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Abstract One way to deal with such random pheno-
A major problem in system simulation is mens is the lMonte Carlo method: Input random

the handling of random phenomena. The Monte variables are sampled from their distributions

Carlo method, which is usually applied for by means of pseudo-random numbers. Each set

this purpose, is known to converge rather of input variables gives a specific result.

slowly. I This is done repeatedly and information about
A different method is presented here the random nature of output variables is

which deals directly with probability distri- obtained by statistical analysis of the
butions instead of random samples. Arithmetic results.

operations on sampled values of random vari- The question arises whether it is possible
ables are replaced by transformations of to directly compute the distributions of the
their distributions . The main advantage of output variables by applying some transforma-

this method is that it is arbitrarily precise. tions to the distributions of the input vari-
Therefore, long runs for gathering statistics ables. As we shall see, this is indeed

are not necessary. However, difficulties can possible, at least in some cases. We shall
arise from large memory requirements and call this the direct simulation method or,
program complexlty. for short, the direct method, meening that

A comparison with the Monte Carlo method the detour through generating random numbers
is given on the basis of two examples, the and gathering statistics is skipped.
simulation of a signalized traffic network + - What d&e such transformations of probabi-
and of & supermarket. : lity distributions look like? This depends on

. the type of arithmetic operation that would

1. Introduction be performed on the random variables and on

We take here the following general view tpe way in which the prebability distribu-
of a simulated system (figure 1): It consists tions are represented.

of input variables x., intermediate variables Three di@fergnttyays of representing a

y. and output variables z, . Operators &, B, probability distribution are ) o

cd convert input and/%r intermediate a) gytgﬁrameters of a theoretical distri-
d ... y parar

variables into output or other lnteimedlati
variables. These variables are functions 0 of & disorete rendom variable or For
time. Some or all of them may be random classes of values of & oontinuous
processes. random. variable

¢) by moments

The handling of theoretical distribution

b} by frequencies for indiwidual values
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Figure 1: Diagram of a general simulation model

* The basic idea of this approach has been
proposed by Professor Walter Nef of the
University of Berne, Sw1tzerland.
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functions is the field of classical analysis.
Here we confine ourselves to distributions
that are represented by numerical frequency
functions. Some methods foer the transforms-—
tion of distributions that are characterized
by their first and second order moments will .
be described elsewhere-.

The following examples show a few trans-
formagions of probability distributions:

xample 1: The addition ef two indepen-
dent random variables corresponds te the
cenvolution ef their distributions. In parti-
cular, let X and Y be two independent integer
random variables. Then the probability distri-
bution of their sum Z = X + ¥ is given by

B(z=k) = . P(X=1)P(¥=j) .
i+j=k
As an illustration, consider' the following

simple numerical example: Let
P(X=0) = .8, P(X=1) = .2 and
P(¥=3) = .3, P(¥=4) = .4, ¥(¥=5) = .3 .

If X=0, then: the sum Z=X+Y¥ can assume the

values 3, 4 or 5 with the probabilities
P(Z=3'%X=0) = P(X=0)P(¥=3) = (.8)(.3) = .24
P(Z=4 X=0) =-P£X=O)P(I=4) = (.8)(.4) = 32
P(2=5.X=0) = 2(X=0)P(¥=5) = (.8)(.3) = .24
If X=1, then we have the following possibili-
tiea for Z:

:e(z=4fx=1; = E€X=1%P(Y=33 = 2..2)(5) = .06
F(Z=5"%=1) = P(X=1)L(¥=4) = (.2)(.4) = .08
F(Z=6"X=1) = P(X=1)P(¥=5) = (.2)(.3) = .06

By superpesition of these probabilities we
abtain the distribution of the sum

P(Z=3§ = .24
P§Z=4 = .38
P(2=5) = .32
I"(Z=6) = ..OG

DISTRIBUTION OF X

If this procedure is applied repeatedly,
the range of values of the resulting random
variable Z would grow without any limit, if
no countermeasure is taken. But extreme wvalues
would have only very small probabilities. In
order to avoid this, probabilities which are
smaller than some given limit ErS are cut off
on both sides. E¥S = 10-6 has been found to
be a reasonable value in most applications.
The remaining distribution is standardized
to 1.

