A MODEL OF SAFEWAY'S CONTROL SYSTEM

John Ryder
Safeway Stores, Incorporated
Data Processing Department
Oakland, California

Abstract

A detailed model, using GPSS/360, of the extensive software designed and imple-

mented to support Safeway's Basic Management Information System.
to the same level, are most of the functions of 0S/MVT.

Also'modeled,
HELP routines are used

to implement external (comsole) control and display capabilities, dynamic allo-
cation of GPSS matrices, paging of GPSS blocks and common, and other functions
designed to reduce the amount of permanently resident data.

1. INTRODUCTION

This paper discusses development of a simulation
model for Safeway's Basic Management Information
System (EMIS).

port 18 retail divisions across the United States

Safeway's BMIS undertakes to sup-

with centralized remote-batch data processing.
At this writing, one division is partially sup-

ported and further conversion is underway.

All software is written and all data files are
maintained at central. Programs to read data
cards or paper tape and print reports are trans-—
mitted from central to the terminals, based on
the format of the data to be transmitted. Pro-
essing requests are initiated at the terminal via
a single run description card followed by the in-
put data. The central control system generates a
- data set consisting of the input data, after
which a job to process it is either immediately

initiated or queued for future initiation. Job

426

initiation consists of selecting and completing
disk-stored skeletonized JCL and passing it

directly from core to a reader/interpreter.
Application programs then process the data and
generate reports ("outbound" data sets) which are
queued to be transmitted by the control system to
the specified terminal (or terminals) as soon as

possible.

The current central hardware configuration con-
sists of an IBM 360/50 with 512K fast core and
one megabyte LCS; one selector channel supporting
a 2314 plus a 2803 with seven 2401 model 2 tape
drives (six 9-track, one 7-track); multiplexor
channel supporting a 2540 card reader/punch, a
1403-N1 printer, a 2701 communications adapter
and a 1052 comsole typewriter. The entire system
with the exception of the tape drives, is du-
plexed, with complete component switching capa-
bility. The terminal is a 360/20 with a 1403

model 2 printer and a 2501 card reader, connected



to central by leased telephone lines and 4800 bps
Milgo modems. '

Software, as described above, operates under
0S/360 MVT, with some local modifications. The
term "Safeway Control System' (SCS) is construed
to include locally written control system soft-
ware and 0S/360, and to exclude application pro—

grams.

The overall project began in 1966. The simula-
tion project, consisting mainly of the author,
did not start until June 1968, after initial
system design was complete and the control system
written and operational. What has been modeled,
therefore, is largely an existing system, pro-
viding obvious advantages in the areas of design

and validation.

The model is only now approaching the end of its
initial development stage and the beginning of
its use as a management decision making tool.

In light of this, the paper will deal largely
with the scope of the model, its intended uses,
and particular techniques devised in the course
of its development. Practical results remain in
The reader is assumed to have a

reagsonable knowledge of both GPSS and IBM's

its future.

Operating System/360.

2. OBJECTIVES

2.] SHORT TERM

It is known that the current configuration, which
adequately supports a single division, will
certainly not support very many. Simulation is
expected to predict the overload points of the
various components in the system, and at such
points attempt to find solutions within the con-
figuration; e.g., altering the distribution of
data sets on the direct access devices to reduce
channel contention. If such a solution cannot
be found, the next step is to evaluate alter-
nate configurations until the system is once

agaln supportable. Alternately, software

427

bottlenecks should be detectable, from which
design changes can intelligently be suggested.

2.2 LONG TERM

The system, while in operation, is far from com-

plete. Many applications remain to be written;
The

control system itself is being constantly up-

others are known to need major revision.

graded to meet new demands, and will be continu-
ally modified to take advantage of knowledge
gained from operational experience and to in-
corporate new features to support future demands
(indeed, the entire BMIS project is intended as
a first step toward a more comprehensive manage-

ment information system).

It should be possible to incorporate new design
features into the model and evaluate their effect
on system performance. Similarly, different
hardware components should be configurable as
additions to or replacements for existing com-—

ponents.

3. RESOURCES

The model is written in GPSS/360, chosen for its
flexibility, generality, and availability. The
author had done some previous work with it, and
thus familiarity was an additional factor.
CSS/360 was investigated since a computer system
was to be modeled, and many of the bullt in
features appeared desirable. Unfortunately, the
restrictions implicit in the division of super-
visor~ and application-modeling within the
language made the task of modeling a control
system that lay somewhere between the two im—

practical if not impossible.

