DETERMINATION OF CRITICALITY INDICES IN THE PERT PROBLEM

GUILLERMO PONCE-CAMPOS

CIVIL ENGINEERING DEPARTMENT
THE UNIVERSITY OF MICHIGAN
ANN ARBOR, MICHIGAN

THOMAS J. SCHRIBER

GRADUATE SCHOOL OF BUSINESS
THE UNIVERSITY OF MICHIGAN
ANN ARBOR, MICHIGAN

ABSTRACT

A GPSS/360 model which estimates criticality indices and project
duration distribution for the generalized PERT network is

presented.

The cost of developing this model and using it oun a

production run basis is compared with the corresponding costs

associated with an equivalent FORTRAN IV (Level G) model.

Although

GPSS/360 facilitates the model-building process, significant overall
cost economies can be realized by building the same model in FORTRAN
when extended production runs are to be made,

1. INTRODUCTION

PERT (Program Evaluation and Review Tech-
nigue) has attained considerable recognit-
ion as a management tool in program plan-
The PERT model is a directed, a-
cyclic network of "activities" and "events"

ning.

in which the time durations required for
activity completion are positive random
variables characterized by known density
functions. Given the range and mode of
each activity duration and invoking sim-
plifying assumptions, the PERT approach’is
to analyze the project network by viewing
the problem as being quasi-deterministic.
Working with expected values of activity
durations, PERT identifies the most ob-
structive path {or paths) in a network,
termed the Critical Path(s), then uses
estimates of the variance of critical
activity durations to produce an estimate
of the mean project duration and its var-

iance. In essence, then, no use is made

339

of the probabilistic element in the
activity time estimates until after the
critical path is found.

Unfortunately, because of the essential
randomness of the time duration of various
activities, almost any path in a project
network is capable of becoming most ob-
structive, or critical. The concept of a
unique Critical Path (or of two or more
parallel or partially-parallel Critical
Paths) is conseqguently misleading con-
ceptually, and produces a bias in the PERT
results. It is more realistic to talk
about the. probability that any particular
activity will be critical, i.e., will lie
on the Critical Path. VanSlyke (1) termed
this probability the "criticality index"
of an activity and proposed Monte Carlo
simulation as an approach for estimatnng
the criticality indices of the various
activities making up an overall project.
Such Monte Carlo simulation provides un-

biased estimates of the mean project dur-
ation and its variance, and also produces
other information not available from a
conventional PERT analysis, including an
estimate of the distribution of project
completion time and estimates of the crit-
icality index for each activity. A com-
plete discussion of ‘the PERT assumptions
and the assumptions in effect when a Monte
Carlo approach is taken can be found in

VanSlyke's paper.

2. APPLICABILITY OF GPSS
TO THE PERT PROBLEM

VanSlyke used FORTRAN in building his mod-
el to implement the Monte Carlo sampling
process. When such an approach is taken,
programmer-supplied logic must be used to
guarantee that the various precedence con-
straints inherent in a project network are
recognized and honored in the model. In
contrast with these procedure-oriented
logical requirements, the problem-oriented
language GPSS has built~in features which
can be exploited to relieve the model
builder of certain of these logical tasks.

In GPSS modeling, analogies are drawn bet-
ween the various GPSS entities and
elements of the system being modeled. For
example, consider Figure 1, where a por-

tion of a project network 1s represented.

FIGURE 1.

Pigure 1 shows two activities leading into

PORTION OF A PROJECT NETWORK

"event 7" and indicates that, after the e-
vent takes place, five more activities can
then be initiated. Now suppose that each

activity in a project network is represent-

ed in GPSS by a "Transaction". Then the

situation in Figure 1 can be represented
by having two Transactions flow into a
common point, after which five Trans-
actions can issue from the point and pro-
ceed onward. In PERT terminology, this
situation would be described by saying that
two activities "merge" into an event,

after which five activities "burst" from
The GPSS "ASSEMBLE Block"

lends itself directly to representation of

the event.

the merging process, destroying all Trans-
actions which arrive at the Block except

the first, which is permitted to move on
only after the "Assembly Count" (i.e.,

After
the Assembly Count is satisfied, the first

"merge count") has been satisfied.

Transaction can then move immediately into
a "SPLIT Block", causing creation of as
many additional Transactions as may be
necessary to represent each of the act-
ivities bursting from the just-completed
event., This movement on the part of
Transactions in the model is automatically
accomplished by the GPSS processor, re-
lieving the model builder of the need to
provide the necessary underlying timing
and testing procedures.