Far the distribution af the difference
Z=X~Y of twae independent integer random
variables we find in a similar way

P(2Z=k) = > P(X=i)P(¥=j).
i-j=k

Among other applications we shall use
these operations to add the number of arriv-
ing ears o a queue in front of a. traffic
signal or to subtract the number of cars
leaving during a green. period.

Example 2: Another operation used in the
traffic simulation is the limitation of the
range of walues of a random variable. Let X
be an integer random variable described by
frequencies and Y = max(ig, X). I.e., the
integer constant i, is a lower limit of the
random variable Y ?figure 3). Then the proba-
bility distribution of Y is given by:

P(Y=igy) = 2. k(X=i)
isi
P(Y=1) = P(X=1) for i>io

A similar procedure can be used if ig

itgelf is a random variable.

O f—————0

R
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DISTRIBUTION OF Y T r T
1 1 J Do
3 4 5
DISTRIBUTION OF Z=X+Y T T T
. . Q -
3 4 5 ¢
Figure 2: Convolution
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Distcibution of X

Example 3: The number of cars arriving

at a fork in a road during a given time inter-

val is. a. random variable X (figure 4). Each
car turns left with probability p and right
with probability 1-p. What is the distribu-
tion of ¥, the number of cars turming left?
This is a cempound distribution given by

P(¥=i) = > P(¥=j/X=1)E(X=i).

i
1f X hag a fixed value i, then ¥ has the
bimomial distribution . L.
P(¥=j/X=1) = Bj(i,p) = (3)p?(1-p)*"?

Q
? T T g o |
Distribution of Y
[ s o]
o
Figure 3. Limitation of the range of values of
a random variable (Y = max(X, ig))
p{x=i, y=ij}
A %i
s LS/
V77 57 7
Wl % of /
For § = Opl,0e.,i pd V A4
/ / o |

(Mcdel: i independent trials with. probability
of sucecess equal to p.) Thus the distribution
of ¥ is given by
P(r=i) = 3 By(i,p)v(X=i) .

izg ¥

Fork in a read. X = number of car
arrivals, ¥ = number of cars
turning left.

Pigure 4:

Sa far we have only considered indepen~
demt random variables. Two dependent random
varisbles can be characterized by their joint
digtribution (figure 5). To store such a
jedmt distribution by frequencies im a campu-
ter, we need an array with two subscripts.
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Pigure 5: Distribution of a two-~dimensional
integer random vector (X,¥%)

If the two: variables X and ¥ were inde-
pendient., It would be sufficient to store the
marginal distributions

Py(X=1) = > P(X=1,Y=])
PY(Y=j) = > P(X=1,¥=]).
1

In that case one would obtain. any probability
by simple multiplication

B(X=1,Y=j) = Py (X=1)Byff=i).

In the general case, however, this is not
correct.

To store the jJeint distribution of three
random variables we need an array with three
subscripts, etc. For reagsons of clearness we
econfine ourselves to twe dependent random
variables. Similar methods can also be
applied to three and more dependent random
variables. However, not only memory space
grows exponentially with the dimension of
the arrays used, but alsa the computer time
t0 handle such amounts of data. This will
limit the applicability of this methed to
relatively few dependeni random variables.

and
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minli,j)=k

b)

S

max (i,§)=k

Sum (a), difference (b), minimum (c) and

maximum (&) of twe dependent random
variables. (PBrobabilities different from
zero are marked by dots.)

We now consider some basic operations
with the joint distribution of two dependent
integer random variables.

Example 4: In analogy to convolution,
the sum of two dependent integer random
variables is given by the formula

P(X+Y=k) = > P(X=i,¥=j) .

i,

i+j=k
Similarly, for the difference we obtain
(figure 6b)

P(X-¥=K) = ;Z% P(X=1,¥=j) .
1,
imj=k

Minimum and maximum of X and ¥ are given by
(figure 6¢ and 64)

P(max(X,¥)=k) = > E(X=i,Y=])
i,
max(i,g)=k
and
?(min(X,Y)=k) = > P(X=i,¥=i).
i,3

min(i,j)=k

Oftern we are also interested in the
marginal distributions

Py(X=) = > P(X=1,¥=j)
d
and
Py (¥=j) = 2 P(X=i,¥=j) .
i
By means of the marginal distributions we
can immediately obtain the conditional

distpibutions. The conditional distribution.
of ¥ given X=1i is
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P(X=i,¥=])
P(¥=j/%=1) = ————— .

