; viz,, the determination of the envi-
ronmental specifications (i.e., input conditions)
under which the simular response function attains its
optimal value. Without significantly restricting ge-
nerality, -one may presume that the locus (xi, X5,

e xp) at which f(xi, oy ey xp) attains its maxi-

mal value is sought. This search shall necessarily
be conducted by defining successive encotrters with




the simulation model until such time as the desired
locus can be reasonably well affixed, Underlying the
motivation for the search is, of course, the anticipa-
tion that the optimal simular environmental specifi-
cations, when translated into terms of the operating
conditions for the simulated system and when imple-
mented there, shall provide a nearly optimal system
performance as well.

The Simular Response Surface

The simular response function f(xi, Hysees ,xP) is

then the mean value of the simular response, a ran-
dom variable dependent upon the specification of p
pertinent environmental conditions. These input con-
ditions, or factors as they are termed, may be of
one of two types:

(2) qualitative - those environmental conditions
which are usually best considered as variates which
assume at most a finite number of values; and

(b) quantitative - those environmental conditions
whose assignable values may be deemed to consti-
tute a continuum of real numbers.

Qualitative factors are typified by policy specifica-
tions, such as an input parameter whose values de-
note whether a queuing discipline shall be FIFO
(First In, First Out) or LIFO (Last In, First Out),
whereas quantitative factors are exemplified by a
fluid flow rate which is deemed variable between su-
ccessive model encounters,

The determination of the relative effects of quali-
tative factors upon the simular response is ideally
suited to the factorial experimental designs, whereas
the assessment of the relative significance of altera-
tions in quantitative factors is in reality amenable to
analysis by means of regression techniques. It is
the latter type of factors which shall be of interest in
this paper.

Indeed, one may presume that the initial analyses
of encounters with the simulation model have pro-
vided an adequate understanding of the effects of the
pertinent qualitative factors, so that all p of the fac-
tors remaining as independent variables in the simu-
lar response function, f(x:1 o IAEEE) xp), may be

assumed to be of the quantitative type. If the simu-
lar response function can be assumed to be a conti-
nuous and well-behaved function of these quantitative
variables, then one may represent the function as a
Taylor series about some particular environmental
condition, ‘

XZ,O’”"xp,O) .

This representation then becomes

. P =
f(x XZ,...,XP)—f(XO)'i' Z_Ifk(xo)'(xk xk,0)+
k=1
. p P .
4+ v T f (x).(x x Jelx -x, Y+...,
k=1 g=1 0 k k, 0 2 £, 0

185

where fk(;;) denotes the first partial derivative, eva-

luated at ¥., of f with respect to xk, and where

0
(x } is the second partial derivative, evaluated at
E'O“, offw1th respect to x andxz, 2, k=1,2, ...,

P-

The selection of the particular vector, EB, of en-

vironmental specifications is somewhat arbitrary,
though the choice shall presumably reflect one's a
priori, subjective speculations regarding the location
of the optimal simular response; alternatwely, in the
absence of such speculations, one may select xo as

that vector of input conditions which corresponds to
the simulated system's standard operating conditions.
For reasons which shall become apparent momen-
tarily, the vector

x0= (xi,O’xZ,O’.“’XP,O)

shall be referred to as the initial search center.

The subsequent discussion shall be considerably
simplified if, without loss of generality, one trans-
lates the p quantitative factors, x1 , XZ’ P xp,
according to the transformations:

R W
where S is an appropriate scale factor for the k

variate, k =
(2,2,

of search variates, the Taylor series representation
for the simular response function becomes:

1,2,...,p. Interms of the vector
e zp), termed the search vector or vector

P
f*(z,z,...,z)‘B +z Bz +
172 Ok=1 k'k
(1)
P P
X ¥ B, =z e
k=1 g=k ks k4
where
By = £%g)s
Bk“Skfk(xo), k=1,2, ..., p »
Bkz—sksszz(xo)’ 1<k 2=2,3, ..., p,
ﬁkk k kk(x )/Z k=4=1,2,..., P ,

et cetera,

Ideally, the scale factors (Sk) are to be selected

so that unit changes in the resulting search variates
(zk) would provide essentially the same marginal

simular responses, But, since this knowledge is
presumably of the very nature of that being sought
by the experimentation itself, the analyst shall need



‘course boundless,

to select these scale factors with some care. One
approach is to select each Sk as that change (in units

appropriate to the original quantitative factor xk)

which requires a unit cost to implement in the 5ys-
tem being simulated; in this manner, unit changes in
the search variates correspond to equivalent marginal
costs for their corresponding implementation in the
simulated system.,