Furthermore, project completion time is
easily determined in GPSS. Transactions
bursting from the source event in the net-
work are "marked" with the reading of the
system's clock at that time., Later, some
Transaction finally reaches the project's
sink event (terminal event) and simul-
taneously satisfies the merge count at
The

time" of this Transaction is then computed.

that point in the model. "transit

This transit time is the project complet-

ion time for the network realization just
completed.

Finally, GPSS lends itself to effortless

estimation of the probability distribution
of the project completion time. This est-

340

imation follows directly from use of the
GPSS "Table" entity. The model builder
needs simply to define the existence of
the Table, then provide the one step nec-
essary for tabulation of the project com-
pletion time whenever another network
raalization has been completed.

Prior to beginning the work being report-
ed here, one of us had already taken ad-
vantage of certain GPSS features to build
a model for the PERT problem as one of 17
GPSS case studies (2). That model, in
addition to using the ASSEMBLE and SPLIT
Blocks and the Table entity, also utilized
the GPSS MACRO definition capability and
the MATCH Block. The model suffered, how-
ever, from the limitation that it was tied
to a specific project network and did not
provide estimates of activity criticality
indices. The model being presented now
does not have these disadvantages. The
generality in the present model was
achieved, however, by using an explicit
decrement~test-terminate sequence to
"simulate" the just-described effect of
the ASSEMBLE Block.
avoid what otherwise would have been the

This was done to

necessity of arranging for a variety of
"Assembly Sets" in the model.

3. DETERMINATION OF THE CRITICAL PATH(S)

The algorithm for determining the Critical
Path(s) in a project network, given a set
of activity time realizations, is well
known and will not be repeated here. A
brief, basic discussion of the algorithm
and an illustrative numeric example can be
found in Meier, Newell, and Pazer (3).

4, GENERAL DESCRIPTION OF THE GPSS MODEL

The GPSS/360 model presented here requires
78 "Blocks" to simulate the behavior of

real network situations. Model input

consists of: 1) the tail and head events
for each activity in the network, 2) opt-
imistic, most likely, and pessimistic time
estimates for each activity, and 3) the
number of realizations to be used in de-
This
data is presented via INITIAL cards.

veloping the output information.

In execution, the model first processes

the activity-ordered network description
to produce an event-ordered description.
This 1s done by listing the activities that
merge into and burst from each event. The
event-ordered description then indicates
the network's precedence requirements and
provides the merge and burst counts needed
for the forward and backward passes,
respectively.

For each network realization, Monte Carlo
sampling is then used to establish the time
required for completion of each activity in
the network. In particular, each activity's
time is determined by a random draw from a-
triangular distribution. Points on the
triangle are determined by the optimistic,
most likely, and pessimistic estimates of
the times required for the activity in
question.

Next, forward and backward passes through
the network are performed. In the forward
(backward) pass, a single Transaction at
the source (sink) event SPLITs to create
additional Transactions according to the
number of activities bursting from (merging
into) that event. Each of these Transact-
ions experiences a delay corresponding to
the time required for the activity it rep-
resents. Then it decrements a merge
(burst) counter associated with the cor-
responding activity's head (tail) event and
destroys itself unless the post-decrement
counter value is zero. The one Transact-
ion that decrements a given counter to zero
in effect represents completion of the

associated event. Rather than destroying

341

itself, then, it records the event's early
(late) time, then SPLITs to create add-
itional Transactions according to the num-
ber of activities bursting from (merging
The
process continues until the just-completed

into) the just-completed event.

event is found to be the sink (source)
event. (For the case of the sink event,
the early time is tabled as the project
completion time.) When the forward and
backward passes are complete, early and
late event times are used to compute total
slack for each activity. Those activities
having zero slack then have their "crit-
icality counter" incremented by one. Then

the next network realization is begun.

After the total number of realizations re-
quested by the user have been accomplish-
ed, criticality indices are computed for
each activity by dividing the various crit-
icality counters by the number of real-
izations. Information on the distribution
of project completion times is directly
available via the GPSS Table output. If
desired, the distribution can be displayed
in histogram form with use of the GPSS

Output Editor.

The model accommodates itself to any gen-—
eral network satisfying these several re-
strictions: 1) Not more than 5 activities
may merge into an event; 2) Not more than
5 activities may burst from an event; 3)
There may not be more than 95 activities
in the network; and 6) There may not be
more than 95 events in the network. These

restrictions can easily be relaxed.

Specific model details are available in
Figure 2 and Table 1, where the annotated
GPSS/360 Block Diagram of the model and a
supporting Table of Definitions are pre-
sented, respectively. The reader familiar
with the PERT algorithm and with GPSS can

come to a compléte understanding of the

model by careful study of these details.