Py (X=1)
Of course, enly that regiem of X and ¥ where
EX(X=i) # 0 is of interest.

In this section we have prepared some af
the tools that we are now going to apply te
two examples.

2. Simulation of Signalized Road Traffic

Let us first comsider the wvery simplest
case of a one-lane one-way street with an
isolated traffic signal. We assume that the
average car arrival rate and the signal
setting are kmown., The problem posed is to
find the distribution ef the queue length in
front of the signal at the end of a green
period.

Time is divided into. unit intervals of
length At =2 secomds. This interval has been
observed ta be the approximate minmimum time
delay between two successiwe cars. Ve assume
that in each such unit interwal a car cam
arrive with. probability p. During a cycle of
length T, = c-At the number Al of car arri-
vals has a binomial distribution in this
model :

P(Al=k) = Bk(e,p) = (E)pk(1—p
1f we denote the length of the queue at the
end of cycle number i by 1; and the number of
arrivals during cycle i by Alj, we obtain

1 = max(lj_4+41li-g,0) .

I.e., during the green time T, = g'At, a
total of g cars leave the quelte, provided

)C'k .



there are g or more cars. If there are less,
the queue becames completely empty.

Let us compare the Monte Carlo method
and the direct simulation method using this
example.

At the beginning of the simulation the
queue is assumed to be empty. Por the Monte
Carlo method we generate a sequence of Alj
with binomial distribution P(Al=k) and
compute the corresponding sequence of gqueue
lengths according to. the formula

1j = max(Ti_q1+Ali-g, O) .

The total number of iterations is fixed in
advance. At regular intervals, mean and
gtandard deviation of all gqueue lengths 1i
generated so far are printed out.

In the direet method the queue length
has initially the distribution
\ R 1 if j=0
P(lo=i) = { Q othgrwise . :
For each cycle, the following three opers-
tions have to be performed:

1. Convolve the distribution P(1li_g=]) with
the binemial distribution P(Ali=k3 (see

section 1, example 1). The result is the

distribution of 1lj-q+Alj.

Shift this distribution: by g units to the

left. This gives the distribution of

L3 4+Ali~g

Limit the distribution obtained in step 2

by zero. from below (section 1, example 2).

This leads to the distribution of

1 = max(li.1+41;-8, 0).

2.

3.

At regular intervals, mean and standard
deviation are computed from the distribution
P(1i=j). The simulation is terminated as soon
as the absolute difference between two succes-
sive average queue lengths does not decrease
any more.

4 similar algorithm was used by BQttger7
(1966) to study the effect of alternate poli-
cies at an isolated traffic actuated signal.

Results have been computed by both
methods for the parameters ¢=20 {cycle time
in units), g=10 (green time in units) and for
three different traffic volumes p (in cars
per time unit). Mean value (M) and standard
deviation (&) of the queue length at the end
of green time, as a function of the number of
iterations (N) are given in tables 1 and 2.

For the Monte Carlc methed (table 1)
each. of the three examples took 109 seconds
of computer time (en a Bull - General Electric
Gamma 308 computer at the University of Berne,
which has a multiplication time of about 0.4
milliseconds). How much time would be required
te reach a relative accuracy of 1% at a confi-
dence level of 95% ? If we make the favorable
assumption: that the gqueue lengths in succes-—
sive cycles are independent, this would mean

1.9600/(N' = 0lp or W= (196.007u)2,

Substituting the results after 5000 iterations
as estimates for M and o we find the required
number of iterations and computer time shown

in table 3. Actually, the time needed is even
greater, because successive queue lengths are
positively correlated, and this increases the
variance of a sample average (Fishman4, 1968).