Development of the model to its present state
required approximately 18 man-months during omne
calendar year, persommnel as, follows: staff
programmer, 1 man year (author); senior pro-
grammer, 3 man-months; programmer, 3 man-months
(these personnel designations, probably mean-

ingless to the reader, represent respectively



7 years, 3-1/2 years and l—l/Z'years of pro-
gramming experience). The model contains approx-
imately 4100 blocks, occupies a region of 330K,
required some 500 hours of computer time to

develop.

Running time of the model (excluding assembly
time) varies drastically depending on the load
placed on it: an elapsed time-to-simulated time
ratio of 10 to one can be expected with a single
terminal being modeled; with eight or ten termi-
nals modeled the ratio is as high as 30 or 40

to one.

5. REPRESENTATION

0S/MVT tasks are modeled as transactions which
compete for facilities representing such system
resources as I/0 channels and devices, communi-
cation lines, and the CPU. A task may be repre-—
sented by more than one transaction simultane-
ously, as when the overlapping of imstruction
execution with I/0 is being modeled. A clock
unit of one millisecond drives the model, chosen
as the largest increment still permitting timings
at the program logic level to be modeled (used in
conjunction with a scheme of accumulating fract-

ions of a millisecond for each task).

Transactions are directed onto user chains in
certain queueing situations (such as 1/0 channel
contention), and under conditions where they
would otherwise have to remain on the current
events chain in an interrupt status for extended
periods of time (e.g. a low-frequency task enter-

ing a voluntary wait state.)

Most 0S/MVT control blocks are modeled as half-
word matricdes, facilitating a detailed parallel
to the réal system of the information and fre-

quently complex chaining associated with such

control blocks (e.g., TCB's, DCB's, RB's, IOB's,
ECB's).
sets (their location and extent), I/0 device

Matrices also model such things as data

status (volume mounted, head position for direct

access) and core storage allocation.

428

Logic switches represent resource status for a

variety of enqueue/dequeue functions.

6. TECHNIQUES

6.1 INITIALIZATION

When a simulation run begins, control passes
immediately to a HELP routine that provides the
initialization phase, reading and processing

several input data sets.

(1) Cards describing the data sets to be
permanently allocated (data set identi-
fication, volume serial number, cylinder
at which data set begins, and how many
cylinders it occupies). The information
is validated and entered into the matrix

describing data sets.

(2) Cards specifying which volumes are to
be mounted on which devices are used to
initialize a matrix used by IOS when

servicing 1/0 requests.

(3) Cards requesting initialization of
matrices representing the areas of
direct access devices that are unused
(used and updated by SCRATCH and
ALLOCATE routines; determines placement

of data sets created during the simula-

tiom).

(4) Cards describing the configuration of
communication lines and terminals,
which will cause activation of trans-
actions for the specified terminals and
the ATTACHing of appropriate control

system tasks to handle them.

(5) Cards describing the "runs" to be sub-
mitted from specific terminals at times
specified on the cards. From there a
control data set is built from which
"runs" will be selected at the appro-
priate times during the simulation and

"submitted" from the specified termi-



nals. The cards provide both ease of
variation and ease of repetition of

conditions.

6.2 DISPLAY AND CONTROL

A subtask is ATTACHED which operates independ-

ently, responding to console commands, permit-
ting external observation and, if desired, con-

trol of the simulation run.

6.2.1 Control

The subtask selects the "runs" to be submitted
and makes the data available to the terminal
transaction. In order to set up the "rums" at
the correct times, the subtask CREAT's a trans-—
action and places it on the future events chain,
with its departure time equal to the time the
next "run" is to be submitted. At this time,
the transaction enters a HELP block, causing the
subtask to be POSTed. The following external
controls can be imposed on the simulation during

execution on command:

(1) the value of any half- or full-word
savevalue may be altered

(2) the value of any entry in a half- or
full-word matrix savevalue may be
altered

(3) a "run" to be submitted from a terminal
may be inserted in the queue establish~
ed during initialization

(4) the model may be checkpointed at any

time (normal GPSS SAVE - a tramsaction
on the future events chain has its
block departure time changed to current
time plus one and is rechained on the
future events chain. When the trans-
action is placed on the current events
chain it enters a terminate block re-
ducing the terminations~to-go count

to zero), after which it continues

429

(5) the model may be shut down at any time,
involving a checkpoint, as in (4), a

print-out of the final time, time ratio,
and active job displays, and a termina-
tion of the run. (Restart is simple -
the same deck is used minus the input

cards described above.)