5. MODEL VERIFICATION

The GPSS model presented here and the
corresponding FORTRAN model mentioned in
the Abstract were each tested on five sam-
ple networksf The models were verified by
specifying that all three time estimates
for any given activity were identical. The
PERT algorithm was carried out by hand for
these circumstances, and the resulting
project duration and critical activities
were compared with the corresponding model
output. As expected, activities on the
critical path each had a criticality index
of 1.0, and criticality indices were zero
elsewhere. Project duration computed by
hand also matched that produced by the

computer models.

Further verification took the form of pro-
viding random activity durations for a
variety of selected single activities in
each network, with other activity times
taken to be deterministic. The probability
that the one activity would be critical was
then computed from the corresponding tri-
angular distribution. This result was
compared with the model-produced crit-
As the

number of realizations became large, the

icality index for that activity.

simulated result tended toward the theo-
retically expected value.

6, STATISTICAL CONSIDERATIONS

Por our purposes in this work, it was not
necessary to determine the sample size re-
quired to attain a stated level of pre-
cision in the statistics being observed.
We are now contemplating modifying the
model for that purpose along lines

suggested by Fishman (4).
*The FORTRAN model is available on
request from the authors.

342

EVE

GENERATE

a YR

v

ASSIGN

I 1,X97
(AsSian)

(OTHER)

2,MX1(P1,1)
ASSIGN

3,MXL(P1,2)
ASSIGN

MSAVEVALUE
2,P2,XH*2,Pl

MSAVEVALUE

LOOP
OTHER

PROCEED TO TOP
OF NEXT COLUMN

CREATE A MASTER
TRANSACTION

SET P6 = NUMBER
OF ACTIVITIES
MINUS ONE

SET P1 = NUMBER
OF ACTIVITIES
IN THE NETWORK

SET P2 = NUMBER
OF TAIL EVENT
FOR ACTIVITY Pl

SET P3 = NUMBER
OF HEAD EVENT
FOR ACTIVITY P1

UPDATE COLUMN
POINTER FOR
MATRIX 2

UPDATE COLUMN
POINTER. FOR
MATRIX 2

STORE BURSTING
ACTIVITY NUMBER
IN MATRIX 2

STORE MERGING
ACTIVITY NUMBER
IN MATRIX 2

REPEAT FOR EACH
ACTIVITY IN THE
NETWORK

SET P2 = NUMBER
OF EVENTS IN
THE NETWORK

FIGURE 2.

REPET)
MSAVEVALUE
7,p2,1,V16
MSAVEVALUE
2,P2,2,V17

SAVEVALUE
P2,V5
Y

LOoOP
REPET

1,X97
ASSIGN

>y (SAVE)

MSAVEVALUE
3,P1,1,v20
MSAVEVALUE
3,P1,2,V19

STORE "BURSTING
COUNT MINUS 1*
IN MATRIX 2

STORE "MERGING
COUNT MINUS 1"
IN MATRIX 2

INITIALIZE MERGE
COUNT FOR IMMINENT
FORWARD PASS

REPEAT FOR EACH
EVENT IN THE
NETWORK

SET Pl = NUMBER
OF ACTIVITIES
IN THE NETWORK

LOAD COLUMN 1
IN MATRIX 3

LOAD COLUMN 2
IN MATRIX 3

\
WSAVEVALUE) LOAD COLUMN 3
3.p1,3,vig] IN MATRIX 3
Y
REPEAT FOR EACH
{| LOoF ACTIVITY IN THE
SAVE NETWORK
<
Y (CYCLE)
UPDATE THE TOTAL
SAVEVALUE) ReaL.IZATIONS
COUNTER

PROCEED TO TOP
OF NEXT COLUMN

MX1(Pl,6)

¥

SPLIT
1| v6’

| 5,K4]
ASSIGHN
/

y

9,MX3(PL,1)
ASSIGN

/\(GOTO)
TRANSFER

ASSIGN

2,MX1(P1,3)
ASSIGN

. (TIME)
E\K0
s

\?E/P/(MSKIP)QSTIVITY IS A

2+, MX3 (P1,2),1

]

{

ASSTIGN

)

PROVIDE ONE XACT
FOR EACH ACTIVITY
IN THE NETWORK

\
4,MX1(P1,5)
iy

y
4+, MX3(P1,3),1
SKIP SAMPLING ASSIGN

SEGMENT WHEN

—_—l
MY (MOVER)
MSAVEVALUE
1,P1,8,P*5
FLAG P5,TO INDICATE) B
THAT RT" IS
TENTATIVELY > MLT* (MSKIP)
97
SET P9 = PERCENT ASSEMBLE
OF TIME RTT Z»MLT*
\
P 2,K1
IS RT" TO BE ASSIGN
= MLT* IN
THIS CASE? \

FLAG P5 TO INDICATE
RT# << MLT*

SET P2 = or"
FOR THIS ACTIVITY

INCREMENT P2 TO
ARRIVE AT RT#
FOR THIS ACTIVITY

YbOTO)

P5 E\ K4

ES

PROCEED TO TOP

OF NEXT COLUMN

(MOVER)DETERMINED?

