CALIBRATING THE SIMULATION MODEL OF THE IBM SYSTEM/360 TIME SHARING SYSTEM

- P. E.

Sindelfingen,

Barker
IBM World Trade Corporation

and

Germany

H. K. Watson
International Business Machines Corporation
Systems Development Division
Kingston, New York
/

Abstract

A GPSS/360 model was developed to support the IBM System/360 Time

Sharing System (TSS/360) design and evaluation effort.

The model

was validated by conventional desk-checking procedures and by an
extensive measurement effort involving a hardware monitor (SPAR),
a software monitor (SIPE), and miscellaneous data-reduction pro-

grams.

Calibration results obtained with TS8S/360 are described, as

are some of the benefits derived from the model.

1. INTRODUCTION

Around the middle of 1965,
was made to write a GPSS/360 simulation
model of the IBM System/360 Time Sharing
System (TSS/360), which was then in the

the decision

development stage. An earlier model had
been written to simulate the hardware in
order to evaluate such things as cable
delays, memory interference, and dynamic-
address~translation-feature degradation.
The new model was to include these hard-
ware considerations as gross factors,

but would concentrate on the programming
system with a view to evaluating system

performance under different operating

environments.
The objectives of the model were:

(1) To supply performance predictions
to customers and prospective custom-

ers prior to the availability of the

130

system.

(2) To assist the development effort by
detecting logical errors and by sug-
gesting design improvements.

(3) To evaluate the effect on perfor-

mance of various user-specified sys-
tem parameters.
In order to satisfy these objectives, it
was thought essential to calibrate the

model against live system measurements

" and thus establish the model's credibili-

ty. This has proved to be a continuing

task because, as the system is developed,
the model must be changed to reflect mod-
ifications. This report describes the

calibration process and results obtained

from calibrating the model.



2. THE MODEL

In order to make this report more mean-
ingful, a brief description of the model

is given here.

A TSS/360 user may invoke various func-
tions by using commands, such as LOGON,
LOGOFF, RUN FTN, and DATA. For modeling
purposes, each function was broken down
into its consistituent parts, which are
termed subactions; typically, a functiomn
may be represented by 10 to 20 subac-
tions. The characteristics of a subac-
tion are the shared and non-shared pages
referenced, the working storage pages ob-
tained and freed, the number of pages
moved between main storage and external
storage, the number of IOCAL macro in-
structions issued (which provide for the
initiation and execution of I/0 opera-
tions), the virtual memory time (time
during which the PSW is in the problem
state), and the supervisor time (time
during which the PSW is in the supervi-
Early in 1967, before IBM

System/360 Model 67 was available, these

sor state).

parameters were measured with an instruc-
tion-trace program on a Model 50 running
interpretively as a Model 67, Later they
were measured on a Model 67 using ITM

(Instruction Trace Monitor).2

The subactions relate only to virtual
memory activity-they do not consider the
resident supervisor. The supervisor was
modeled using logic descriptions in the
development workbook and by keeping in
close touch with the TSS/360 designers.
Interrupt-handling times were either es-
timated from the flowcharts or measured
with ITM.

The model contains about 2000 GPSS/360
Blocks and runs one-to-three times slow-
er than real time on a Model 65. The
basic clock time is one tenth of a milli-

second.

131

2.1 MODEL INPUT

The user—-controlled variables can be
hard-

ware configuration, parameter settings,

classified into three main types:
and load. As the model is supplied with
built-in values for each of the variables,
it is only necessary for the user to re-
specify the particular variables he is
experimenting with. This kéeps the model

input to a minimum.

Hardware configuration includes such data
as number of CPU's, memory size, disk-
storage drive type (IBM 2311 or IBM
2314), number of paging disks, number of
public disks, and number of on-line ter-
minals. The system-parameter settings
that may be varied include the quantum
length, number of quanta per time slice,
maximum number of pages per task, main
storage and drum overflow thresholds, and
delta values; in fact, most of the items
in the system table are conveniently rep-
sented in a GPSS/360 function. The vari-
ables involved with specifying the load
include the job type per terminal, the
number of statements to be handled, the
interterminal start time, the "think"
time, the number and type of third-level

tasks, and the bulk I/0 load.
2.2 MODEL OUTPUT

The model contains a special report sec~-
tion, which provides data on the simula-
tion run in an easy-to-read, English-
language~like form. Broad external-per-
formance figures, such as number of jobs
of each type processed, response times
per job, and hardware utilization, are
listed. 1In addition, there is a wealth
of information on the internals of the
system; this is invaluable for checking
out both the model and the system. In-
cluded is such information as the number
and type of time-slice ends, the average

number of tasks in main storage, the



average amount of main-storage space
occupied, and the distribution of the

average program size per time-slice.