6.2.2 Display

The following information can be displayed on

command :

(1) intermal simulator current time

(2) the ratio of elapsed time to simulated
time

(3) status of model jobs in execution
(similar to the 0S/360 command "D A",
with the addition of actual CPU time
used by each job)

(4) current statistics for any facility in
the model

(5) the value of any half- or full-word
savevalue

(6) the value of any entry in a half- or
full-word matrix savevalue

(7) counts for any block in the model

(8) counts for the block with the greatest
total entry count

(9) counts for the n blocks with the great-
est total entry count, n ¢ 15

(10) counts for the n blocks with the great~
est total entry count, n ¢ 15, within
a specified range of blocks (very use-~
ful in debugging when a loop is
suspected)

(11) an interval may be started and later



terminated for a facility, and at the
termination the utilization of the
facility during the interval is printed
together with the beginning and ending
time of the interval. Up to six inter-
vals may be in progress at any one time,
and the same facility may be measured

in overlapping intervals.

Automatically displayed by calling a HELP routine:

at the appropriate times are the beginning and

ending times of each job step modeled. The dis-
play also includes the CPU time used by the job/
job step. Commands and displays are written to
an output data set that is printed at the termi-
nation of the simulation and (optionally) on the

console typewriter.

6.3 JOB REPRESENTATION

Each job to be modeled is represented in a pair
of data sets maintained on direct access storage.
These data sets describe the characteristics of
the job, e.g., the number of steps, region size
of each step, number and nature of the data sets
required by the job, the number of JCL cards
necessary to initiate the job, job priority, etec.
The data is extracted at various times by HELP

routines to control the modeled job.

6.4 DYNAMIC ENTITY ALLOCATION

Since the arrival of job requests cannot be
internally predicted and the same job may run
simultaneously on requests from more than one
terminal, the quantity and control of certain
GPSS entities becomes prohibitive if an effort
is made to pre—establish them. The problem is
overcome by the use of HELP routines to dynami-
cally allocate and deallocate matrices on an
as-needed basis, reducing the number of matrices
(as well as the common associated with them) to

the maximum needed at any one time, which is far

smaller than the total required. A "prototype"

matrix may be optionally copied into a newly

430

allocated matrix. Logic switches present a
similar problem, solved by reserving a pool of

them to be allocated in a way similar to matrices.

6.5 PAGING

Matrices and logic switches are the second and
third most used entities in the model; the most
used, naturally, are blocks. These, too, get
out of hand when it is considered that a hundred
or more jobs may be modeled. Relatively few of
these can be "executing" at any one time (re-
stricted by the amount of core and the number of
initiator/terminators modeled), although any one

of them must be available for selection.

This problem, as well as some others, is resolved

through use of a paging technique:

All models of application programs are written
and assembled external to the main model (the
"main model" consisting of 0S/MVT, the control
system and any non-block entities needed by amn
application model). An assembly environment is
provided to include EQU's, SYN's and MACRO's
from the main model, plus a transfer table to
permit use of the common functions available in

the permanently resident part of the model.

When an application program model (''submodel™)
successfully assembles, the execution phase
invokes a HELP routine that copies the blocks
and their associated common into a page data
set, together with a relocation dictiomary to
resolve the submodel's internal references
(references to the main model are "absolute"
and need no relocation). Each page is assigned
an identification number during its assembly,
and this ID becomes part of the description of
the job step (or steps) that will use the sub-

model.

When the main model arrives at the equivalent
of program fetch for a submodel, a page control

matrix is scanned to determine whether the page



required is already in core. If it is, a use
count for the page is incremented and the page
is entered immediately. If it is not, a HELP
routine is called to fetch the page, with one of
several possible results:

(1) The page is found, space (blocks plus
common) 1s available to contain it;
the page is then read in, its refer-
ences relocated, and an entry added
to the page control matrix describing

it, after which control returms to
the main model, which permits a trans-

action to enter the submodel.

(2) The page is found, but space is not
available to contain it; the routine
will then purge any page in core with
use counts of zero and try again to
find space for the requested page.

If sufficient space is now available,
the logic proceeds as in (1). If
space is still not available, control
returns to the main model with an in-
dication of the condition. The main
model will defer the page request
until such time as space becomes
available.

(3) The page is not found; control returns
to the main model with an indication
of the condition, ‘at which point the
main model simulates an immediate exit
from the submodel, and the simulation

continues.

The only limiting factor on the number of pages

that may be simultaneously resident is the amount

of space provided in the main model for this

purpose.
Subsidiary benefits of paging are:

(1) Greatly accelerated debug time - a
submodel assembly should require

approximately 5 minutes and a 100K

region, as opposed to assembling the
main model, which requires approximately

90 - 120 minutes and a 350K regiom.

(2) Each submodel can be developed inde-
pendently, greatly reducing a potenti-~
ally severe coordination problem.