HAS ACTIVITY'S
RT¥ YET BEEN

*OPTIMISTIC TIME
*MOST LIKELY TIME

OPESSIMISTIC TIME

#REALIZED TIME

1,MX2(P2,P4)

ASSIGN

(Tmarx) 5
S 4

——————

(OVERL)

[Ta,n

SPLIT

‘4

Y (ARHED1)

PROCEED TO TOP

——
4 MXZ(?Z,I
£

SET P4 = pT®
FOR THIS ACTIVITY

INCREMENT P4 TO
PRODUCE RT?
FOR THIS ACTIVITY

STORE ACTIVITY'S
RT# IN MATRIX 1

DESTROY ALL
TRANSACTIONS
BUT ONE

SET P2 = NUMBER
OF SOURCE EVENT

INITIALIZE WHAT WILL
BE THE MERGE COUNT
FOR THE SOURCE EVENT
WHEN THE BACKWARD
PASS OCCURS

MARK CURRENT
TIME IN PS5

INITIALIZE P4
FOR IMMINENT
SPLIT BLOCK

CREATE 1 XACT
OR EACH ACTIVITY
BURSTING FROM
THIS EVENT

SET P1 = NUMBER
OF THE ACTIVITY

OF LEFTMOST COLUMN,

NEXT PAGE

BLOCK DIAGRAM FOR GPSS/360 MODEL (CONTINUED ON NEXT PAGE)

yve

[3,MxL(PL,2)
ASSIGN

ADVANCE
MX1(P1,8)

SAVEVALUE

{

MSAVEVALUE

2,P3,3,MP5

\
2,P3
ASSIGN

SAVEVALUE

P2,V2,H

P2 X96
OVERL)\TES

TABULATE]|

Y

NUMBER SAVEVALUE

P2,V5

SET P3 =
OF HEAD EVENT FOR-
THIS ACTIVITY

Cuare)s

ACTIVITY TIME

ELAPSES I ——
"_(Q%ERZ)
4,V
DECREMENT MERGE m
COUNT OF
HEAD EVENT

SPLIT I

DESTROY XACT UNLESS
HEAD EVENT'S MERGE
COUNT IS NOW ZERO

y

1,MX2(P2,P4

ASSIGN
RECORD EARLY
EVENT TIME

3, MX1(Pl,1

ASSIGN

FORMER HEAD EVENT
NOW BECOMES TAIL
EVENT FOR NEXT
SET OF ACTIVITIES ADVANCE
INITIALIZE BURST MX1(P1,8)
COUNT FOR NEXT

BACKWARD PASS

INITIATE ACTIVITIES
BURSTING FROM THIS
EVENT UNLESS IT

IS THE SINK EVENT

TABULATE THE

REALIZED
PROJECT DURATION

SET EARLY EVENT

MSAVEVALUE

MSAVEVALUE
g:;—————————————fTIME EQUAL TO LATE
2,P2,4,MX2(P2, 3)|gVENT TIME FOR

y

PROCEED TO TOP
OF NEXT COLUMN

SINK EVENT

PROCEED TO TOP
OF NEXT COLUMN

oy
4 %}2(?2,2)

{ (RHED2)

INITIALIZE SINK
EVENT'S MERGE COUNT
FOR NEXT FORWARD
PASS

MARK CURRENT
TIME IN P5

INITIALIZE P4
FOR IMMINENT
SPLIT BLOCK

CREATE 1 XACT
FOR EACH ACTIVITY
MERGING INTO

THIS EVENT

SET Pl = NUMBER
OF THE ACTIVITY

SET P3 = NUMBER
OF TAIL EVENT FOR
THIS ACTIVITY

ACTIVITY TIME
ELAPSES

DECREMENT BURST
COUNT OF
TAIL EVENT

DESTROY XACT UNLESS
TAIL EVENT'S BURST
COUNT IS NOW ZERO

2,P3

{ ASSIGN)