Once the search variates have been defined, the
experimental/analytical task of locating the optimal
simular response may be begun., The search proce-
dure may be summarised as a two-phased operation:
(a) an initial search phase, during which the beha-
viour of the simular response function is approxi-
mated by p-dimensional hyperplanes, the phase ter-
minating whenever an approximating plane is found
devoid of any significant tilt; and,

(b) 2n intensive search phase, during which the na-
ture of the simular response function is revealed by
the estimation of approximating surfaces of higher
degree, so that the locus of the optimal response may
be more accurately situated.

This search procedure is conducted in terms of the

search variates, Zk’ but, once located, the situs of

the optimal simular response may be unravetlled and
presented in terms of the original environmental con-
ditions by means of the inverse translations,

1,2,..., p. (2)

The general procedure for exploring the simu-
lar response surface in a p-dimensional search space
is somewhat constrained by the difficulties of pictori-
ally representing a general hypersurface in more than
two dimensions. Thus, the remainder of this paper
shall be constituted by an explanation of a useful re-
sponse surface methodology, applicable (without an
attendant loss of generality) to the search for the lo-
cation of the optimal simular response whenever the
simular response surface may be deemed functionally

dependent upon only two quantitative factors, x and

X, Alternatively, the simular response surface may

_be considered a function of the two search variates,
7y and Z,: f*(z1,z2). A representative selection of

four types of such response surfaces is presented in
Figure 1.

The varieties of such response surfaces are of
Those depicted are representative
of the types of response surfaces which shall likely be

-encountered by the analyst who searches for the ma-

ximal simular response. An alternative presentation
for the simular response surface is the two-dimen-
sional plot of its ischypses, or contour lines, each of

which connects the locations (xl, XZ) at which the re-

sponse surface assumes a constant altitude;

Figure 2 depicts contours for the four types of
response surfaces displayed in the preceding figure;
viz, ,

(2) a unique maximum;
(b) a ridge of maxima;
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(c) a rising ridge; and,

(d}) a minimax,

The reader should note that, in the first two cases,
(2) and (b), the maximal simular response is extant,
though in the second situation (b) there exists a num-
ber of environmental specifications (xi,xz) at which

the maximal response is attained. The loci of these
maxima may be referred to as a stationary ridge,

A second type of ridge is depicted in the third con-
tour, graph (c). Here, no search procedure shall be
capable of locating the maximal simular response,
yet, if the nature of the rising ridge could be ascer-
tained, environmental conditions could be Fapidly
altered so as to improve the simular response,

In the last graph (d), 2 minimax (or "'saddle-point')
exists. If one were to search in the xz-direction

along a line passing vertically through the contour
labels (1 and 3), he would declare that a maximal re-
sponse, somewhat less than 4, would exist, If a

similar search were conducted in the xz-—direction,

yet a few xi-u.nits to the right or left, an inevitable

conclusion would be derived that the maximal re-
sponse be, say, 4, 6, or 8, depending upon the x

1
situs of the search, Of course, were a search to be
conducted along some fixed xz-value, one would like-

ly discover an apparent minimal (but no maximal)
simular response. Hence, the term minimax is
applied, as the ''saddle point'' constitutes either a
minimum or a maximum, dependent upon the direc-
tion from which it is approached along the surface.
Because of the possibility of such contingencies, it
is wise to conduct the search simultaneocusly in the
several quantitative variables, rather than by alter-
ing one variable at a time.

The Initial Search, or Isolation, Phase

As a function of two search variates, 2z, and Zys

the simular response surface may be written

£4(z,,2,) = By + (8,7, +B,2,) + -

2)-l-...

2
(8 +Byp%17, ¥ B2,

11%4

1 =
zZ, = 0 (i.e., at the initial search center), [Sk repre-

where ﬁo represents the height of the surface at =z

sents the slope of the surface at the search center in
the direction xk, ﬁk.@ represents the second deriva-

tive of the surface at the search center with respect

toxkandxﬁ, 1<k=yp=1,2,..., p; et cetera, One

may presume that, in a sufficiently small neighbor-
hood of the search center, the simular response func-
tion can be represented by the planar approximation,

~

f*(zi’zz)=ﬁo"i'ﬁ1z:l +[3222=f1*(z1,z2), (4)

for (z,, z ) within, say, the unit circle or square cen-
tered "at the origin.