Teble 1: Results of Monte Carle method. Mean (u) and standard deviatienm (07)
of the queue length as a function of the number of iterations (N)
for three different traffic volumes p (in cars per time unit)

a) p=.3 k) p=.4 _c) p=u45

N R N M G N m G
500 | .0380 | .2378. 500 «3960 «9355 500 ! 1.5020 | 2.2632
1000 | 0280 | .1980 1000 <4730 | 1.1581 1000 | 1.6240 | 2.4675
1500 | .0280 | 1946 1500 <4467 | 1.1209 1500 | 1.4713 | 2.3056
2000 | .0255 | .1840 2000 +4015 | 1.0336 2000 | 1.4440 | 2.2068
2500 | Q232 | <1774 2500 L4012 | 1.0250 2500 | 1.4960 | 2.3655
3000 | 0255 | 1774 3000 L3753 .9800 3000 ! 1.4027 1 2.2629
3500 | »0240 | .1805 3500 «3826 .9817 3500 : 1.4089 : 2.2860
4000 | .0225 | 1746 4000 «3730 .3583% 4000 | 1..4390 i2’2963
4500 | .0220 | .1718 4500 3691 5463 4500 | 1.4256 i 2.2691
5000 | 0222 | 1735 §9Q9¥““.3§ﬁ?‘ _:3§§§w— 4SQO 1.3632 i2’2160

Tsable 2: Results of direct simulation method (same notation as in table 1)

a) p=.3 b) p=w4 c) p=.45

N]| M c N T G Nl e | o
1| «0239 | .2017 2 | .2865 | .7923 10 11.2739 | 2.0738
2 | 0257 | «2115 4 | .3333 | .8915 20 | 1.3752 | 2.2496
3 | L0259 | .2126 6 | .34%4 1 .9200 30 11.3949 | 2.2895
4 v0259 —2128 8 h3490 ;9293 40 %1«3996 2-2999
10 3501 «9325 50 | 1.4009 | 2.3028
12 | <3505 | .9337 60 §1.4012 , 2.3037
14. | <3507 | .93%41 70 | 1.4013 | 2.3040

i 16 | 3507 @ .9343 80 | 1.4013 | 2.3040

Table 3: Number of iterations and computer time required to abtain a relative

accuracy of 1% at a 95% cenfidence level by the Monte Carlo method
_ o Pff?ﬂJA p=.4 p=.45
number of iterations 2 340 000 ! 254 Q00 | 101 000
camputer time 14 hours 10 ?#EL_EA1_?PQF_??_E}P;QM ?7 min
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Figure 7:

Accuracy versus comguter time for the
Monte Carlo method {(~---

) and the

direct simulation method ( ).

Por the direct method (table 2) computer
time was 2 see in case a), 19 sec in ease b)
and 161 sec im case c¢). Here no statistical
fluctuations occur. In principle, the error
can be kept arbitrarily small in the first
step, if a sufficient number of digits is
taken into account. However, we can obsgerve
another effect which could be practically
neglected in the Monte Carlo method: The
assumption that initially the queue is empty
has an effect ower several cycles. Only
gradually a steady state is reached. This is
a disadvantage if one is only interested in
the equilibrium state. But it permits a
precise study of the system's dynamic response
t0 initial conditions. The Monte Carlo method
is not very efficient for this type of
investigations.

As in moest physical systems, the deviation
from the equilibrium state decreases about
exponentially with time. If we denote simula-
ted time by T, then the error decreases as
e~*T for the direct method, for some «. For
the Monte Carle method the error decreases
-according te the well-known formula 1D,

In the direct method a single iteration iakes
longer, but the cenvergence behavior is better
than that of the Monmte Carla method. Which of
the two methods is preferable depends on the
accuracy desired and on the computer time
available (figure 7). If the accuracy desired
ig less than ag or the computer time available
less than to, then the Monte Carlo method is
preferable. Otherwise, the direqt method
proves more efficient. The precise shape of
the two curves in figure 7 depends qn.the
partieular problem under investigation. The
paint (ag,ty) must be estimated for each
simulated system individually. g

Let us now consider a more general traffic
model. Instead of assuming a binomial distri-
pution for the car arrivals_at a signal,_ the

arrival distribution could be generate b% .
the output of ene or more other signals. This

permits to simulate traffic flow in a network
of arbitrary size and shaie. Such a progranm
has been implemented?. As input the user has
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to specify the relevant geometry of the
network, the signal plan, vehicle speeds
and traffic volumes. The output consists of
distributions and their graphical represen-
tations for the waiting time at each signal
and for the queue lengths as functians of
time. The program is written in PORTRAN and
consists of about 1500 instructions. On a
CDC 1604 with 32K memory it can handle
networks with up to 200 signals, 400 links
and g maximum queue length of 50 vehicles.

It is beyond the scope of this paper te.
describe this program in more detail. Rather
we would Like to discuss some of the results
obtained.