—_—
SAVEVALUE

P2
(OVER2) \TEST

K1

FORMER TAIL EVENT
NOW BECOMES HEAD
EVENT FOR NEXT
SET OF ACTIVITIES

INITIALIZE MERGE
COUNT FOR NEXT
FORWARD PASS

INITIATE ACTIVITIES
MERGING INTO THIS
EVENT UNLESS IT

IS THE SOURCE EVENT

1,X97 SET Pl = NUMBER
(ASSIGN) OF ACTIVITIES
IN NETWORK
V (INDEX)
SET P2 = NUMBER

MSAVEVALUE

4,X98,P1,1

OF TAIL EVENT FOR
THIS ACTIVITY

SET P3 = NUMBER
OF HEAD EVENT FOR
THIS ACTIVITY

IS ACTIVITY'S
TOTAL SLACK
)EQUAL. TO ZERO?

CRITICALITY
COUNTER BY ONE

RECORD ACTIVITY
AS CRITICAL

yﬁﬁopE)

RECORD LATE
EVENT TIME

LOOP
INDEX

{

REPEAT FOR EACH
ACTIVITY IN THE
NETWORK

PROCEED TO TOP
OF NEXT COLUMN

INCREASE ACTIVITY'S

HAVE ALL THE
NETWORK REALIZATIONS
BEEN PERFORMED? *

g;%z%%%zg SET Pl = NUMBER
OF ACTIVITIES
ASSIGN IN THE NETWORK
| (BacK)
MSAVEVALUE) COMPUTE AND
1.51,7,V0 | STORE CRITICALITY
INDICES
REPEAT FOR EACH
7| Loor ACTIVITY IN THE
BACK NETWORK
OUTPUT THE ACTIVITY
1,2 AND EVENT
ﬁilNT TNFORMATION MATRICES

OUTPUT THE PROJECT
DURATION DISTRIBUT-
TON INFORMATION

SHUT OFF THE
SIMULATION

(EXIT)
TERMINATE

ERMINATE
INTERMEDIATE XACTS
NO LONGER NEEDED

*USED ONLY IN MODEL VALIDATION
RUNS; DELETED IN SUBSEQUENT RUNS

FIGURE 2. BLOCK DIAGRAM FOR GPSS/360 MODEL (CONTINUED FROM PRECEDING PAGE)

SYe

GPSS Entity Interpretation GPSS Entity
Transaction "Project Supervisor" Savevalue j (Fullword)
Pl: Looping Parameter J=1,2,3,...,%X96
P2: Looping Parameter
"Activity Foreman" Savevalue j ‘(Halfwoxd)
Pl: Number of the activity involved 3=1,2,3,...,X96
P2: Activity tail (head) event number
P3: Activity head (tail) event number Savevalue 96 (Fullword)
P4: Holds buxsting (merging) activity
number as stored in Columns 5-10 Savevalue 97 (Fullword)
(11-16) in Matrix 2
P5: Time of activity inception Savevalue 98 (Fullword)
P6: Number of activities minus one
P9: Used on a temporary basis when sampling Savevalue 99 (Fullword)
from the activity duration distribution
. X . A Savevalue 100 (Fullword)
Function 1 The inverse cumulative distribution function
corresponding to the density function:
= 1
£ =20 0sxs Table 1
Matrix 1 (Fullword) Activity Information Matrix
Rows 1,2,3,...,X97 carry information Variable 1
about activities 1,2,3,...,X97, resp.
Column Information
1 Activity tail event Variable 2
2 Activity head event
3 Optimistic time estimate X
4 Most likely time estimate Variable 3
5 pessimistic time estimate
6 Activity code; value is 1 if
the activity is a dummy; Variable 4
value is 0 otherwise
7 Criticality index counter .
8 Realized activity time Variable 5
Matrix 2 (Fullword) Event Information Matrix Variable 8
Rows 1,2,3,...,X96 carry information
about events 1,2,3,...,X96, resp.
Column Information
i R Variable 9
1 Number of activities bursting
from the event, minus one .
2 Number of activities merging Variable 10
into the event, minus one
3 Early event Fime-°—*- Variable 15
4 Late event time . .
5~10 Numbers of activities bursting Variable 16
from the event . .
11-16 Numbers of activities merging Variable 17
into the event
Matrix 3 (Fullword Activity Sampling Information Matrix Variable 18
Rows 1,2,3,...,%97 carry information .
for activities 1,2,3,...,X97, resp. Variable 19
Column Information ble 2
Vari
1 Fraction of time (parts per thousand) riable 20
actual activity time exceeds the
most likely estimate L. .
2 Most likely time minus optim1§tlg time
3 Most likely time minus pessimistic time TABLE l,