(3) Minimal impact on the main model re-
sulting from the additions of new sub-

models and submodel errors amd changes.
6.6 I/0 INTERRUPTS

I/0 interrupt handling is facilitated by having
all ADVANCE's, while in control of the CPU,
executed in a common subroutine called by a GPSS
MACRO. An I/0 interrupt is modeled by a trans-
action leaving the future events chain at the
time the interrupt is scheduled to occur. This
transactiéﬁ PREEMPT's the CPU on a priority basis
(itself having a priority greater than any normal
CPU user), removing any transaction then SEIZEing
the CPU and directing it to rejoin the queue of
transactions waiting for the CPU. The time re-
maining for 1t to ADVANCE is placed in the para-
meter referenced by the common ADVANCE block and
reserved in all transactions for this purpose.
The transaction will eventually be removed from
the queue by the Task Dispatcher, on the basis

of its priority, and directed to return to the

common ADVANCE block to complete its use of CPU

time.

7. STATISTICS GATHERED

(1) Overall utilization of facilities (cpu,

1/0 channels and devices, communication

lines) and core storage.

(2) Queueing statisties for I/0 channels

and devices, CPU

(3) 1Incidence of direct access device arm

contention and data set interference.



(4) Tabulation of the load placed on the
CPU by I/0 operations, including the

occurrence of overruns.

(5) Throughput times for each job modeled
plus CPU utilization of each job and

each step within the job.

(6)

Number of task switches, both intra-

region and inter-region

)

Utilization of warious OS/MVT and con-

trol system functions.

8. VALIDITY

In the course of model development many OS/MVT
functions were timed in controlled environments.
Results were used directly in modeling some
functions in limited detail, indirectly in veri-
fying preliminary results of functions modeled
in greater detail. Other functions, of both
0S/MVT and the control system, not easily sus-
ceptible té direct timing were "hand-timed" by
inspection of the source code. This form of

timing is particularly accurate when functions

are modeled to the program logic level. Some

overall verification was provided by coding a
test run to be submitted "live" from a terminal,
a submodel of the test run, and comparing the

Tests are underway with a submodel of
Results

results.
a representative application program.

to date, although preliminary, have shown no
significant discrepancies. Future tests will
include the use of AMAP to provide detailed
statistics on internal system functioms and run

characteristics.

9. APPENDIX
9.1 O0S/MVT FUNCTIONS MODELED
9.1.1 8VC's

(1) PFirst and second level interrupt

handlers

432

(2)

Transient areas

(3

Transient area handlers, fetch and re-

fresh routines
(4) Link-pack area

9.1.2 Initiator/Terminators

(1) Data set allocation and deallocation

(2) System resource enqueueing and dequeue-
ing

(3) Region allocation and deallocation

(4) ATTACHing and DETACHing of job step

tasks

9.1.3 Space Management

(1) Process requests for region allocation

and deallocation by I/T's

(2) GETMAIN/FREEMAIN
9.1.4 Task Management
(1) Dispatcher
(2) Ready queue (priority-ordered TCB chain)
(3) ATTACH/DETACH, WAIT/POST
9.1.5 Data Management
1

Queued and direct access methods

OPEN/CLOSE, READ/WRITE/CHECK,
GET/PUT/RELSE, SETL/ESETL

(2)

9.1.6 I/0 Supervisor

(1) Priority queueing

(2) Channel and device enqueue/dequeue
(3) Channel program execution

(4) 1I/0 interrupt handling



9.1.7 Direct Access Device Space Management

(1) Dynamic allocation and scratching of
data sets

(2) Unit classes
9.1.8 Other OS/MVT Entities Modeled Include:

TCB's, RB's, ECB's, DCB's, I0B's, Channel Pro-
grams, I/0 Buffers, UCB's

9.2 HARDWARE MODELED

9.2.1 cCpPU

9.2.2 Core Storage - Both "Fast" Core and LCS

9.2.3 Cycle Speeds - A Combined Characteristic
of 9.2.1 and 9.2.2; Two Speeds - One for

"Fast" Core, One for LCS

9.2.4 1/0 Channels

9.2.5 1/0 Devices

(1) 2314
(2) 2301
(3) 2401.-~ 2
(4) 2401 - 5

(5) Others may be added with relative ease

9.2.6 Communications Lines (To Terminals)

BIOGRAPHY

The author received his BA in Mathematics at the
University of Florida, and in 1962 joined IBM.

At Houston, Texas, he designed and developed real
time control programs in support of NASA's Gemini
and Apollo missioms. In 1967 he joined Safeway
as a systems programmer, where he participated in
the development of Safeway's Control System.
Since mid-1968 he has worked on the GPSS model of
this system, which is the topic of this paper.

433