Several actual networks have been
analyzed under various traffic volumes and
signal settings. Twa more systematic investi
gations were the following:

Optimum Cycle Time as a Function of Traffic
Volume

If traffic is light, the average waliting
time of a car is approximately propertiomal
to the cycle time. Yet the eycle time should
not be chosen toe short because the constant
amber period which is lost in each cycle
becomes more and more important. A study has
been based on the following model: Consider
two intersecting traffic streams with equal
volume of p cars per time unit. An amber
period af two time units is lost with each
switching of the signals. The variatle cycle
time is Te=c:At. Each stream is given ¢/2 - 2
units of green time per cycle.

In figure 8, the average waiting time is
displayed as a funciion of the cycle time c
for wvarious traffic volumes p. As expected,
the larger the traffic volume p, the larger
is the optimum cycle time e which minimizes
the average waiting time. If the traffic
volume is subject to heavy fluctuations,
then it is better to choose a larger cycle
time than the one coerresponding te the
average volume; for the increase in waiting
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Figure 8:

cycle time ¢ (in time units

A%erage wailting time at an isolated traffic signal as a function of
)} for various traffic veolumes p (in cars

per time unit). Green time is ¢/2 — 2 units per cycle.

time is much. greater if the cycle time is too
short than if it is tee long.

Netice that, unlike results of a Monte
Carlo simulation, the observed points lie
exactly on a smooth curve connecting them.

Traffic behavior through three 'signals

W. D. Watjenb (1965) has given some
interesting results on how the offsets at
-successive signals affect waiting time. He
cansidered the following model: A one-way
street has three successive signals at equal
distances. Travel time from one signal %o the
next is 20 seconds, Arriving traffic is
Poisson distributed with an average volume of
686 cars per hour. When the signal is green,
cars on the average leave the queue every
2 seconds. This value of 2 sec is not a con-
stant but is normally distributed with a
standard deviation ef .5 sec. A1l three
signals have a cycle time of 60 sec and 30
sec of green time. Offsets between the first
two gignals (09p) and between the last two
(0p3) vary from O te 50 sec in steps of 10
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sec., This coerresponds to 36 different combi-
natiens of effsets.

The simulation language used by Witjen
was GPSS. We duplicated this investigation in
arder to test our program and compare it with
a Mente Carle simulation. Although. the model
assumptions were slightly different, the
results showed a good agreement.

For the waiting time at the first signal,
Witjen obtained the mean value 13,02 sec (as
an average of 4825 simulated cars) and a
standard deviation of 10.35 sec. Our program
gave the mean value 13.54 sec and a standard
deviation of 10.48 sec.

Table 4 shows waiting time at signal 2
as a function of the offset o2 between
signals 1 and 2. In Watjens results the
waiting time dees not vanish for an offset of
20 sec (which corresponds to an ideal green
wave) because the time interval between
successive cars is not a constant but a
random variable.

An important result of Watjens paper is
the fact that waiting time does not only



Table 4: Mean (¢) and standard deviation () of waiting time at signal 2
ag a function of the offset @1o hetween signals 1 and 2

offset waiting time (sec)

@12 Monte Carlo method (GPSS) | direet simulation method
(sec) M [ M G B

Q@ 14.26 13.19 1.6.09 14..06

10 6.72 11.19 .43 11.91

20 115 342 Q.00 0.00

30 8.74 4 .05 8.84 2.11

40 19.44 4..01 18.84 2.13

50 28.62 3.39 28.84 2.13

Average delay (seconds)

L L 1

t
0 0 20 30 a0 50 60
Offset O, (seconds)

Figure. 9: Traffic behavior through three signals. Average delay at signal 3
(im seconds per vehicle) as a function of the offset oqp,
for 3 different offsets 0,z. lionte Carla method (---) and
direct simulation method {=——).

depend on the offset between a signal and its Some of the oscillations in the curves
piggecessor, but alsc on the offset between cbtained by GPSS are due to random effects

revious signals. In figure 9 the average and do not reflect eny law. For a more
saiting timg at signal number 3 is shown as thorough discussion of the results we refer
a function of the offset aqp between signals to Watjen.