Interpretation

Points to one.of columns 11-16 in Matrix 2;
later used to record the number of activities
merging into event j, j=1,2,3,...,%X96

Points to one of columns 5-10 in Matrix 2;
later used to record the number of activities
bursting from event j, j=1,2,3,...,X96

Total number of events in the network

Total number of activities in the network
Number of project completions to date
Number of project completions requested
Conversion factor used to express outputted
information in terms of the original
implicit time unit

Table of project completion times;
Table argument is V15

Assumes 4 as its value if more than one activity

bursts from an event; assumes 5 as its value
otherwise (V1=K5-MX2(P2,1)/MX2(P2,1))

Number of activities bursting from an event
(V2=MX2(P2,1)+K1)

Assumes 10 as its value if more than one activity

merges into an event; assumes 1l as its value
otherwise (V3=K11-MX2(P2,2)/MX2(P2,2))

Assumes late event time as its value
{(V4=MX2 (X96,4) -MP5)

Number of activities merging into an event
(V5=MX2 (P2, 2)+K1)

Activity's total slack, defined as late time
of head event, minus early time of tail event,
minus activity's duration

(V8=MX2 (P3,4)-MX2(P2,3)-MX1({P1,8))

Used in computation of criticality
(V9=K10000*Mx1 (P1,7)/X98)

Number of network activities minus
(V10=X97-K1)

Project completion time (V15=MP5/X100)
Number of activities bursting from an event,
minus one (V16=XH*2-KS5)

Number of activities merging into an event,
minus one (V17=X*2-K11)

Most likely time minus pessimistic time
(V18=Mx1 (P1,4)~MXl (P1,5)

Most likely time minus optimistic time
{(V19=MX1 (P1,4)~MX1(P1,3)

Fraction of time (parts per thousand) that
actual activity time exceeds most likely
estimate (V20=K1000* (MX1(P1l,5)-MX1(P1,4))/
(MX1(P1,5)~MX1(P1,3))

indices

one

TABLE OF DEFINITIONS FOR GPSS/360 MODEL

/. RESULTS PRODUCED BY THE
GPSS AND FORTRAN MODELS

Although experimentation was
performed with five networks,
only the results associated with
the network in Figure 3 will be
discussed here. This network,
also used by VanSlyke (1), dis-
plays the various time estimates
for each activity as a three-
component vector located above
the arrow representing the act-
ivity. The Figure 3 network was
studied for the cases of 200,
400, 600, 800, and 1,000 real-
In
addition, it was further studied
with the FORTRAN model for runs

involving 5,000 and 10,000 real-

izations with both models.

izations. Figures 4 and 5 show
the various model-generated
approximations to mean project
duration and the associated
standard deviation, respectively.
These model-generated estimates
rapidly approach stable values
which, as is to be expected, are
independent of the model being
used. Also displayed in Figures
4 and 5 are the project mean
time and standard deviation as
calculated from the PERT algo-
rithm.

dence between sampled results

The lack of correspon-

and PERT results is to be ex-
pected in general because of the
simplifying assumptions made in
the PERT analysis.

FIGURE 3.

(7.9.12)

PROJECT NETWORK FOR WHICH
RESULTS ARE REPORTED HERE

71 t } t . t— 99
£
’.—
.570~
g
269 4
Z
w A 6Pss/360 MoDEL
68 ’ = =0 FORTR}AN v MOgDEL 4
200 400 600 300 1000 5000 10000
TOTAL NUMBER OF NETWORK REALIZATIONS '
FIGURE 4, ESTIMATED PROJECT COMPLETION TIME
AS A FUNCTION OF SAMPLE SIZE
10.0 t t : } 99 —
L e o e e e e . _PERT VALUE
9.5+ +

FIGURE 5,

3
=
>4 nd 4
w90 LEGEND:
g A 6pss/360 MODEL
a3 O FORTRAN IV MODEL
Z 8.5+ T
5
=
F 8,01
‘5
3
(2
o 7.5"'

7.0 f } t } f— 99

200 400 600 800 1000 5000 10000

TOTAL NUMBER OF NETWORK REALIZATIONS

STANDARD DEVIATION OF PROJECT
COMPLETION TIME AS A FUNCTION
OF SAMPLE SIZE

346

Figures 6 and 7 display the estimates

0.25 ; t t ; t
of the project time's density function
=z
and cumulative distribution, resp., as E LEGEND:
developed from use of each of the two % 0.20 T A 6Pss/360 mMoDEL i
models. These plots use information i OFORTRAN IV MODEL
corresponding to runs of 1,000 real- 5 0.15 4 1
=z
izations. Results produced by the two A
models are fully consistent. -
30,10 + 4
2
Table 2 shows the simulated estimates g
of criticality indices as a function & 0.05 L 1
both of the model being used and the
number of realizations involved. 0.0
Inspection of Table 2 reveals that the ' 0 &) 70 éO 96 100 110
criticality indices are a more sen- PROJECT DURATION, DAYS

sitive function of the number of real- FIGURE 6, PROJECT TIME DENSITY FUNCTION

1.0 } } y

izations than is overall project dur~

ation and its associated standard dev-
iation.