3. STAGES OF CALIBRATION

There are two distinct stages in the
The first falls
The

checking of any model.
under the heading of desk checking.
second, which is usually much more
lengthy and expensive, can be called mea-
surement; this includes measurements of
the system modeled or, where this is not
possible, measurements of some similar

system and development of analytic ap~

proximations.

3.1 DESK CHECKING

Desk Checking the TSS/360 model was per-
formed over a period of about two months
by two people who had not been concerned
with its implementation. This is thought
to be a prerequisite of any good auditing
procedure, since it is difficult to check
one's own work., The basic approach dur-
ing this period was to compare the model
logic with the system specifications by
a static study of the model listing.
This revealed such errors as wrong pages
referenced by a particular subaction and
incorrect specification of profile para-
meters. It also provided an opportunity
to learn how the model worked. The next
stage was to perform simple model runs
on the computer to check that the wvari-
ous modules were interfacing correctly,
The first runs were single-thread. For
these, the model was modified slightly
to provide output at meaningful check-
points, such as end of LOGON and end of
RUN.

functions were then made against the

Comparisons of statistics for these
specifications. Any discrepancies were
resolved by obtaining model output at

finer details of resolution.

132

These procedures provided a good check
of the task profiles and flow but not of
the supervisor logic with iQS complex
dispatching algorithm, I/0O-device hand-
ling, and storage management. A first
attempt at checking this was made with
multiple~thread runs of varying degrees
of complexity, but little was proved ex-
cept that the model ram to completion.
The determination that the completion was
successful and that the results were
meaningful was accomplished by actual
system measurements, which were compared

to the results from the model runs.

3.2 MEASUREMENT EFFORT

Measuring a system's performance involves
defining the environment, specifying the
values to be measured, and developing

the tools to provide the measurements.
Since the measurements were oriented to-
ward understanding why the system was be~
having in a certain way, rather than just
determining the system throughput, some-
thing more sophisticated than a stopwatch
was needed. To capture the hardware-
device utilizations and number of 1/0
events, a hardware monitor (SPAR) was
used. Details of the internals of the
operating system, such as main-storage
utilization and distribution of time-~
slice ends, were obtained from a software

tool (SIPE).
3.3 MEASUREMENT TOOLS

such as T8S/360,

is dnherently undisciplined and nonrepro-

A conversational system,

ducible from the point of view of the
user at the terminal: his keying rates,
length of responses, and “think" times

vary; his keying accu—acy varies; his

activity relative to some other terminal
varies between different sessions of the
same run., This makes it very difficult

to perform a repeatable experiment.



Hence, conversational runs were made with
TEST/360, a program that runs in a Model
40 connected to a Model 67. The Model

40 has a prestored dialog of the com-
mands required at each terminal, and
transmits them in a controlled manner
and at specified time intervals to the
Model 67. As far as TSS8/360 is con-
cerned, the situation is identical to
having terminals on-line. Messages sent
and received are time-stamped by the
Model 40, and a data~reduction program

produces a response-time analysis.

A gross measure of how the system is
performing is provided by SPAR (System
This

is a hardware monitor which records sys-

Performance Activity Recorder).3

tem activity in mechanical and electrical
counters under the direction of a wired
control panel, By writing the contents
of these counters on tape and by using

an appropriate data~reduction program,

a continuous picture of the system activ-—
ity during the run can be constructed,
SPAR is connected to the Model 67 through
a special interface. The main use of
this tool is for hardware measurements,
such as channel and CPU utilization;
however, in single-thread work, a limited
amount of software information can be
provided, such as length of a FORTRAN

phase or of a time-slice.,

The most suitable tool available for
making internal measurements was SIPE
(System Internal Performance Evaluation),
a program integrated into the resident
supervisor. When SIPE is in use, it
records in a main-storage buffer the
time at which key modules (such as page
posting,

time-slice end, and move wall)

are entered, together with other perti-
nent information. When the buffer is

filled, the information is written on

magnetic tape. The tape is processed

133

later by various data-reduction pro-
grams. These have been designed so that
the SIPE user may have reports at vari-
ous levels of detail,

all

ond

ranging from over-
run statistics down to the microsec~
level, depending upon the problem be-
ing studied.

it should
de-

veloped solely for the simulation group,

To avoid any misunderstanding,

be stated that these tools were not

although it was one of the main users;
other interested groups were design-eval~
uation and product-test. All of these
groups were active in providing specifi-
cations for the tools and in monitoring

their development.