1 and 2 (for three different offsets 0p3).
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The ultimate purpose of this traffic
simulation program is to find the optimal
gsignal plan for a whole network for any given
traffic situation. As it stands now, the user
haa to specify the signal plan in advance and
then.select the best ameng a few alternatives,
in view of the results.

A next step would be to combine this
program with. an optimizing algorithm. Bo far
the program is teo slow for this purpcse. The
simulation of a system takes several minutes,
depending on. the number of signals and other
parameters (e.g. 18 minutes for a system with
11 signals on a Bull - General Electric Gamma
308 computer with. a multiplication time of
0.4 milliseconds). But if the speed of compu-
ters continues to increase at the current rate
such an optimization may soon become feasible.
Convelution, the slowest part in the program,
could make extensive use of parallel process-

ing.
%, A Simple Supermarket liodel

In the last section we dealt with a
model that contains only independent vari-
ables. Let us now consider ain example that
contains a pair of mutually dependent
variables. We have chosen a simplified
versien of the supegmarket model that is
discussed in Gordond (1969) on pages 221-227.

‘ Customers of the supermarket are obliged
4o take a basket befare they begin to shop.
There is a limited number of baskets and, if
no basket is available when they arrive,
customers leave without shopping. If they
get a basket, customers shop and then go to
the checkout counter. 1f the counter 18
occupied, they join a queue. After checking
out, they return the baskets and leave the
supermarket.

The arrival times of customers are
Peisson distributed (i.e., the interarrival
{imes are exponentially distributed). For
the shopping time and the service time of
customers at the checkeut counter we.alsa
assume an exponential digtribution, in
deviation from Gordons model. There is only
one checkout counter. The number of baskets
(5) is kept small in order to save computer
time for the matrix operations in the direct
methad. The average interarrival time of
customers is 240 sec, the average shapping
time 600 sec and the average checkout time
180 sec. With these parameters the model is
completely specified.

We are interested in the distribution
of the number of customers shopping (SHP)
the number of customers checking out (CHKS
and the total number in the store (TOTAL).
We are interested in the steady state dis-
tributions after initial oscillations have
balanced out.

Although the relatiom TOTAL = SHP+CHK
holds, the distribution of TQTAL is notl the
convolution of the distributiens of SHY and
OBK. SHP and CHK are strongly dependent of
each other. Their sum is bounded from above
by the number of baskets (figure 10).

In order to- compare the direct method
with the Monte Carlo. method, we have also
simulated this model in G¥SS. First 100
customers are simulated without results
being printed out. In this way the systenm
‘goes from its initial empty state into a
statistical equilibrium. Then statigtics
are gathered for running times of 25, 100,
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GHK (Chasking Qut)

& =~ SHP (Shopping)
P

.
5‘\\\

TOTAL=D
Pigure 10: Number of customers shoppi (sHE),
checking out (CHK) and sum (TOTAL).

The point (3,1) e.g. represents the
probability that 3 customers are
shopping and 1 is checking out.

400 and 1600 customers. From an increase of the
running time by a factor of 4 we can expect
the accuracy to roughly double. desults are
given in table 6a. Computer time for this
example was 1.96 minutes on an IBM 360/50 at
New York University.

FPor the direct method we have one pair
af dependent variables, the number of customers
shopping (SHP) and the number of cusiomers
checking out (CHK). Their distribution is
repregented in a matrix. At the beginning of
the simulation this distribution has the form

P(SHF=0, CHK=0) = 1
P(SHF=i, CHK=j) = 0 for if0 or j#O.

After a certain time, all the points within
the feasible region ’ P

SHP20
CHK=0
SHP+CHK<5

are assigned a pesitive probability (figure 10).

Table 5: Variable names and values of parameters

rAﬁR number of customers arriving in DT |
{ CHK number of customers at th:ngheckaut

; counter

! DELTA bound of convergence

EPS lower limit for probabilities considered

in the ealculation (10-6)

N number of baskets (5)

SHP number of customers shopping

¢ SRV gz?g;r of customers that can be served
"TARR average interarrival time (240 sec
. TOTAL total number of customers,(:SHP+CH%)
:TSHP average shopping time (600 sec) - )
ISRY  average service time at the checkout
! ____ counter (180 sec)

As mentioned before, time is advanced in
unit intervals. During each iteration that
corresponds to such an interval, the following
three steps have te be carried out. (4 summary
of variable names used is given in table 5.)