By means of this proximate representation, the si-
mular responses themselves become
= +
Y(T) = B, + Bz, *+ Bz, + c(s)
where ¢(s) now represents a random variable whose
distribution is affected by errors of two types:

() the inadequacy of the planar approximation,
fi*(zcl s ZZ)’ as a functional representation for the

simular response function; and,

(b) the intrinsic variability inherent in the structure
of a stochastic simulation model.

Nonetheless, it has become accepted procedure to
assume that thg random variable ¢(s) has mean zero
and variance O throughout the area immediate to the
search center. (Cf: O. L, Davies (1954).)

Furthermore, if a set of N search vectors,
(Zi’ ZZ)j’ j=1, 2, ..., N, is defined within the

search area immediately surrounding the search cen-
ter, and if a set of N corresponding encounters are
specified by the environmental conditions correspon-
ding to these search vectors and by an independently
and non-repetitiously selected random number seed,
then the resulting simular responses,

= f % &
Yj fi (Zi’ZZ)j e(sj) s
shall constitute 2 normal random sample if one as-
sumes that the error terms, e(sj), are normally and

independently distributed random variables, j =1, 2,
wesy N. If the search vectors, (Z'l’ ZZ)j , are distinct

points in the search area, then each Yj shall have its

f *(z

own mean, f3 ( 1 Zz)j’ though their common variance

shall be 0,

Ideally, one should seek to specify as many search
vectors (Zi’ ZZ) as possible, thereby affixing the a-

lignment of the planar approximation, [30 + p‘si 2, o+ BZZZ ,

as accurately as possible, Yet, since the planar re-
presentation is at best approximate, and since each
selected search vector implies the organisation of a
separate encounter with the model, one is frequently
required to resort to the selection of as few search
vectors as are adequate to estimate the three coeffi-
cients: {30, ﬁi, and [32.

The selection of the necessary search vectors for
such a purpose is termed an experimental design, the
selected vectors of which may be referred to alterna-
tively as the design points, Adequate for the purpose
of estimating the three coefficients, then, is a set of
three design points, provided that the three points
are not collinear in the search area,

An experimental design of some virtue for the es-
timation of the three coefficients, [30, Bi’ and {32, is

the equilateral triangular design, which permits the
analyst to select as the three design points the ver-
tices of any equilateral triangle which is inscribed in
the unit circle centered at the search center. Two
possible orientations of such a design are depicted
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in Figure 3. Once the three design points have been
selected, the corresponding environmental specifica-
tions may be determined, in accordance with Equation
(2), and employed together with independently selected
seeds in order to specify the input conditions for three
successive encounters with the simulation model.

If the design points employed are (0,1),(-/3/2, -1/2),
and (*/-5/2 -1/2}), the vertices of Figure 3 marked by
crosses (X), the resulting simular responses, Y'l’ Y.,

2
and Y3, respectively, may be employed in order to
obtain the unbiassed least-squares estimates:

By = (Y, #Y, +7,)/3,

B, = (Y, + Y/, ()

and

B=y, -Y,-Y,)/3 .

With these three estimates, the planar approximation
to the simular response function may itself be esti-
mated at any point (Zi’ ZZ) in the search area by

(6)

<

The contours of this estimated simular response may
then be plotted by solving for loci (zi, ZZ) such that

v = Iy o a Iy =

y {30 {31z1 + ﬁzzz c (constant) ,

for selected constants, c¢. (An initial and convenient
selection for such a constant might be 60; others may

be selected from computationally convenient values
near this initial constant.) A typical set of contour
lines for the estimated planar approximation is dis-
played in Figure 4.

One may note from these contours that the appa-
rently optimal direction in which to move in order to
locate a new search center shall be in a direction per-
pendicular to the contour lines. Movement in this di-

rection is the equivalent of movement, in the z, and

zy directions, proportionate to ﬁ and EZ’ respective-

ly, so that the subsequent sea.rch center may be lo-
cated at search vector (k [31, k pz), for some constant

k, chosen so that the new search center be situated
not too far outside the present search area; the moti-
vation for such a recommendation may become more
apparent when one considers that the current esti-
mates, y, of the simular response surface are based
merely on a planar approximation.,

About the newly located search center, which may
be relabelled (0, 0) in terms of newly defined search
variates, another equilateral triangular design may
be defined and a triplet (Yi’ YZ’ and Y3) of simular

responses subsequently recorded,
timated slopes, 61

the search to another center,

The resulting es-
and (32 may again be used to move

Such a procedure



should continue until the estimated slopes are no
longer significantly different from zero, at which
point one may presume that a stationary point has
been located at or near the most recently employed
search center.