3.4 THE ENVIRONMENT

To make maximum use of machine time, a
measurement plan was drawn up by the
simulation,

design, and product-~test

groups such that, where possible, the
same runs could be used for different
purposes. Table 1 shows a typical set
of loads which were used for calibrating
the simulation model against an early

release of TSS/360. They were of three

types:

(1) One terminal, conversational only
(runs 1-8)

(2) Two tasks, batch only (ruams 9-10)

(3) Twelve terminals (rum 11-14; three
of these were conversational only,
one included a FORTRAN batch com-
pile).

The emphasis was on the 1024K, or maxi-

mum, system, but a few runs were made on

the 512K, or minimum, system. A single
IBM 2311 Disk Storage Drive was used as
and one IBM

Both

the auxiliary paging device,
2311 was used as the public volume.

were on the same channel.




A typical set of parameters used for
early calibration runs is shown in
Table 2.

the measurements were arbitrary to some

Although the settings used for

extent, they were determined by simple
analysis wherever possible. The simu-
lation model provides an efficient met-
hod of determining optimum values of
many of these parameters. It is also
helpful in providing understanding of
the interrelationships between parame-~

ters.

In general, the requirements for cali-
bration are (1) that the environment can
be reproduced very closely in the simu-
lation model and (2) that it provides a
representative application of the model

rather than a limiting case.
4, CALIBRATION PROCESS

The actual method of performing a model
calibration, once one is armed with both
model and system measurements, is some-
what like programming-more of an art
than a science. As such, it is diffi-
cult to lay down a set of rules on how
to proceed. However, there were some
broad principles that were followed

each time.

ONE: The first measure- of the model's
performance is how it compares on the
external characteristics of average
elapsed time per job and average re-
sponse time, These are the measuretients
presented in this paper, Initially
these quantities did not compare well
but, even if they had, it would not have
guaranteed that the model was working
correctly. Compensating errors could
have produced the right answers for the

wrong reasois.

TWO:

amine the gross intermal characteris-

A reasonable second step is to ex~

tics, such as the number of drum reads

134

and writes, the number and type of time-
slices, and the average amount of un-
assigned main storage. This will usually
give a strong indication of the area in
which the trouble lies.

number of AWAIT time-slice ends

For example, if
a large
show up when the systems does not have a
minimal amount of unassigned main stor-
suggests that the algorithm for

with tasks in AWAIT status is

age, it
dealing
not working properly. Or if the system

shows a higher space utilization of main
storage than does the model, it suggests
an error in the purging area, incorrect

profiles, an error in model main-storage
accounting, or one of several other pos-

sibilities.

THREE: The identification of the reasons
for the discrepancy is one of the most
challenging and interesting parts of the
process. It involves forming a hypothe-
sis and then checking it by studying
more detailed data reductions, perhaps
to the millisecond level, and by making
additional model runs to examine the ef-
fect of certain changes. Most of the
problems encountered lay in the area of
system bugs, which were eliminated as
they were identified. The main model
weakness uncovered was in the area of re-
claiming pages from the pendiﬁg list,

Due to accounting difficulties, the un-~
claimed pages for a task were discarded,
and this resulted in a much lighter
main-storage load than occurred in the
real system. However, this was only
significant under heavy load conditions,

as shown in the following results.

4.1 CALIBRATION RESULTS

The results from one of the calibrations
is shown in Table 3, This table shows
the difference in elapsed times between
the system and the simulator expressed

as a percentage of system time. The



difference in response times are also

shown for multi-terminal runs.

Figure 1 graphically displays the results
shown in Table 3. The unshaded bars show
the difference before corrections were
made to the model while the shaded bars

show results after corrections.