1. Add the number of customers arriving (ARR)
to the number of customers shopping (SHP).
Take into account that the tetal number of
customers does not exceed the number of
baskets (N).



Table 6: lean values and distributions of the number of customers
shopping (SHY), checking out (CHK) and their sum (TOTAL)

Mean values
a) Monte Carlo:method (GPSS)
“customers

simulated S?% I ?HKV TOTAL

i 25 2 174 ) -756 2.931

' 100 1.811 1.141 2.952

i 400 1.965 1,117 3.082

' 1600 . 2.030 1,058 3,089

b) direct simulation method

number of o S ,

iterations SEP  CHK ‘ TOTAL

1 «226 «017 ' «243

2 w431 045 -476

3 ] 616 .080 .696

. 4 « 783 -120 «903

5 ) «934 .162 1.056

i 15 1.760 -596 2.355

20 1.886 -759 . 2.645

100 1.984 1.076 | 3.060

178 L 1.988 ¢ _1.080 3.068

Distyibution of the number of customers shopping (SHP)

a) Monte Carlo method

numbor of probability that Sli =
cugtomers 0 9 5 3 L 5

simul ri‘LGd

|
]
25 0734 | izs0s 172321 | 3290 | L1010 | L0137
100 JA471 | 3373 | L2301 | L1739 { L0648 | 0466
4,00 1120 .2010 <3270 ATTE 1 0834 0285
| 1600 «1109 | 2543 «2894 | <2119 | .1048 | .0284 |

b) direct ﬁethod (a ter 178 iterations)
[ o146 [ ,e634 | 2927 | 2050 | .0366 | .0276 |

Distribution of the number of customers chocking out (CHE)

a) Monte Carlo method

[ number of T probability that CHK = ]
custoners -
| simulatea | O | | & 3 4 A 2
25 5652 | L2746 | 21201 | L0523 | <0129 | 0143
100 Si065 | L2680 | 1619 | .1079 | .0540 | .0018
400 .3897 22828 | .1913 | .0996 | .0288 | .0075
1600 | L4246 | L2724 | .1684 | 0346 | .0338 luﬁgggg_“

b) direci method (after 178 ltcratlons) N
[ w4150 | w2790 | <1733 [ 0815 | 0357 | L0075 |

Distribdvtion of TOTAL = SIi + CHK

a) lonte Carlo method

number of | probabiiggy that TOTAETM-—m~_~mm“*Mn""
customers . . , .
simeleted | O LU O N A
25 0250 | 1739 .1218 { .5594 ,?174 1292
100 O73T «1041 «2109 | .2087 2116 -1907
400 ,0300 1093% 2138 «2328 2176 . 1952
1600 | .0342 | L1142 | (1987 | .2211 | .24%6 | .1878

b) direct method (after 178 1tordtlon°)
[ .0%66 7| L1170 i85y 3352 L2855 | L1918 |
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Part of the customers shopping go to the
checkout counter. The total number of

customers does not change.

The number of customers at the checkout
counter (CHK) is decreased by the number
of customers served (SRV) in the interval
DT. Observe that CHK never drops below O.

The following path in figure 11 corre-
sponds to a possible sequence of these three

steps:

2.'

3.

B cHK

N

SHP

N

SHP+GHK=8

o,

] Figure 11: A possible sequence of states
‘ in the system
We now describe what operations cerre-
gpond to each of those three steps.

1. Addition of new customers

The distribution of the number of
customers arriving in an interval DT,
P(ARR=k), is a Poisson distribution with
the parameter A = DT/TARR. For each possible
value CHK = 0, 1, ..., N we compute the
canditional distribution P(SHP=i/CHK=j) and
convolve it with the distribution P(Ara=k).
Since the total number of customers does not
exceed N, the result of this convolution has
to be bounded from above by the maximum
value N-j. After having done these two opera-
tions for all values of j, we can return to
the jedint distribution by multiplying the
conditional distributions by the marginal
distribution. of CHK:

P(SHP=i,CHK=j) = P(SHP=1i/CHK=3)P(CHK=j)

This step corresponds to a horizontal
ghifting of probabilities to the right in
figure 10.