The determination of the significance of the magni-
tudes of ﬁ and [3 must, since they are transforma-

tions (Cf: Equatlons (5)) of random variables and
therefore random variables themselves, depend upon
knowledge of the intrinsic variability of the simular
responses, as measured usually by the error vari- -
ance, ¢°. Unfortunately, unless a priori information
has been acquired regarding the magnitude of 0“, no
information is available from the recorded responses
about any particular search center. (The reader may
verify that the estimated simular response,

* 8,2,

passes directly through the three loci ((z R zz) .5 Yj)’

j=1, 2, and 3, so that no measure of the lack of fit
for the planar approximation is available,)

The situation may be somewhat rectified by the
addition of a fourth design point to any one of the
equilateral triangular designs. By situating this de-
sign point at the particular search center (0, 0) and by
denoting the resulting simular response there by Y4,

the least-squares estimates of Bi and f32 remain un-

changed, whereas the estimate of ﬁo becomes

Bp= (Y, #Y,4Y, 47 )/4 {7)
. Under the assumptions of the normality and indepen-
dence of the distributions of the four error terms, an
unbiassed estimate of the error variance becomes
o (8)

2
=(Y, +Y,+Y,-37) /12,

a statistic which is independently distributed of 5; and

5‘2 . One may show (See G. A, Mihram (1971).) that

an appropriate test of a null hypothesis of the form,

HO: ﬁk =0,
results from the computation of the respective test
' statistics

~ 2 NZ
= 2 =
T, = 3(8)° / 2(6%), k=1or2, (9)
and comparison of each with the cumulative distribu-
tion function for a Snedecor's variate of one and one
degrees of freedom. The null hypothesis is rejected

whenever the computed statistic, Tk’ is improbably

large with res pec£ to this F distribution; otherwise,
the magnitude of {Sk cannot be assumed to be signifi-

cantly different from zero.

The reader may note that the proposed estimate of
the error variance is actually a measure of the inabi-
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lity of the estimated plane,
~ + 3
y =By H By H B2,

to pass exactly through the four points in Euclidean
three-dimensional space; indeed,

- Y-) ]

the sum of the squared deviations of the observed re-
sponses Yj at (zi, ZZ)j from the estimated responses,

~

y., at the same loci. One must conclude then that

o~ represents a measure of the lack of fit of the
planar surface to the four points and is therefore not
a true measure of the intrinsic variability in the si-
mular responses. Nonetheless, its use in the sug-
gested F-tests for determmmg the significance of the
magnitudes of 6 and {52 is widespread.

Thus, the movement from search center to search
center continues until such time as both ﬁi and Bz,

‘the estimated planar slopes, become {nsignificantly'

different from zero. This insignificance is measured
with respect to the most recent estimate of the error
variance © As a matter of fact, one need not re-
peatedly employ the central design point in other than
the initial equilateral triangular design, for a valid
estimate of ¢% is assumed valid throughout the search
region. Of course, greater accuracy in the estima-
tion of ¢” may be obtained if the error variance esti-
mates, o, as they may arise in successive equila-
teral triangular designs, are pooled together, In this
case, however, the degrees of freedom for Snedecor's
F test must be altered accordingly, the details of
which may be found in Huitson (1966).

The Intensive Search, or Local Exploration, Phase

Once both estimated slopes, [r3v1 and BJZ , are no

longer significantly different from zero, the analyst
may tentatively entertain the notion that the most re-
cently employed search center is in the proximity of
a stationary point on the simular response surface,
Indeed, at such a stationary point, the actual slopes
31 and BZ would be null,

In order to develop further insight into the nature
of the simular response function at this search center,
one may next attempt further experimentation in the
immedjate search area, This experimentation should
be designed to estimate an approximation to the simu-
lar response surface more accurate than the planar
representation; for this purpose, the quadratic appro-
ximation,

2
11720 ¥
B,.,z + B z'2
12%1%2 T P22% -

%, =
£Mzy52,) =By ¥ Byz) * Bz, B

(10)

for the simular response surface may be employed,
Assuming that the simular responses in the immedi-
ate neighborhood of the most recent search center



may be denoted as
= %
Y(T) = £,%(z,,2,) + (s,

where again €(s) is an error random variable of mean
zero and variance 0“ representative of variations due
both to the inadequacy of the quadratic approximation
and to the intrinsic stochasticity of the model, then
one seeks an efficient experimental design which will
permit:

(2) the facile and unbiassed estimation of the coeffi-
cients,

-

(b) accurate estimation (in terms of low statistical
variance))both of the coefficients and of the quadratic
approximating surface,

Minimally, such a design should require six dif-
ferent environmental conditions and, hence, six en-
counters with the simulation model, Ideally suited
for this purpose, it would appear superficially, should
be an hexagonal design, for the design could be readily
achieved by the superimposition of an inverted equila-
teral triangular design atop the most recently em-
ployed triangular design with center at the most re-
cently employed search center, as depicted in Figure
3. In this manner, only three additional simulation
encounters would need be defined, those correspond-
ing to the loci marked by naughts (0) in the figure.

The description of the resulting simular responses,
their loci in terms of the search variates, and their
respective expectations are presented in the first six
rows of Table L.

Despite the apparent optimality of the hexagonal
design, it suffers from one minor defect; viz,, the
least-squares estimates of the coefficients Fare
linearly dependent random variables and therefore
are not unbiassed for the individual parameters. The
statistician would say that the estimators have con-
founded the coefficients to be estimated. Nonetheless,
this defect is indeed minor and may be readily over-
come by the definition of a seventh simulation en-
counter at the current search center itself, The cor-
responding response, Y7, and it properties are deli-

neated in the last row of Table I.

As a matter of fact, the analyst may well have al-
ready recorded a simular response at the search
center during the most recent stage of the initial
search phase, in which instance only the three addi-
tional responses, those above the vertices of the
superimposed equilateral triangular design, need be
recorded. As a result of recording the total of the
seven simular responses, one may estimate unbi-
assedly the six coefficients by means of the following
linear combinations:

~

ﬁo = Y7 E

n

B /3 (-Y, + Y, - Y +7,)/6,
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-2Y +Y

P, =Y, - ¥, -7, PR

+ Y06,

+2Y, -Y 42Y_. +2Y

By = (Y, F2Y, 37 Y4 5 6

- 6Y.)/6,

(11)

p512=f3_(y2 R AR SRS ATER

5

and

By = (Y, +Y, -2 )/2.

4

Since the estimates are those of the least-square pro-
cedure, the assumptions of the nullity of the means of
the seven error terms, their homogeneity of variance,
and their mutual lack of correlation imply that, among
all unbiassed estimates of the elements of p which are
linear combinations of the seven recorded responses,
the preceding estimators have the least variance.

(Cf: Gauss-Markov theorem, as discussed by Graybill
(1961).) Thus, in a certain sense, the accuracy of
the estimators is assured.

In the neighborhood of the search center, the si-
mular response function may be estimated at any
point (zi’ ZZ) by

v 2
P22%s -
(12)

~ o~ e ~ ~ 2~
y =Byt Bz ¥ By, £ By m F By Y

itself a random variable having expectation fz*(z/1 , ZZ)

and variance which may be computed as

Var(y) = L6 - 10(z12+ zZZ) n 9(212+ 222)2]/6. (13)

Of primary import is the plotting of the isohypses of
the estimated quadratic approximation to the response

. surface, accomplished by plotting loci (Zi’ ZZ) for

which ¥ = ¢, constants chosen at the discretion of the
analyst, (Again an initial choice of ¢ = 60 is recom-

mended, the subsequent constants being selected for
computational convenience and pictorial appeal.) The
transformation of the quadratic form, '37, to its cano-
nical form before plotting the contours, as discussed
in the book edited by Davies (1954), is also recom-
mended.

The resulting contours for the quadratic shall be
of one of four types, corresponding to the four types
of surfaces depicted in Figures 1 and 2; viz,,

(a) concentric ellipses - a single maximum;

(b) parallel lines - a stationary ridge of
maxima;

(c) parabolae - a rising ridge;

(d) hyperbolae - a minimax .