0.8+
Two published papers were used for
purposes of testing the criticality

o
N
r
T

indices produced by the present models.
VanSlyke's results for the Figure 3

o
g
N
¥

LEGEND: -+
A cpss/360 MobEL
O FORTRAN IV MODEL

network and our results based on
10,000 realizations vary by as much as
20%. Given the slow rate of stab-

o
N
N
T

CUMULATIVE DISTRIBUTION FUNCTION

ilization of these indices as suggested

in Table 2, such a large difference is
not improbable. A further check on the 0?0 éO 76 86 96 ']BO 110
indices produced by our models was made PROJECT DURATION. DAYS

FIGURE 7. PROJECT TIME CUMULATIVE DISTRIBUTION

TOTAL NUMBER OF NETWORK REALIZATIONS

200 400 600 800 1000 5000 10000
MODEL: | FORTRAN GPSS|FORTRAN GPSS|FORTRAN GPSS|FORTRAN GPSS| FORTRAN GPSS |[FORTRAN GPSS|FORTRAN GPSS
1-2 .825 .820| .825 .848| .810 * .822| .820 .830| .822 .827 .835 .829
1-3 .175 .180] .175 .155] .190 .180| .180 .171] .180 .174] .169 .175
2-4 .090 .090| .080 .098] .077 .072| .070 -079] .072 .082] .085 .081
5y 2-5 .735 .730] .745 .750| .733 .751| .750 .751)- .751 .745| .750 .748
E 3-5 .105 .095| .100 - .083] .l07 .100f .104 .094] .103 .099] .097 .098
E 3-7 .070 .085| .075 .075] .083 .078} .076 .08l .078 .078] .073 .079
g 4-8 .090 .090| .080. .097] .077 .088} .070 .088f .072 .082) .085 . 081
5-8 .095 .035} .080 .040(.073 .040| .068 .043] .064 .045) .057 . 055
5-7 .750 .790| .768 .792) .768 7981 .787 .804) .791 .802] .788 .789
7-8 .035 .015] .033 .018] .030 .020| .024 .020] .020 .021] .014 .014
7-9 .785 .860| .813 .848| .823 .855(.841 .8631 .847 .857| .847 .B53
8-9 .220 .140) .193 .1521 .180 .147) .16l .140(.156 .147f .156 +151

TABLE 2. ESTIMATES OF CRITICALITY INDICES FOR PROJECT ACTIVITIES
347

by using both the GPSS and FORTRAN mod-
els with a network discussed by Gray and
Reiman (5). In this case, disagreement
of criticality indices did not exceed

10%.

realizations were used to produce the

(It is not clear in (5) how many

results presented there. It was inferred
that 2,500 realizations were involved,
and that number was used for comparative
purposes.)

8, cosT ggMPARISONS BETWEEN THE
GPSS/560 AND FORTRAN IV MODELS

Figure 8 shows the computer billing
charge plotted against the number of
network realizations as a function of
the model being usedf A marked differ-
ence in the cost of using the two models
is evident. An object deck was cut and
used for the FORTRAN model. This has
the effect of lowering the intercept of
the FORTRAN cost line slightly but does
not change the slope of the line.
Relative inefficiencies of the GPSS/360
processor when used for productien runs
are brought into sharp focus in Figure
8. On the other hand, the relative
ease and convenience of model-building
In
fact, this project was approached by

using GPSS cannot be overlooked.

doing all the model building initially
in GPSS.
tested in a search for that approach

Various alternatives were

which would be optimal in the sense of
minimizing the GPSS billing charge.
(Billing charge proved to be quite in-
sensitive to the various approaches
used in model construction.) The model
was implemented in FORTRAN only after
considerable insight had been gained
through the GPSS modeling process. As

a result, the FORTRAN model was con-
structed with relative ease. In fact,

25 : t ' t
20 +
= 15+
:
s
L o104
g
5L
FORTRAN IV MODEL
200 T0 B0 Sh0 1000
TOTAL NUMBER OF NETWORK REALIZATIONS
FIGURE 8, COST OF PRODUCTION RUNS FOR THE
PROJECT NETWORK IN FIGURE 3,
1500