The elapsed time of the multiple~termi-
nal runs includes "think" time, which was
held at approximately 20 seconds for both
system and simulator. For the single-~-
terminal runs, "think" time was subtrac-
ted out of both system and simulator
elapsed times to provide a comparison of

actual operating time.
4,2 ANALYSIS OF RESULTS

The results shown in Table 3 include ex-
ternal comparisons only. This is not to
say that internal comparisons were not
made-they were, On all runs, SPAR and
SIPE recordings were taken and checks
were made on a myriad of internal para-
meters. Howevér, none of the checks
showed a serious discrepancy between the
model and the system, and the detailed
results have therefore been excluded in

the interest of clarity and brevity.

As shown in Figure 1, using a four-core
box (1024K), single-terminal system, the
elapsed-time deviation for the basic
model was approximately 5 percent. The
exception to this were the FORTRAN loads
(runs 1, 2, and 7).

On runs 1, 2, and 7, the simulator had
the FORTRAN compiler in initial virtual
This feature was not in-

corporated into TSS/360 Release 1l.1.

memory (IVM).

Run 2A was made with a prerelease version
of system 1.2, which did have the FORTRAN
compiler in IVM. The deviation here was
5 percent, which was in keeping with the
elapsed-time deviation for rumns, 3, 4, 5,

and 6.

135

Multiple-terminal deviation was approxi-

mately 24 percent.

The updated model gave improved results
for multiple-terminal runs of about 8
percent. Single terminal runs were effec-
tively unchanged at 6 percent. This
indicates that the updated model cali-
brates to the same accuracy for single-or

multiple-terminal loads.

The purpose of the runs on the two-core
box (512K) system was to provide a check-
point on the minimum system; as such,
they are of more qualitative than quanti-
tave significance. As shown in Figure 2,
the deviation for the basic model was a-
bout 17 percent for single-terminal runs
and 24 percent for multiple-~terminal runs.

The updated model gave corresponding re-

sults of 14 percent in each case.

A certain amount of instability exists
with results that calibrate to better
than 10 percent in that, as patches are
incorporated, the calibration fails to
behave in a smooth manner. This is be-~
cause as the model is improved in one di-
rection a discontinuity is crossed in
another, and this now influences the per-
formance. At this point, one is at the
accuracy threshold, or noise level, of

the model,

Response~time deviations averaged 51 per-
cent for the basic model and 22.3 percent
for the updated model., These figures are
misleading in that they include compari-
son of very short response times, where

a small absolute difference may be a
large percentage difference. A more
meaningful statistic is the weighted de-
viation, Here the figures are 45 percent
and 7 percent respectively, for the basic

and updated models.




5. SOME BENEFITS OF THE TSS/360 MODEL

Some of the advantages of having a model
are rather subtle and it is appropriate
to set them forth, although the follow-
ing is not necessarily their order of

importance:

The process of measuring the system and
examining data reductions was a fruitful
of finding system bugs. Although
model itself did not find the bug,
Without

way
the
the process of calibration did.

the model, it would have been more diffi-
cult to know what to expect from the

output.

In many cases, TSS/360 design changes
could be evaluated more readily and
economically with the model than by
patching the real system. This was in
spite of the fact that the model ran
one~to-three times more slowly than real
time, because the system also was slower
than real time! Besides running the
test case, the system had to go through
initialization procedures that could take
hours, especially during the early stages
of the system development when system re-~
liability was fairly low.
this, one had the cost of a Model 40 to
drive TEST/360, a Model 67 to rum the

and a Model 65 to run the data

On top of

test case,
reduction. This cost is high when com-
pared with that of only a Model 65 to

run the model.

System Performance could be evaluated
under a wider range of load conditions
and configurations than was possible on
the real system for the following rea-

sons:

(1) In the early stages of TSS/360 de-

velopment, the system reliability

was so low as to preclude runs of

any length or complexity.

(2) Similarly, the functional capability

136

was lacking initially; for example,
at one point the system could sup-
port no more than 12 on-line termi-

nals,

(3) The resources to generate diverse
test cases were not available,
whereas load specification was a

trivial task for the modeler.

(4)

The physical configuration was not
always available, as when a pro-
posed new I/0 device was being eval-

uated.

(5) Model 67 time was the scarcest re-

source available during the early

development days.

For the same reasons, it was easier to
evaluate the interrelationship between
the system parameters with a model than

by a series of rums on the system.

6. FUTURE OF THE MODEL

The model of TSS/360 has by no means out-

grown its usefulness; in fact, it is per-
haps now that it can be of greatest val-
ue., It has been rewritten and extended
to include current system improvements.
By being ahead of the implementation ef-
fort, it 1is possible for the model to de-
tect design weaknesses and indicate im-
provements early enough to affect the
there is the

real product. Besides this,

ability to provide fast, in depth studies
of system performance under a wide range
of loads and operating environments, even
with new hardware that may ndt exist be-

yond a set of functional objectives.