Depending upon the category of the isohypses, subse-
quent search may be undertaken in the respective
cases by:

(a) defining another augmented hexagonal design at
the center of the ellipses, so as to reconfirm its
position as the locus of the maximum;

(b) defining equilateral triangular designs along the
apparent stationary ridge of maxima so as to explore
further the possibility that a stationary ridge truly



exists;
(c) defining equilateral triangular or hexagonal de-
signs at an appropriate point along the apparent rising
ridge so as to verify that such a ridge indeed exists
on the simular response surface itself; and
- (d) defining equilateral triangular designs in both di-
rections away from the apparent minimax location and
toward apparent optimal increase, thus exploring the
possibility of a bimodal simular response surface,
In each instance, the subsequent exploration of the
simular response surface may be conducted in accor-
dance with the aforementioned design and analysis
procedures,

Conclusions

This paper presents a fundamental approach to the
search for a description of the simular response sur-
face, defined as the locus of the expectations of the
simular responses, random variables each of which
derives from a particular envirommental specification
¥ for a stochastic simulation model. The paper has
dwelt upon the exploration of such a surface by means
of the simplex experimental designs of the equilateral
triangular and hexagonal varieties, which are quite
‘adequate for estimating planar and quadratic approxi-
mations to the simular response surface as a function
of two environmental conditions.

In the likely event that one's simular experimenta-
tion should involve examinations of more than two
factors, these designs admittedly shall not be ade-
quate for the purpose; however, they do depict the
fundamental phases in the search for optimal simular
environmental conditions, and are readily extended
to simplex designs in three or more dimensions (Cf:
'G. E.P. Box and D. W. Behnken ({960)).

These experimental techniques have been fruit-
fully applied to industrial processes wherein the pro-
cess' operating conditions are readily controllable,
as reported by G. E.P. Box and J. S, Hunter (1958),
They shall prove equally applicable to the study of
the behaviour of stochastic simulation models, for
the environmental conditions of such models are quite
easily controlled by means of alternative input data
descriptions. The assignment of independently and
non-repetitiously selected random number seeds for
the successive encounters during the simular experi-
mentation assures the necessary randommess for the
application of these designs and their subsequent
analyses.

Of particular interest is the quite sequential deci-
sion process which is implicit in these search proce-
dures. One would prefer to know whether the recom-
mended simplex procedures are the optimal approach
to this experimental technique; i.e., could alternative
techniques or search procedures locate optima, ridges,
or saddle points with less effort or fewer simular en-
counters? Which decision variables, such as the size
of the equilateral triangles (or other simplex designs,
such as squares, or regular pentagons and hexagons)
or the size of the step to be taken in the movement be-
tween successive search centers, affect the quality of
the search most ctritically? The answers to these
queries pose interesting research problems, the an-
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swers to which may prove to be best answered via
Monte Carlo sampling techniques, though some ana-
lytical results are available in the paper of Brooks
and Mickey (1961).

Acknowledgement

The author gratefully acknowledges the support of
the National Science Foundation, under whose grant
number GK-5289 this paper was prepared.

References

1. Box, G.E.P. and D. W. Behnken (1960), "Sim-
plex-Sum Designs: A Class of Second Order Ro-
tatable Designs Derivable from Those of First
Order', Annals of Mathematical Statistics, 34,
838-864,

Box, G.E.P. and J. S. Hunter (1958), "Experi-
mental Designs for the Exploration and ExploitaZ
tion of Response Surfaces', pp. 138-190 of Ex:
perimental Designs in Industry, edited by Victor
Chew, published by John Wiley and Sons, New
York.

Brooks, S. H. and M. R, Mickey (19641), "Opti-
mum Estimation of Gradient Directions in Steepest
Ascent Experiments', Biometrics, 17, 48-56,

Davies, O. L. (1954), Design and Analysis of
Industrial Experiments, Hafner Publishing Com-
pany, London.

Graybill, F. A, (1961), An Introduction to Linear
Statistical Models, McGraw-Hill Books, New York

Huitson, A, (1966), The Analysis of Variance,
Hafner Publishing Company, London.

Hunter, J. S. and T. H. Naylor (1970), "Experi-
mental Designs for Computer Simulation Experi-
ments'', Management Science, A16, 422-434,

Mihram, G. A, (1971), Simulation: Its Statistical
Foundations, Academic Press, New York,

TABLE I
Loci and Expectations of Simular Responses,

Hexagonal Design

Expectation
Response Loci
By Py Ba By By Byp
Y, (0,1) 1 0 1 0 1 0
Y, («+/3/2,-172) | 1 /372 -1/2 3/4 1fs +/3/4
Y, /372, -1/2) | 1 +/372 .1/2 374 1/4 -S3/4
Y, (0, -1 1 0 -1 0+ 0
Y, (-/312, 4172y |1 -/3j2 +1/2 3/4 1/4 -S3/4
Y, (#3/2,+72) | 1 +3/2 +/2 3/4 1/4 +/3/4
¥, (0,0) T 0 0 0 0 0
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