2. Transfer of customers from shopping %o
checkout

The shopping time of customers is expo-
nentially distributed, with the average TSHP.
This means that after the time DT has elapsed
a customer is still shopping with probability
p = exp(~-DT/PSHE) and has transferred to the
checkout with probability 1-p. The total
number of customers does not change in this
step. By a coordinate transformation from
(SEP,CHK) to (SHP,TOTAL) we obtain

P(SHP=1,T0TAL=j) = P(SHP=1i,CHK=j~i).

Then we can get the conditional distributions
P(SHP=i/TOTAL=j) for j = 0, 1, «v., N. If a
fixed number SHP=1 custemers are sheopping,
then the number of those who are still shopp-
ing after an interval DT has a binomial
distribution with the parameters p and i.
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If the number of customers shopping is not
fixed but has a ecertain distribution, then
we get a campound distribution. far the
number of customers still shopping after
the interval DT, As in step 1, we have to
return te the joint distribution at the end.

Step 2 corresponds to a shifting of
probabilities frem the lower right to the
upper left in figure 10.

3. Subtraction of customers served

The distribution of the number of
customers that can be served in the interval
DT, P(SRV=k), is a Poisson distribution with
the parameter = DT/TSRV. Customers served
are subtracted from the number of customers
checking out (CHK). The number of customers
shopping dees not change. Similarly as in
the first step we compute the conditional
distribution F(CHK=j/SHP=i). Then we con-
volve this distribution with F(SHV=k) with
negative sign, te subtract customers served.
Sinee CHK does not drop below zerc, we have
to limit the resulting distribution by zero
from below. Finally we return to the joint
distribution.

This third step corresponds to shifting
probabilities vertically downwards in
figure 10.

These three steps are repeated for a
given time interval DT until the digtributions
converge 0 their asymptotic shape. The
following test for comvergence has been
used: The procedure is terminated as soon
as the absolute differences of two successive
mean: values of SHP, CHK and TOTAL drop belaow
a given bound DELTA or de not decrease any
more. As a measure of security, a maximum
number of iterations has also been prescribed.

A particular preblem arises in selecting
the best time interval DT. Although the
state of the system (the vector (SHP,CHK))
is a discrete function of time, the under-
lying probability distribution that we
consider here is a continuous function
of time. As with the numerical. integration
of differential equations, we can expect
that the smaller the time interval DT is,
the more accurate are the results. On the
other hand, the smaller DT is, the larger
is the number of iterations required to
bring the system from its initial state
intoe a stable equilibrium. In order to
save computer time without losing accuracy,
the following compromise was chosen:

First the simulation was started with a
large time interval in order to bring the
system from the initial state into an
approximate equilibrium in as few steps
as possgible. Then the time interval was
gradually decreased te improve upon the
acecuracy.

Computer time for this example was
4.5 sec on a CDC 6600 at New York University.
The program is written in FORTRAN. It consists
of a short main program, which describes the
system, and 26 subroutines with a total of
about 1000 instructions. The subroutines are
not related to this specific example but can
be used for the solution of other problems
as well.

The example considered in this section is
very simple and hardly of any practical value.
But by extending these basic methods one can
also attack problems that are comsiderably
more complex.,



4, Canclusions

We have seen that in some instances
the direct simwlation method can give a
precise solution to a problem within
reasonable computer time. The time required
by the Monte Carlo method to preduce results
of comparable quality would be considerably
lenger.

A possible disadvantage of the direct
method is its excessive consumpition of
computer memory. A simulated system can

usually assume a very large, if not infinifte,

number of possible states. In a Monte Carlo
gimulation, the system will go only through
a limited random selection of these states.
In the direct method we theoretically
consider the set of all states at the same
time and assign a probability to each ene.
Even if we combine individual states into
classes, the number of classes may still be
t00 large. Sometimes we may be able to.
factor a system into independent subsystems
and bring it down to a manageable size.

But inm other examples this may not be
poessible without the loss of essential
information. There will always be large
systems with eomplex interdependence which
ean be investigated only by Monte Carlo
methods.

Another difficulty of the direct method
fg that it requires rather veluminous
programs. It is clear that an algorithm
which transforms probability distributions
is more complex than a simple aperation
with randem numbers. But this should not be
an obstacle to. the use of this method. These
algorithms need be programmed only once and
can then be applied to many different
problems.

This is a preliminary report and further

work is planned. The methods presented in
this paper are far from being exhaustive,
but we hope it will encourage similar
investigations in this direction.
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