7. CONCLUSION

This study has shown that it is possible
to simulate a complex operating system
with high accuracy and yet retain the
traditional modeling advantages of short-
er lead time to a finished product and in-
creased system insight through simplifica-

tion.



8. CITED REFERENCES

W. J. Kahn and R.
Configuration Analysis of the IBM
System/360 Model 67, IBM TR 53.0010,
IBM Systems Development Division,

New York, 1969.

E. Ross, Hardware

Yorktown Heights,

C. E. Seabold,
Technique for Time Sharing System/

360, IBM TR 53.0012, IBM Systems

An Tnstruction-Trace

Development Division, Yorktown

Heights, New York, 1969,

F. D.
Device for IBM System/360 Time Shar-

Schulman, "Hardware Measurement

T

ing Evaluation," Proceedings of the

22 National Conference, Association
P-67,
Thompson Book Co.

D. C., 1967,

for Computing Machinery,
pp. 103-109,

Washington,

W. R, SIPE:; A TSS/360
Software Measurement Technique,

IBM TR 53.0013,

Denniston,

IBM Systems Develop-
ment Division, Yorktown Heights,
New York, 1969.

9. BIOGRAPHIES

H., K. Watson

H. K. Watson received his Bachelor of
Science Degree in Electrical Engineering
from the University of Colorado in 1949.
He was an instructor for the U.S. Air
Force from 1950-1951 and joined Inter-
national Business Machines Corporation
in 1951 as a customer engineer in the
Denver, Colo., facility. He later worked
in a similar capacity in San Francisco,
Calif., Seattle, Wash., Oakland, Calif.,
and Poughkeepsie, N,Y. He has worked
since 1961 in teleprocessing and time
sharing system design in Poughkeepsie
and Kingston, N.Y. His current assign-
ment includes simulation of large system
hardware and software in conjunction

with system design.

137

The author is a member of IEEE and Eta

Kappa Nu.

P. E. Barker

P. E. Barker received his B.S. in Electri-
cal Engineering from Queens University in
Belfast and his Diploma of Imperial
College from Imperial College in London
where he studied telecommunications. He
next spent two years with the Royal Radar
Establishment in England where he was en-
gaged in microwave and missile guidance

systems,

The author joined IBM United Kingdom,
Ltd., in 1958 as an applied science rep-
resentative. He was later assigned to
the advanced market development area
where he was involved in real time system
design. His next IBM assignment was with
Systems Development Division in Poughkeep-
sie, N.Y. where he was involved with
05/360 and time sharing systems perfor-
mance evaluation. He is currently with
IBM's World Trade Corporation in Germany
where he is assigned to the complex

systems department.



L TWO
ONE TASK BATCH TWELVE TASKS
1 1asks
30}
] MoDEL 100 _ [
25 |- MODEL 100+ PATCHES
2
Q
N m
X
33 20
58
T N
Q>
< W
Y
x /5
W
& -
10 |-
7 8 9 10 5 12 13 14
RUN NUMBER
Figure 1. Calibration results for the 1024K (four- el included the FORTRAN compiler in [VM, which
core-box}, or maximum, system. The values for the was not true for Release: 1.1 of TSS/360. Ta-
seventh and tenth runs are distorted, since the mod- ble 3 contains the data on which this graph is based.
30 I~

[J wmopeL 100

25 |- MODEL 100+ PATCHES

Z
20 - g
7
3 7
Q %
<5 g
S8 Z
~Ww /5 %
< Q /
is /
3§ Z
38 72
g o g
é
%z
7

707

n

N

5 6 1213
RUN NUMBER

Figure 2. Calibration results for the 512K
{four-core-box), or minimum, system. The data on
which this graph is based are contained in Table 4.