10007

TOTAL COST OF BUILDING AND USING MODEL. $

+ TOTAL DEVELO +
>00 COST OF FORTEKSN¥V
/. MODEL
N
TOTAL DEVELOPMENT
COST OF GPSS/360
MODEL
0 ; : : ; !
5 10 15 20 25 30
NUMBER OF TIMES MODEL IS TO BE RUN
FIGURE 9, TOTAL COST OF BUILDING AND USING

THE GPSS AND FORTRAN MODELS FOR
THE FIGURE 3 NETWORK

*All runs were made on The University of Michigan's 360/67 multi-
processing system. In this system, two Model 67's are used in multi-
processing mode under supervision of the Michigan Terminal System,

348

it was found that a high degree of the in-
sight gained by modeling in GPSS carried
over into the FORTRAN implementation.

The cost tradeoff between GPSS and FORTRAN
modeling of the problem at hand can be
further discussed by considering the cost
components associated with program dev-
elopment and testing as well as the cost
of production runs. We estimate that the
FORTRAN model took three times longer to
build than did the GPSS model; the
FORTRAN model required about twice as much

also,
time (human) to "debug"”". On an absolute

it is estimated that a total of 80
hours of programming time was required in

basis,

development of the two final models.
Suppose we assume a programmer pay rate of
$15 per hour (which, in light of recent
industry developments, may be unduly con-
sexrvative). Assume further that each
production run in a given application, ox
family of applications, costs $3 and $50
for the FORTRAN and GPSS models, respect-
ively (these relative costs are obtained
from extrapolating the information avail-
Then total cost of

building and using the model can be

able in Figure 8.)

plotted against the number of times the
program is to be
9.
if a given model

used, as shown in Figure
The Figure 9 information suggests that
is to be used'repeatedly,
significant cost savings may result if the
model is eventually implemented in FORTRAN

as opposed to GPSS.

9, SUMMARY

GPSS/360 lends itself readily to modeling
the fully-generalized PERT network for

estimation of activity criticality indices
The GPSS model

can be duplicated and used

via Monte Carlo sampling.
documented here
without further creative effort being re-
be studied to the point of
GPSS is a

convenient vehicle for experimenting with

guired, and can

understanding if so desired.

349

alternative approaches to the model-build-
ing process. If extended production runs
are to be made, significant cost savings

can be realized by eventually building the
finalized model in FORTRAN.

sented to show production run cost

Data are pre-

differences on a guantitative basis.

10. BIOGRAPHIES

Guillermo Ponce-Campos is a Ph.D. candid-
ate in Construction Management in the
Civil Engineering Department at The Uni-
versity of Michigan. A native of Peru, he
is doing his doctoral dissertation in the
area of multi-relationship network
analysis. He will tentatively graduate in
December, 1970.

Thomas J. Schriber is an Associate Pro-
fessor of Statistics and Management
Science in the Graduate School of Business
at The University of Michigan. A 1968-
1969 ACM National Lecturer, his research
interests include computer simulation of
discrete stochastic systems and determin-
istic applications of the computer in
operations research. He is the author of
Fundamentals of Flowcharting (Wiley, 1969).

11. REFERENCES

(1) Vanslyke, R.M., "Monte Carlo Methods
and the PERT Problem", Operations
Research, Vol. 11, pp-339-369 (1963)

Schriber, Thomas J., General Purpose
Simulation System/360: Introductory
Concepts and Case Studies, pp 172-181,
(Ulrich's Bookstore, Ann Arbor, Mich-
igan, 1968)

Meier, R.C., W.T. Newell, and H.L.
Pazer, Simulation in Business and Econ-
omics, pp 37-43 (Prentice-Hall, 1969)"

Fishman, George S., Digital Computer
Simulation: Estimating Sample Size,
The RAND Corporation, Memorandum
RM-5866-PR (August, 1969)

Gray, C.F., and R.E. Reiman, "PERT
Simulation: A Dynamic Approach to the
PERT Technique", Journal of Systems

Management, pp 18-23 (1969)

Fulkerson, D.R., "Expected Critical
Path Lengths in PERT Networks",
Operations Research, Vol. 10, pp 808-
817 (1962)

Hartley, H.O., and A.W. Worham, "A
Statistical Theory for PERT Critical
Path Analysis", Management Science,
Vol. 12, pp 469-481l (1966)

MacCrimmon, XK.R., and C.A. Ryavec,
Analytic Study of the PERT Assumpt-
ions", OR, Vol. 12, pp 16-37 (1964)

(2)

(3)

(4)

(5)

(6)

(7)

(8) "An