138



Table 1. List of measurement runs

Run System size
number Description of load 512K | 1024K
1 FORTRAN, prestored, single terminal, FO1 (89 cards) [

FORTRAN, prestored, single terminal, FO5 (145 cards) . (]

2A | Same as 2, run on prerelease TSS/360 1.2 .
3 Assembler, prestored, single terminal, K53 (101 cards) L
4 Assembler, prestored, single terminal, K55 (401 cards) .
5 Assembler, prestored, single terminal, K56 (802 cards) . []
6 DATA command, single terminal, 11 statements . ]
7 FORTRAN syntax edit, single terminal, 20 statements [
8 Assembler syntax edit, single terminal, 11 statements [
g Assembler, batch, 2 tasks plus BULKIO, K53 .
10 FORTRAN, batch, 2 tasks plus BULKIO, FO1 .
11 FORTRAN syntax edit, 12 terminals, 20 statements °
12 DATA command, 12 terminals, 42 statements ° .
13 FORTRAN syntax edit; Assembler, syntax edit; DATA command, 42 statements; 4 terminals each . °
13A Same as 13, run on prerelease TSS/360 1.2 .
14 Same as 13, except for addition of one batch FORTRAN task .

Table 2. Parameter settings for measurements

Parameter Setting
Operational cycle time 2 seconds
Quantum time 250 milliseconds
Maximum quanta per time-slice 1
Third-level inclusion delta 250 milliseconds
Third-level delta time 25 milliseconds
Third-level inclusion ratio 100 percent
Number of time-slices to purge
shared pages 5
Low-core high 10 pages
Low-core low 2 pages
Maximum task size 50 pages
Initial page estimate 15 pages
Drum threshold 15 pages

139




Table 3. Calibration results for 1024K (four-core-box) system

Model 100 Model 100 + pfatches
Run Difference Difference
number Interval measured {percent) (percent)
1 LLOGON to LOGOFF +22.0
2 LOGON to LOGOFF +18.2
2A |LOGON to LOGOFF + 5.0 + 1.8
3 LOGON to LOGOFF + 5.2 + 7.7
4 LOGON to LOGOFF + 45 + 3.6
5 LOGON to LOGOFF + 7.8 . + 1.8
6 LOGON to LOGOFF + 1.1 + 5.3
response —64.9 —-83.3
7 LOGON to LOGOFF +13.0
response —-59.0
8 LOGON to LOGOFF + 4.1 +15.1
response -26.0 —18.0
9 first LOGON to last LOGOFF — 49 + 2.3
10 first LOGON to last LOGOFF +21.7
first LOGON to last LOGOFF +20.1
M average, LOGON to LOGOFF +26.5
response . + 5.4
first LOGON to last LOGOFF + 9.0 + 4.7
12 average, LOGON to LOGOFF +16.6 + 9.7
response +71.1 +28.9
first LOGON to last LOGOFF +16.7
average, LOGON to LOGOFF +27.7
average FORTRAN, LOGON to LOGOFF +28.3
13 average DATA, LOGON to LOGOFF +24.0
average ASSEMBLER, LOGON to LOGOFF +33.0
response, FORTRAN +60.8
response, DATA +64.4
response, ASSEMBLER +58.9
first LOGON to last LOGOFF + 4.7
average, LOGON to LOGOFF + 8.0
average FORTRAN, LOGON to LOGOFF + 6.3
13A |average DATA, LOGON to LOGOFF + 6.9
average ASSEMBLER, LOGON to LOGOFF +12.1
response, FORTRAN — 98
response, DATA + 7.4
response, ASSEMBLER 0.0
first LOGON to last LOGOFF + 2.6
average, LOGON to LOGOFF + 6.7
average FORTRAN, LOGON to LOGOFF + 4.7
average DATA, LOGON to LOGOFF + 9.1
14 average ASSEMBLER, LOGON to LOGOFF + 55
response, FORTRAN —229
response, DATA + 9.1
response, ASSEMBLER -21.7
batch +47.1

140




Table 4. Calibration results for 512K (two-core box) system

Model 100 Model 100 + patches
Run Difference Difference
number Interval Measured (percent) {percent)
2 L.LOGON to LOGOFF +24.0

5 LOGON to LOGOFF +13.1 -12.1
6 LOGON to LOGOFF +20.6 +15.2
response -57.0 —65.3
first LOGON to last LOGOFF +16.8 +17.4
12 average, LOGON to LOGOFF +24.0 +23.0
response +54.9 +40.8
first LOGON to last LOGOFF — 89
average, LOGON to LOGOFF — 4.2
average FORTRAN, LOGON to LOGOFF + 09
13 average DATA, LOGON to LOGOFF - 89
average ASSEMBLER, LOGON to LOGOFF — 36
response, FORTRAN —-82.5
response, DATA -82.0
response, ASSEMBLER —67.7

141




